JPH0323632B2 - - Google Patents
Info
- Publication number
- JPH0323632B2 JPH0323632B2 JP15831585A JP15831585A JPH0323632B2 JP H0323632 B2 JPH0323632 B2 JP H0323632B2 JP 15831585 A JP15831585 A JP 15831585A JP 15831585 A JP15831585 A JP 15831585A JP H0323632 B2 JPH0323632 B2 JP H0323632B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- substrate
- sputtering
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010408 film Substances 0.000 claims description 92
- 239000000758 substrate Substances 0.000 claims description 39
- 239000010409 thin film Substances 0.000 claims description 39
- 230000005291 magnetic effect Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 22
- 229920006254 polymer film Polymers 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000005289 physical deposition Methods 0.000 claims description 3
- 238000005234 chemical deposition Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 description 28
- 230000037303 wrinkles Effects 0.000 description 10
- 238000001816 cooling Methods 0.000 description 5
- 238000009751 slip forming Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Description
[利用分野]
本発明は、高分子フイルムの基板上にロール・
ツ・ロールで連続的に真空中で薄膜を形成する薄
膜形成方法の改良に関し、薄膜型磁気記録媒体、
透明導電性フイルム、熱線反射フイルム、態様電
池等の薄膜機能素子等の製造に適用でき、特に基
板に表面の平坦な高分子フイルムを要求される薄
膜型磁気記録媒体の好適なものである。
[従来技術]
上述の通り、多方面に適用できるものである
が、以下薄膜性磁気記録媒体の製造を例に説明す
る。
上述の薄膜型磁気記録媒体は、近年高密度磁気
記録用媒体として注目され、既に多くの提案があ
る。例えば特開昭54−147010号公報にはCoの蒸
着膜が、特公昭58−91号公報にはCo−Cr合金の
スパツタ膜からなる垂直磁化膜が開示されてい
る。
このような蒸着、スパツタ又はイオンプレーテ
イング等の薄膜形成手段によつて形成される金属
膜は、厚みが1.5μm以下にもかかわらず、磁性層
の厚みが3μm以上である従来の塗布型記録媒体
の性能を示す。
しかしながら形成される金属薄膜厚さが薄く、
基板の表面状態(表面凹凸)がそのまま磁性膜の
凹凸として発現し、スペーシングロスやドロツプ
アウトの原因となる。従つて、電磁変換特性(再
生出力、エラー)の観点からは、基板の表面状態
が出来るだけ平滑であることが好ましい。
一方、基板に高分子樹脂フイルムを用いる場
合、フイルム巻取、巻出しといつたハンドリング
の観点から、フイルム表面が平滑であると、フイ
ルム−フイルム相互の滑り性が悪くブロツキング
現象が発生し、製品になり得ず、ベースフイルム
表面が粗であることが要求される。
このように薄膜型の磁気記録媒体には、基板に
関し、電磁変換特性を向上させようとすれば、そ
のハンドリング性、走行性が悪化するという問題
がある。
[発明の目的]
本発明はかかる現状に鑑みなされたもので、非
常に平滑な高分子フイルムを基板としても安定し
てロール・ツ・ロールで連続的に生産性良く薄膜
が形成できる薄膜形成方法を目的とするものであ
る。
[本発明の構成及び作用]
上述の目的は、如何の本発明により達成され
る。すなわち、本発明は、長尺の高分子フイルム
を基板とし、基板をロール・ツ・ロール方式で移
送しつつ、支持体に支持された基板上に真空中で
連続的に薄膜を形成する薄膜形成方法において、
基板の高分子フイルムを安定に膜形成できる巾以
下にスリツトしつつ、支持体へ移送して薄膜を形
成することを特徴とする薄膜形成方法である。
なお、ロール・ツ・ロール方式とは、ロールに
した基板から巻き戻しつつ移送し、再びロールに
巻き上げる移送方式のことである。
ところで、上述の本発明は、表面が非常に平坦
な高分子フイルムを基板とした場合でも、フイル
ムの巾が狭い場合には真空中で安定した取扱いが
でき、安定な膜形成ができることを見出しなされ
たものである。
すなわち、表面の平坦なフイルムをベースフイ
ルムとして真空中に挿入し、かつ連続的に移送し
つつ薄膜を形成したところつぎのような問題が見
出された。即ち表面の平坦なフイルムでは全巾に
亘る冷却ロールあるいは冷却板等の支持体との密
着性が悪く、薄膜形成時に受ける熱にフイルムが
耐えることができないことである。
冷却ドラムや冷却板等の支持体とフイルムとの
密着性についてはフイルム移送時の張力を十分か
けることにより向上できる。
しかしながらかかる張力はフイルム巾が広くな
るほど巾方向に均等にかけることは困難であり、
フイルムの巾方向にわたつては均一な張力とはな
らなかつた。かかる張力の不均一は膜形成時の熱
によりシワ、溶断等の好ましくない結果を与えて
いた。
一般に膜形成時に受ける熱のためにフイルムは
熱収縮し、巾方向に縮もうとするが、巾方向の張
力が不均一な場合フイルムの収縮は均一ではな
く、或る部分に集中するためこの部分からシワが
発生するものと推定される。
即ちフイルムの横方向の移動を自由にするため
には張力を下げる必要があるが、冷却ドラムとの
密着性を向上させるためには張力を上げる必要が
あるという相矛盾する条件を満足させる必要があ
つた。
本発明はかかる問題点について鋭意検討の結果
これらの問題は以下の通り解決可能であることを
見出した。
即ち長尺の高分子フイルムを基板とし、基板を
ロール・ツ・ロール方式で移送しつつ、支持体に
支持された基板上に真空中で連続的に薄膜を形成
する薄膜形成方法において、基板の高分子フイル
ムが支持体に支持される前に適当な巾にスリツト
しつつ移送して薄膜を形成すれば、シワの問題が
生じないことを見出した。
高分子フイルムをスリツトを入れることは、広
巾の高分子フイルムを巾方向にカツトし挟巾のフ
イルムに分割することを意味する。フイルム巾が
狭い場合、巾方向のフイルムの熱収縮は均等に行
われることによりフイルム巾の中央部分でのシワ
の発生が押えられることによると考えられる。
フイルムの巾によるシワの発生の状況は、フイ
ルム巾を種々変えた長尺フイルムを用いたモデル
実験により確認できる。フイルム巾と張力の関係
は膜形成の条件を一定にした場合、フイルム巾が
狭くなる程、張力を上げるほどシワが入りにく
い。すなわち、使用するフイルムに応じて安定し
た膜形成できる巾を選定することができる。従つ
てフイルムのスリツト巾は安定に膜形成できる巾
以下に選定される。
フイルムをスリツトした場合当然その巾は狭く
なるが、膜形成したフイルムは用途によつては狭
いもので十分である。かかる用途の場合には膜形
成したあとのフイルムはスリツト工程を経ること
になるが本方法によればスリツト工程を省略でき
るという長所も有する。支持体に接する前にスリ
ツトしたフイルムは巻出された時点では広巾のフ
イルムであるためスムーズに巻きとることがで
き、又巻取時にスリツトした各フイルム毎に巻取
系を準備することなく、あたかも一本のフイルム
の様に1本のロールに巻きとることができるた
め、非常に生産性の良い製膜が可能となる。
なお、設備的には従来の設備にスリツト手段を
組み込むだけでよい。スリツト手段としては、従
来よりスリツター等で用いられている公知の機構
がそのまま適用でき、切断刃を用いるもの、レー
ザ光を用いるもの等適用できるが、最も簡便には
例えばカミソリの刃をフイルムにあてるだけでよ
い。
スリツトするフイルムの巾は安定に巻形成でき
る巾内で、原反のフイルム巾および最終製品とす
るべきフイルム巾によつて決定すればよいが、製
品使用効率の高い巾に選定すべきことは云うまで
もない。巾の広いフイルムも用い、多数条にスリ
ツトする方が生産上は有利である。スリツテイン
グしたフイルムが支持体に接して移送しつつ膜形
成される場合、各フイルムは収縮し、スリツテイ
ング部分で微小なすき間をもつこともある。かか
るすき間にもフイルムへの堆積物と同じ堆積物が
堆積したり、又スリツテイング端部から溶断が生
じることがあるが、かかる問題はその境界にマス
クを付置することによつて防止することができ
る。
また上述の本発栄の可撓性高分子樹脂の基板に
は、ポリエチレン、ポリプロピレン等のポリオレ
フイン、ナイロン6等のポリアミド、ポリエチレ
ンテレフタレート、ポリエチレン−2,6−ナフ
タレート等のポリエステルその他の熱可塑性樹脂
フイルムが適用できる。中でも、ポリエチレンテ
レフタレート、ポリエチレン−2,6−ナフタレ
ートは、低コストで寸法安定性、表面性、耐熱
性、機械的特性に優れている点で好ましい。
ところで、本方法を薄膜型磁気録媒体に適用す
る場合には強磁性薄膜としては公知のものが全て
適用できる。すなわち、従来から開発の盛んな長
手記録用のFe、Ni、Co及びこれらの合金膜から
なる蒸着膜等は勿論、最近その高密度記録可能性
から注目されている垂直磁気記録方式(特公昭58
−10764号公報参照)に用いる膜面に垂直方向に
磁化容易軸を発現させたCo−Crの合金膜等から
なる垂直磁化膜(特公昭58−91号公報参照)等に
も適用できる。
特にフレキシブルデイスクを目的とし、両面に
磁気記録層を形成さす場合は、テープのようにバ
ツクコートにより走行性を確保することはできず
本発明の意義は大きく、さらに記録層が前述の垂
直磁気記録層である場合、線記録密度、トラツク
密度共に高くすることが可能であり、ドロツプア
ウト(D/o)や走行耐久性の観点より本発明の
効果は著しい。
なお、上述薄膜の形成手段としては、従来より
公知の真空蒸着法、イオンプレーテイング法、ス
パツタ法等の物理的堆積法が適用できる。中でも
ポリエステルを基板とし、前述の垂直磁気記録層
を形成して垂直磁気記録媒体を得るには低温膜形
成が可能で、且つ垂直異方性膜形成が安定にでき
るという点からマグネトロン式スパツタ法、ある
いは特開昭57−158380号公報等に開示の対向ター
ゲツト式スパツタ法が好ましい。
以上、上述の本発明の詳細を実施例に基いて説
明する。
第1図は本発明の実施に用いた対向ターゲツト
式スパツタ装置の構造図である。
図から明らかな通り、本装置は前述の特開昭57
−158380号公報で公知の対向ターゲツト式スパツ
タ装置とし基本的に同じ構成となつている。
すなわち、図において10は真空槽、20は真
空槽10を排気する真空ポンプ等からなる排気
系、30は真空槽10内に所定のガスを導入して
真空槽10内の圧力を10-1〜10-4Torr程度の所
定のガス圧力に設定するガス導入系である。
そして、真空槽10内には、図示の如く真空槽
10の側板11,12に絶縁部材13,14を介
して固着されたターゲツトホルダー15,16に
より1対のターゲツトT1,T2が、そのスパツタ
される面T1S,T2Sを空間を隔てて平行に対面す
るように配設してある。そして、ターゲツトT1,
T2とそれに対応するターゲツトホルダー15,
16は、冷水パイプ151,161を介して冷却
水によりターゲツトT1,T2、永久磁石152,
162が冷却される。磁石152,162はター
ゲツトT1,T2を介してN極、S極が対向するよ
うに設けてあり、従つて磁界はターゲツトT1,
T2に垂直な方向に、かつターゲツト間のみに形
成される。なお、17,18は絶縁部材13,1
4及びターゲツトホルダー15,16をスパツタ
リング時のプラズマ粒子から保護するためとター
ゲツト表面以外の部分の以上放電を防止するため
のシールドである。
また、磁性薄膜が形成される基板40を保持す
る基板保持手段41は、真空槽10内のターゲツ
トT1,T2の側方に設けられ、以下の通り基板4
0をロール・ツ・ロールで移送するようにしてあ
る。基板保持手段41は、図示省略した支持ブラ
ケツトにより夫々回転自在かつ互いに軸平行に支
持された繰り出しロール41a、支持ロール41
b、巻取ロール41cの3個のロールからなり、
基板40をターゲツトT1,T2間の空間に対面す
るようにスパツタ面T1S,T2Sに対して略直角方
向に保持するように配置してある。従つて基板4
0は巻取りロール41cによりスパツタ面T1S,
T2Sに対して直角方向に移動可能である。なお、
支持ロール41bは基板40の温度を制御するた
めその表面温度が調節可能となつている。
一方、スパツタ電力を供給する直流電源からな
る電力高級手段50はプラス側をアースに、マイ
ナス側をターゲツトT1,T2に夫々接続する。従
つて電力供給手段50からのスパツタ電力は、ア
ースをアノードとし、ターゲツトT1,T2をカソ
ードとして、アノード、カソード間に供給され
る。
なお、プレスパツタ時基板40を保護するた
め、基板40とターゲツトT1,T2との間に出入
するシヤツター(図示省略)が設けてある。
以上の通り、前述の特開昭57−158380号公報の
ものと基本的には同じ構成であり、公知の通り高
速低温スパツタが可能となる。すなわち、ターゲ
ツトT1,T2間の空間に、磁界の作用によりスパ
ツタガスイオン、スパツタにより放出されたγ電
子等が束縛され高密度プラズマが形成される、従
つて、ターゲツトT1,T2のスパツタが促進され
て前記空間より析出量が増大し、基板40上への
堆積速度が増し高度スパツタが出来る上、基板4
0がターゲツトT1,T2の側方にあるので低温ス
パツタも出来る。
なお、本発明の対向ターゲツト式スパツタ法
は、前述の装置のものに限定されるものでなく、
前述の通り一対の対面させたターゲツトの側方に
基板を配し、ターゲツト間に垂直方向の磁界を印
加してスパツタし、基板上に膜を形成するスパツ
タ法を云う。従つて、磁界発生手段も永久磁石で
なく、電磁界を用いても良い。また、磁界もター
ゲツト間の空間にγ電子等を閉じ込めるものであ
れば良く、従つてターゲツト全面でなく、ターゲ
ツト周囲のみに発生させた場合も含む。なお、第
1図で基板40の走行方向(MD)は、ターゲツ
トT1,T2の対向方向すなわち永久磁石152,
162からなる磁界発生装置により生ずる磁石φ
の方向とほぼ同じ方向になる。
さらに本発明の薄膜形成方法は実施例に用いた
対向ターゲツト式スパツタ法のみに限定されるも
のでなく通常の物理的堆積法、例えばマグネトロ
ン方式スパタリング、真空蒸着、2極又は3局ス
パタリング、イオンプレーテイングなどの方法
や、化学的堆積法、例えばCVD法などにも適用
できることはいうまでもない。
次に上述の対向ターゲツト式スパツタ装置によ
り実施した本発明に係わる薄膜形成方法の実施例
を説明する。
実施例1〜5、比較例1〜5
厚さ50μmのポリエステルフイルムを用いてパ
ーマロイ金属(Fe18%wt、Ni78wt%、Mo4wt
%)を前述の第1図の対向ターゲツトスパツタ装
置を用い、スパタリング法で形成した。
以下の実施例、比較例はいずれも膜堆積速度
0.5μm/min、支持ドラム41bの温度50℃で行
い、フイルム40の両端部は第2図に示すように
15mmのマスク42aを取りつけることにより、熱
輻射による損傷を防止するようにした。
フイルム巾24cm、支持ドラム41bの巾を30cm
としスパツタリングを行つた。
実施例においては図示のようにフイルム40の
中央部分に対応する位置に切断具として、通常用
いられているカミソリ刃を用いたスリツト手段6
0を設けて切り込みを入れ、フイルム40を巾方
向に2分割した。なお、スリツト手段60のカミ
ソリ刃は真空槽外からの操作でフイルムに切り込
みを入れないように移動することができるように
なつている。比較例においてはカミソリ刃をフイ
ルムからはずし切り込みを入れない状態で実施例
と全く同一の条件で膜を形成した。
スパタリングは8.2kwの電力を投入しフイルム
の速度と変えて膜厚を0.1〜1μを調整しつつ行つ
た。フイルム張力は9.7Kgである。結果を表1に
示す。
[Field of Application] The present invention is directed to the use of a roll film on a polymer film substrate.
Regarding the improvement of a thin film forming method in which a thin film is continuously formed in a vacuum using two rolls, a thin film type magnetic recording medium,
It can be applied to the production of thin film functional elements such as transparent conductive films, heat ray reflective films, and electrolyte batteries, and is particularly suitable for thin film magnetic recording media that require a polymer film with a flat surface as a substrate. [Prior Art] As mentioned above, this technique can be applied to many fields, but the following will explain the manufacture of thin-film magnetic recording media as an example. The above-described thin film magnetic recording medium has recently attracted attention as a medium for high-density magnetic recording, and many proposals have already been made. For example, JP-A-54-147010 discloses a vapor-deposited film of Co, and JP-A-58-91 discloses a perpendicularly magnetized film made of a sputtered Co--Cr alloy film. Although the metal film formed by such thin film forming means such as vapor deposition, sputtering, or ion plating has a thickness of 1.5 μm or less, it cannot be used in conventional coated recording media in which the magnetic layer has a thickness of 3 μm or more. shows the performance of However, the thickness of the metal thin film formed is thin,
The surface condition of the substrate (surface irregularities) directly manifests as irregularities in the magnetic film, causing spacing loss and dropouts. Therefore, from the viewpoint of electromagnetic conversion characteristics (reproduction output, errors), it is preferable that the surface condition of the substrate be as smooth as possible. On the other hand, when using a polymer resin film as a substrate, from the viewpoint of handling such as film winding and unwinding, if the film surface is smooth, the mutual slippage between the films will be poor and blocking will occur, resulting in the product being damaged. The surface of the base film must be rough. As described above, thin-film magnetic recording media have a problem in that if an attempt is made to improve the electromagnetic conversion characteristics of the substrate, its handling and running properties deteriorate. [Object of the Invention] The present invention has been made in view of the current situation, and provides a thin film forming method that can stably form a thin film roll-to-roll continuously with good productivity even when using an extremely smooth polymer film as a substrate. The purpose is to [Configuration and operation of the present invention] The above objects are achieved by any of the present inventions. That is, the present invention uses a long polymer film as a substrate, and while the substrate is transferred in a roll-to-roll manner, a thin film is continuously formed in vacuum on the substrate supported by a support. In the method,
This method of forming a thin film is characterized in that the polymer film on the substrate is slit to a width smaller than that capable of stably forming a film, and then transferred to a support to form a thin film. Note that the roll-to-roll method is a transport method in which the substrate is rolled, unwound and transported, and then wound up again into a roll. By the way, the present invention described above has found that even when a polymer film with a very flat surface is used as a substrate, if the width of the film is narrow, it can be handled stably in a vacuum and a stable film can be formed. It is something that That is, when a film with a flat surface was inserted into a vacuum as a base film and a thin film was formed while being continuously transferred, the following problem was discovered. That is, a film with a flat surface has poor adhesion over its entire width to a support such as a cooling roll or cooling plate, and the film cannot withstand the heat received during thin film formation. The adhesion between the film and a support such as a cooling drum or a cooling plate can be improved by applying sufficient tension when transporting the film. However, the wider the film width, the more difficult it is to apply such tension evenly in the width direction.
The tension was not uniform across the width of the film. Such non-uniform tension has given unfavorable results such as wrinkles and fusing due to the heat generated during film formation. Generally, the film shrinks due to the heat received during film formation and tends to shrink in the width direction, but if the tension in the width direction is uneven, the film shrinks unevenly and concentrates in a certain area, so this area It is assumed that wrinkles occur from this. In other words, it is necessary to satisfy the contradictory conditions that it is necessary to lower the tension in order to allow the film to move freely in the lateral direction, but it is necessary to increase the tension in order to improve its adhesion to the cooling drum. It was hot. As a result of intensive studies on these problems, the present invention has found that these problems can be solved as follows. That is, in a thin film forming method in which a long polymer film is used as a substrate and a thin film is continuously formed in a vacuum on a substrate supported by a support while the substrate is transferred in a roll-to-roll manner, It has been found that the problem of wrinkles does not occur if the polymer film is slit to an appropriate width and transferred to form a thin film before being supported on a support. Slitting a polymer film means cutting a wide polymer film in the width direction to divide it into narrow films. This is believed to be because when the film width is narrow, the heat shrinkage of the film in the width direction is performed evenly, thereby suppressing the occurrence of wrinkles in the central portion of the film width. The occurrence of wrinkles depending on the film width can be confirmed by model experiments using long films with various film widths. Regarding the relationship between film width and tension, if the conditions for film formation are kept constant, the narrower the film width and the higher the tension, the less wrinkles will appear. That is, a width that allows stable film formation can be selected depending on the film used. Therefore, the width of the film slit is selected to be less than the width that allows stable film formation. Naturally, when the film is slit, its width becomes narrower, but a narrower film is sufficient depending on the application. In such applications, the film after being formed must undergo a slitting process, but this method has the advantage that the slitting process can be omitted. The film that is slit before contacting the support is a wide film when it is unwound, so it can be wound smoothly, and there is no need to prepare a winding system for each slit film at the time of winding. Since it can be wound into a single roll like a single film, it is possible to form a film with very high productivity. In terms of equipment, it is sufficient to simply incorporate the slit means into conventional equipment. As the slitting means, any known mechanism conventionally used in slitters etc. can be applied as is, such as using a cutting blade or using a laser beam, but the simplest method is to apply a razor blade to the film, for example. Just that is enough. The width of the film to be slit can be determined within the width that can be stably wound and determined based on the width of the original film and the width of the film to be made into the final product, but it should be selected to a width that provides high product usage efficiency. Not even. It is advantageous in terms of production to use a wide film and slit it into multiple strips. When slitting films are transferred while being in contact with a support to form a film, each film contracts and may have minute gaps at the slitting portion. The same deposits as those deposited on the film may accumulate in such gaps, and melting may occur from the edges of the slitting, but such problems can be prevented by placing a mask at the boundary. . In addition, the above-mentioned flexible polymer resin substrate of Honhatsu is made of polyolefins such as polyethylene and polypropylene, polyamides such as nylon 6, polyesters such as polyethylene terephthalate, polyethylene-2,6-naphthalate, and other thermoplastic resin films. is applicable. Among these, polyethylene terephthalate and polyethylene-2,6-naphthalate are preferred because they are low cost and have excellent dimensional stability, surface properties, heat resistance, and mechanical properties. By the way, when this method is applied to a thin film type magnetic recording medium, all known ferromagnetic thin films can be used. In other words, not only evaporated films made of Fe, Ni, Co, and their alloys for longitudinal recording, which have been actively developed, but also perpendicular magnetic recording methods (PTK 1973), which have recently attracted attention due to their high-density recording potential.
The present invention can also be applied to perpendicularly magnetized films made of Co--Cr alloy films with an easy magnetization axis perpendicular to the film surface (see Japanese Patent Publication No. 10764). In particular, when a magnetic recording layer is formed on both sides for the purpose of a flexible disk, running properties cannot be ensured by a back coat like tape, and the present invention is of great significance. In this case, it is possible to increase both the linear recording density and the track density, and the effects of the present invention are remarkable from the viewpoint of dropout (D/o) and running durability. Note that as a means for forming the above-mentioned thin film, conventionally known physical deposition methods such as a vacuum evaporation method, an ion plating method, and a sputtering method can be applied. Among them, the magnetron sputtering method is used because it enables low-temperature film formation and stable perpendicular anisotropic film formation to form the perpendicular magnetic recording layer using polyester as a substrate to obtain a perpendicular magnetic recording medium. Alternatively, the facing target sputtering method disclosed in JP-A-57-158380 and the like is preferred. The details of the present invention described above will be explained based on examples. FIG. 1 is a structural diagram of a facing target sputtering apparatus used in the practice of the present invention. As is clear from the figure, this device was developed in the above-mentioned JP
It has basically the same construction as the opposed target sputtering device known in Japanese Patent No. 158380. That is, in the figure, 10 is a vacuum chamber, 20 is an exhaust system consisting of a vacuum pump etc. for evacuating the vacuum chamber 10, and 30 is a system for introducing a predetermined gas into the vacuum chamber 10 to increase the pressure inside the vacuum chamber 10 to 10 -1 to 10. This is a gas introduction system that is set to a predetermined gas pressure of approximately 10 -4 Torr. In the vacuum chamber 10, a pair of targets T 1 and T 2 are held by target holders 15 and 16 fixed to the side plates 11 and 12 of the vacuum chamber 10 via insulating members 13 and 14 as shown in the figure. The surfaces T 1S and T 2S to be sputtered are arranged so as to face each other in parallel with a space in between. And target T 1 ,
T 2 and its corresponding target holder 15,
16, targets T 1 , T 2 , permanent magnets 152 ,
162 is cooled. The magnets 152 and 162 are disposed so that their north and south poles face each other with the targets T 1 and T 2 in between, so that the magnetic field is directed towards the targets T 1 and T 2 .
Formed only in the direction perpendicular to T 2 and between targets. Note that 17 and 18 are insulating members 13 and 1
This shield is used to protect the target holders 15 and 16 from plasma particles during sputtering, and to prevent further discharge on parts other than the target surface. Further, a substrate holding means 41 for holding the substrate 40 on which the magnetic thin film is formed is provided on the sides of the targets T 1 and T 2 in the vacuum chamber 10, and the substrate holding means 41 holds the substrate 40 on which the magnetic thin film is formed.
0 is transferred roll-to-roll. The substrate holding means 41 includes a feed roll 41a and a support roll 41, which are supported rotatably and parallel to each other by support brackets (not shown).
Consisting of three rolls: b, take-up roll 41c,
The substrate 40 is disposed so as to be held substantially perpendicular to the sputtering surfaces T 1S and T 2S so as to face the space between the targets T 1 and T 2 . Therefore, the substrate 4
0 is the sputtered surface T 1S by the winding roll 41c,
It is movable in the direction perpendicular to T 2S . In addition,
The surface temperature of the support roll 41b is adjustable in order to control the temperature of the substrate 40. On the other hand, the high-power means 50 consisting of a DC power source for supplying sputtering power has its positive side connected to ground and its negative side connected to targets T 1 and T 2 , respectively. Therefore, the sputter power from the power supply means 50 is supplied between the anode and the cathode, with the ground as the anode and the targets T 1 and T 2 as the cathodes. In order to protect the substrate 40 during press sputtering, a shutter (not shown) is provided between the substrate 40 and the targets T 1 and T 2 to move in and out. As mentioned above, the structure is basically the same as that of the above-mentioned Japanese Patent Application Laid-open No. 57-158380, and as is known, high-speed low-temperature sputtering is possible. That is, in the space between the targets T 1 and T 2 , sputter gas ions, γ electrons emitted by the sputter, etc. are bound by the action of the magnetic field and a high-density plasma is formed . sputtering is promoted, the amount of precipitation increases from the space, the deposition rate on the substrate 40 increases, high sputtering occurs, and the substrate 4
0 is on the side of the targets T 1 and T 2 , low-temperature sputtering is also possible. Note that the opposed target sputtering method of the present invention is not limited to the above-mentioned apparatus;
As mentioned above, this is a sputtering method in which a substrate is placed on the sides of a pair of targets facing each other, and a perpendicular magnetic field is applied between the targets to perform sputtering to form a film on the substrate. Therefore, the magnetic field generating means may also use an electromagnetic field instead of a permanent magnet. Further, the magnetic field may be of any type as long as it confines γ electrons etc. in the space between the targets, and therefore it also includes the case where it is generated not over the entire surface of the target but only around the target. In FIG. 1, the traveling direction (MD) of the substrate 40 is the direction in which the targets T 1 and T 2 face each other, that is, the direction in which the permanent magnets 152 and
Magnet φ generated by a magnetic field generator consisting of 162
It will be in almost the same direction as . Furthermore, the thin film forming method of the present invention is not limited to the facing target sputtering method used in the examples, but may also include ordinary physical deposition methods such as magnetron sputtering, vacuum evaporation, bipolar or triple sputtering, and ion plating. Needless to say, the present invention can also be applied to methods such as deposition and chemical deposition methods such as CVD methods. Next, an embodiment of the thin film forming method according to the present invention carried out using the above-mentioned facing target type sputtering apparatus will be described. Examples 1 to 5, Comparative Examples 1 to 5 Permalloy metal (Fe18%wt, Ni78wt%, Mo4wt
%) was formed by a sputtering method using the opposed target sputtering apparatus shown in FIG. The following examples and comparative examples all show film deposition rates.
The temperature of the support drum 41b was 50°C at 0.5 μm/min, and both ends of the film 40 were heated as shown in FIG.
By attaching a 15 mm mask 42a, damage caused by thermal radiation is prevented. Film width 24cm, width of support drum 41b 30cm
I did some sputtering. In the embodiment, as shown in the figure, a slit means 6 using a commonly used razor blade is installed as a cutting tool at a position corresponding to the center portion of the film 40.
The film 40 was divided into two in the width direction by making a notch. The razor blade of the slit means 60 can be moved from outside the vacuum chamber without cutting into the film. In the comparative example, the razor blade was removed from the film and a film was formed under exactly the same conditions as in the example without making any incisions. Sputtering was performed by inputting a power of 8.2kw, changing the film speed, and adjusting the film thickness from 0.1 to 1μ. Film tension is 9.7Kg. The results are shown in Table 1.
【表】
膜厚が0.1μの場合スリツトの有無でシワ発生は
なかつたか0.3μ以上の場合スリツトを入れないフ
イルムの場合にはシワが発生し、膜厚が厚い場合
にはシワの発生が引きがねになつてフイルムが溶
断した。
実施例 6〜8
前述の実施例において投入電力を変えることに
より膜厚を調整した。即ちフイルム速度を10cm/
minに保つたまま投入電力をそれぞれ1.6kw、
5.0kw、8.2kw、に変えてそれぞれ0.1μ、0.3μ、
0.5μの膜形成を試みたところいずれも良好にスパ
ツタができ、所望のパーマロイ薄膜を連続形成で
きた。
実施例9、10および比較例6、7
第1図の装置において、第2図に示すようにス
リツト部に対応する部分のスパツタ領域に巾12mm
の帯上のマスク42bをつけスリツト端部が直接
プラズマにさらされないようにしてスパツタし
た。フイルム速度を10cmに保つたまま投入電力を
11.5kw、16.4kwに変えて膜形成を行つたところ、
いずれもシワ等の発生なく良好にスパツタでき所
望のパーマロイ薄膜を連続形成できた。一方マス
ク42bなしでスパツタしたところスリツト部分
からフイルムの溶断が発生した。[Table] When the film thickness is 0.1μ, wrinkles do not occur regardless of the presence or absence of slits.When the film thickness is 0.3μ or more, wrinkles occur with the film without slits, and when the film thickness is thick, wrinkles do not occur. It turned into a gun and the film melted. Examples 6 to 8 In the examples described above, the film thickness was adjusted by changing the input power. In other words, the film speed is 10cm/
While keeping the input power at min. 1.6kw,
5.0kw, 8.2kw, respectively 0.1μ, 0.3μ,
When we tried to form a 0.5μ film, sputtering was good in all cases, and the desired permalloy thin film could be continuously formed. Examples 9 and 10 and Comparative Examples 6 and 7 In the apparatus shown in Fig. 1, as shown in Fig. 2, a width of 12 mm was applied to the sputter area in the portion corresponding to the slit portion.
Sputtering was performed by applying a mask 42b on the strip to prevent the slit end from being directly exposed to plasma. Turn on the power while keeping the film speed at 10cm.
When film formation was performed by changing the power to 11.5kw and 16.4kw,
In either case, sputtering was performed well without wrinkles, etc., and the desired permalloy thin film could be continuously formed. On the other hand, when sputtering was performed without the mask 42b, the film was fused from the slit portion.
第1図は本発明の実施に用いた対向ターゲツト
スパツタ装置の説明図、第2図は支持ドラム部の
正面図である。
10:真空槽、20:排気系、30:ガス導入
系、40:基板、50:電源、T1,T2:ターゲ
ツト、42a,42b:マスク。
FIG. 1 is an explanatory diagram of a facing target sputtering device used in carrying out the present invention, and FIG. 2 is a front view of a support drum section. 10: Vacuum chamber, 20: Exhaust system, 30: Gas introduction system, 40: Substrate, 50: Power supply, T 1 , T 2 : Target, 42a, 42b: Mask.
Claims (1)
ール・ツ・ロール方式で移送しつつ、支持体に支
持された基板上に真空中で連続的に薄膜を形成す
る薄膜形成方法において、基板の高分子フイルム
を安定に膜形成ができる巾以下にスリツトしつ
つ、支持体に移送して薄膜を形成することを特徴
とする薄膜形成方法。 2 基板の前記スリツトした部分に対応する支持
体前面をマスクした特許請求の範囲第1項記載の
薄膜形成方法。 3 支持体が回転ドラムである特許請求の範囲第
1項若しくは第2項記載の薄膜形成方法。 4 薄膜が物理的堆積法若しくは化学的堆積法に
より形成される特許請求の範囲第1項、第2項若
しくは第3項記載の薄膜形成方法。 5 形成される薄膜が時磁気録層である特許請求
の範囲第1項、第2項、第3項若しくは第4項記
載の薄膜形成方法。[Claims] 1. A thin film that uses a long polymer film as a substrate and continuously forms a thin film in vacuum on a substrate supported by a support while transferring the substrate in a roll-to-roll manner. A method for forming a thin film, which comprises slitting a polymer film on a substrate to a width below which stable film formation is possible, and transferring the film to a support to form a thin film. 2. The thin film forming method according to claim 1, wherein the front surface of the support corresponding to the slit portion of the substrate is masked. 3. The thin film forming method according to claim 1 or 2, wherein the support is a rotating drum. 4. The thin film forming method according to claim 1, 2 or 3, wherein the thin film is formed by a physical deposition method or a chemical deposition method. 5. The thin film forming method according to claim 1, 2, 3, or 4, wherein the thin film formed is a magnetic recording layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15831585A JPS6220869A (en) | 1985-07-19 | 1985-07-19 | Thin film formation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15831585A JPS6220869A (en) | 1985-07-19 | 1985-07-19 | Thin film formation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6220869A JPS6220869A (en) | 1987-01-29 |
JPH0323632B2 true JPH0323632B2 (en) | 1991-03-29 |
Family
ID=15668946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15831585A Granted JPS6220869A (en) | 1985-07-19 | 1985-07-19 | Thin film formation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6220869A (en) |
-
1985
- 1985-07-19 JP JP15831585A patent/JPS6220869A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6220869A (en) | 1987-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0035870B1 (en) | Method of producing a magnetic recording medium | |
JP3555797B2 (en) | Film forming apparatus and film forming method | |
JPH0323632B2 (en) | ||
JPH0450384B2 (en) | ||
JPH0257144B2 (en) | ||
JPH0334616B2 (en) | ||
JPH0935233A (en) | Magnetic recording medium and its production | |
JPS62102421A (en) | Film for substrate and formation of thin film | |
JPH0232353B2 (en) | TAIKOTAAGETSUTOSHIKISUPATSUTASOCHI | |
JPH059849B2 (en) | ||
JPH0411624B2 (en) | ||
JPS63277750A (en) | Formation of thin film | |
JPS641855B2 (en) | ||
JPS6151336B2 (en) | ||
JPS59193542A (en) | Production of magnetic recording medium | |
JPS62151563A (en) | Thin film forming device | |
JPH0470392B2 (en) | ||
JPS61279673A (en) | Counter target type sputtering device | |
JP2000293847A (en) | Device for production of magnetic recording medium | |
JPH0221052B2 (en) | ||
JP2004362699A (en) | Manufacturing method and manufacturing equipment of magnetic recording medium | |
JPH0369010A (en) | Magnetic recording medium and production thereof | |
JPH0963054A (en) | Production of magnetic recording medium and apparatus for its production | |
JPH0121540B2 (en) | ||
JPH10334465A (en) | Continuous thin film forming method and device therefor |