JPH03235370A - Tandem type solar battery - Google Patents

Tandem type solar battery

Info

Publication number
JPH03235370A
JPH03235370A JP2031203A JP3120390A JPH03235370A JP H03235370 A JPH03235370 A JP H03235370A JP 2031203 A JP2031203 A JP 2031203A JP 3120390 A JP3120390 A JP 3120390A JP H03235370 A JPH03235370 A JP H03235370A
Authority
JP
Japan
Prior art keywords
solar cell
layer
thin film
compound semiconductor
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2031203A
Other languages
Japanese (ja)
Inventor
Atsushi Shimizu
敦 清水
Hiroshi Okada
浩 岡田
Mitsuru Shimazu
充 嶋津
Shigeo Murai
重夫 村井
Koji Tada
多田 紘二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2031203A priority Critical patent/JPH03235370A/en
Publication of JPH03235370A publication Critical patent/JPH03235370A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make the conversion efficiency per unit space higher than that of conventional solar battery by a method wherein a thin film solar battery of a single crystal silicon solar battery and compound semiconductor is tandem- structured by successively depositing the other battery on one battery to be laminated. CONSTITUTION:A p-silicon layer 2, an n-silicon layer 3, a p-GaAs layer 4 and an n-GaAs layer 5 are formed in zigzag. Furthermore, electrodes 6 are formed on the layer 3, electrodes 7 are formed on the layer 5 while an electrode 1 is evenly formed on the rear surface of the layer 2. When the title tandem type solar battery in such a constitution is irradiated with standard solar beams of AM1.5, the space between the intermediate electrodes 6 and the topmost electrodes 7 is supplied with open end voltage of 0.98V and short circuit current of 22mA/cm<2> while the space between the electrodes 6 and the electrode 1 is respectively supplied with those of 0.7V and 14mA/cm<2>. That is, the conversion efficiencies of the single crystal silicon solar battery and the GaAs compound semiconductor thin film solar batteries attain to 7% and 17% totalling to 24% so that the conversion efficiency higher than the conventional solar battery of about 20% may be attained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は高効率のタンデム型太陽電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a highly efficient tandem solar cell.

[従来の技術] 一般に、太陽電池の出力電圧を高くするには、禁制帯幅
の大きな半導体を選択する必要がある。
[Prior Art] Generally, in order to increase the output voltage of a solar cell, it is necessary to select a semiconductor with a large forbidden band width.

しかしながら、禁制帯幅を大きくすると、禁制帯幅より
も低いエネルギの光すなわち長波長側の光は吸収されず
、利用される光子の数が減少し、出力電流が減少する。
However, when the forbidden band width is increased, light with energy lower than the forbidden band width, that is, light on the longer wavelength side, is not absorbed, and the number of photons used decreases, resulting in a decrease in output current.

このため、高い変換効率を得ることができない。高い出
力電圧を保ちながら、大きな出力電流を得て高い変換効
率の太陽電池とするために、異なる禁制帯幅を有する化
合物半導体太陽電池を複数積層することが検討されてい
る。
For this reason, high conversion efficiency cannot be obtained. In order to obtain a solar cell with high conversion efficiency by obtaining a large output current while maintaining a high output voltage, stacking a plurality of compound semiconductor solar cells having different forbidden band widths is being considered.

たとえば、単結晶シリコンを基板として、GaAS系太
陽電池を積層することが才力モト等によって報告されて
いる(Proc、20th  IEEシ E  PVSC,(IEEE、New  York。
For example, Saikimoto et al. reported that GaAS solar cells were stacked using single-crystal silicon as a substrate (Proc, 20th IEEE PVSC, (IEEE, New York).

1988))。また、GaAs系太陽電池の上にAA’
GaAs系太陽電池を積層する構造も提案されている。
1988)). In addition, AA' is placed on top of the GaAs solar cell.
A structure in which GaAs solar cells are stacked has also been proposed.

[発明が解決しようとする課題] しかしながら、これらのタンデム型太陽電池は、たとえ
ば宇宙空間で使用する太陽電池のように単位面積当たり
非常に高い変換効率が要求される太陽電池としては、変
換効率が低く未だ不十分なものであった。
[Problems to be Solved by the Invention] However, these tandem solar cells have low conversion efficiency as solar cells that require extremely high conversion efficiency per unit area, such as solar cells used in outer space. It was low and still insufficient.

したがって、従来より、太陽光スペクトルの吸収効率の
最適化により、高い変換効率を有する太陽電池の開発が
望まれていた。
Therefore, it has been desired to develop solar cells with high conversion efficiency by optimizing the absorption efficiency of sunlight spectrum.

この発明の目的は、このような従来の要望を満足すべく
、単位面積当たりの変換効率を従来よりも向上させるこ
とのできるタンデム型太陽電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a tandem solar cell that can improve conversion efficiency per unit area compared to conventional solar cells, in order to satisfy such conventional demands.

口課題を解決するための手段および発明の作用効果コ この発明のタンデム型太陽電池は、単結晶シリコン太陽
電池と、禁制帯幅が1.5eV以上2゜3eV以下の化
合物半導体からなる薄膜太陽電池とを積み重ねたタンデ
ム構造の太陽電池であり、単結晶シリコン太陽電池およ
び化合物半導体の薄膜太陽電池がヘテロ接合形成技術に
より一方の上に他方を連続成長させることによって積み
重ねられたものであることを特徴としている。
Means for Solving the Problems and Effects of the Invention The tandem solar cell of the present invention is a thin film solar cell comprising a single crystal silicon solar cell and a compound semiconductor with a forbidden band width of 1.5 eV or more and 2°3 eV or less. It is a solar cell with a tandem structure in which a single crystal silicon solar cell and a compound semiconductor thin film solar cell are stacked by successively growing one on top of the other using heterojunction formation technology. It is said that

この発明において、連続成長によって積層される太陽電
池は、化合物半導体薄膜太陽電池であってもよいし、単
結晶シリコン太陽電池であってもよい。すなわち、単結
晶シリコン太陽電池の上にヘテロ接合形成技術により化
合物半導体薄膜太陽電池を成長させてもよいし、あるい
は化合物半導体薄膜太陽電池の上にヘテロ接合形成技術
により単結晶シリコン太陽電池を成長させてもよい。
In this invention, the solar cells stacked by continuous growth may be compound semiconductor thin film solar cells or single crystal silicon solar cells. That is, a compound semiconductor thin film solar cell may be grown on a single crystal silicon solar cell using a heterojunction formation technique, or a single crystal silicon solar cell may be grown on a compound semiconductor thin film solar cell using a heterojunction formation technique. It's okay.

化合物半導体薄膜太陽電池を形成する化合物半導体とし
ては、GaAs、GaPおよびInPからなる群より選
ばれる少なくとも1種の2元系化合物半導体や、あるい
はAlGaAs、AlGaP、InAlAs、InAI
PおよびGa I nPからなる群より選ばれる少なく
とも1種の3元系化合物半導体等を用いることができる
The compound semiconductor forming the compound semiconductor thin film solar cell may be at least one binary compound semiconductor selected from the group consisting of GaAs, GaP, and InP, or AlGaAs, AlGaP, InAlAs, or InAI.
At least one type of ternary compound semiconductor selected from the group consisting of P and Ga I nP can be used.

この発明の好ましい1つの実施態様においては、単結晶
シリコン太陽電池と、GaAs、GaPおよびInPか
らなる第1の化合物半導体薄膜太陽電池と、AlGaA
s、AlGaP、InAlAs、InAIPおよびGa
InPからなる群より選ばれる少なくとも1種であって
第1の化合物半導体薄膜太陽電池より禁制帯幅の大きな
化合物半導体からなる第2の化合物半導体薄膜太陽電池
が積み重ねられタンデム型太陽電池を構成する。
In one preferred embodiment of the present invention, a single crystal silicon solar cell, a first compound semiconductor thin film solar cell made of GaAs, GaP and InP, and an AlGaA
s, AlGaP, InAlAs, InAIP and Ga
A second compound semiconductor thin film solar cell made of at least one compound semiconductor selected from the group consisting of InP and having a larger forbidden band width than the first compound semiconductor thin film solar cell is stacked to form a tandem solar cell.

さらに好ましいこの発明の実施態様においては、単結晶
シリコン太陽電池の上に、GaAs薄膜太陽電池と、A
I!GaAs薄膜太陽電池を順次連続成長させて積み重
ねて構成され、AlGaAs薄膜太陽電池のP−N接合
型光電変換層のアルミニウム組成比が0.6以上であり
、かつP−N接合型光電変換層の合計の厚みが5μm以
上である。
In a more preferred embodiment of the present invention, a GaAs thin film solar cell and an A
I! It is constructed by sequentially and continuously growing GaAs thin film solar cells and stacking them, and the aluminum composition ratio of the P-N junction type photoelectric conversion layer of the AlGaAs thin film solar cell is 0.6 or more, and the aluminum composition ratio of the P-N junction type photoelectric conversion layer is The total thickness is 5 μm or more.

この実施態様においては、第1の化合物半導体薄膜太陽
電池としてGaAsを選び、第2の化合物半導体太陽電
池としてアルミニウム組成比が0゜6以上のAlGaA
sを選ぶことにより、太陽光スペクトルの吸収効率の最
適化を図っている。単結晶シリコン太陽電池の禁制帯幅
は1.1eVであり、GaAsの禁制帯幅は1.43e
Vである。
In this embodiment, GaAs is selected as the first compound semiconductor thin film solar cell, and AlGaA with an aluminum composition ratio of 0°6 or more is selected as the second compound semiconductor solar cell.
By selecting s, the absorption efficiency of sunlight spectrum is optimized. The forbidden band width of a single crystal silicon solar cell is 1.1 eV, and the forbidden band width of GaAs is 1.43 eV.
It is V.

アルミニウム組成比が0.6以上のAlGaAsは、禁
制帯幅が2.1eV以上である。このように異なる禁制
帯幅の太陽電池をタンデム型に積層させることにより、
太陽光を有効に利用し、太陽光の吸収効率を高めている
AlGaAs with an aluminum composition ratio of 0.6 or more has a forbidden band width of 2.1 eV or more. By stacking solar cells with different forbidden band widths in tandem,
It uses sunlight effectively and increases the absorption efficiency of sunlight.

また、この実施態様で第2の化合物半導体薄膜太陽電池
として用いるAlGaAsは、アルミニウム組成比が高
いため、間接遷移型バンド構造となり、光の吸収効率が
低くなる。このような光の吸収効率の低下を補うため、
この実施態様では、AlGaAs薄膜太陽電池のP−N
接合型光電変換層の合計の厚みを5μm以上としている
Furthermore, since the AlGaAs used as the second compound semiconductor thin film solar cell in this embodiment has a high aluminum composition ratio, it has an indirect transition type band structure and has a low light absorption efficiency. In order to compensate for this decrease in light absorption efficiency,
In this embodiment, the P-N of an AlGaAs thin film solar cell is
The total thickness of the junction type photoelectric conversion layer is 5 μm or more.

また、この実施態様においてさらに好ましくは、単結晶
シリコン太陽電池のP−N接合型光電変換層のGaAs
薄膜太陽電池側の導電性はN型であることが好ましい。
Further, in this embodiment, it is more preferable to use GaAs in the P-N junction type photoelectric conversion layer of the single crystal silicon solar cell.
The conductivity on the thin film solar cell side is preferably N type.

P型とした場合には、GaAS薄膜太陽電池からのAs
の拡散の影響を受けるからである。
In the case of P type, As from GaAS thin film solar cells
This is because it is affected by the diffusion of

[実施例] 実施例I Bドープのシリコン基板にAsを拡散させて、P−N接
合を形成し、単結晶シリコン太陽電池となる基板を形成
した。この単結晶シリコン太陽電池となる基板をMOV
PE装置内で、H2雰囲気下に900℃で熱処理を施し
た後、温度を400℃に下げ、H2で希釈したAsH3
と、H2をバブリングして供給するトリメチルガリウム
(TMG)と、同じくH2をバブリングして供給するジ
メチルジンク(DMZ)を供給して、単結晶シリコン太
陽電池となる基板の上にp型のGaAsを600Aの厚
みで成長させた。
[Example] Example I A B-doped silicon substrate was diffused with As to form a PN junction, thereby forming a substrate that would become a single-crystal silicon solar cell. MOV the substrate that will become this single crystal silicon solar cell.
After heat treatment at 900°C under H2 atmosphere in PE equipment, the temperature was lowered to 400°C and AsH3 diluted with H2
Then, by supplying trimethyl gallium (TMG), which is supplied by bubbling H2, and dimethyl zinc (DMZ), which is also supplied by bubbling H2, p-type GaAs is deposited on the substrate that will become a single-crystal silicon solar cell. It was grown to a thickness of 600A.

次に、基板の温度を700℃に昇温し、さらに3μmの
厚みに成長させた。この状態で、TMGとDMZの供給
を止め、反応管中にTMGがなくなった後、再びTMG
とSiH4を流して、n型のGaAs層を2μmの厚み
に成長させた。この状態で、TMGおよびSiH4の供
給を止め、AsH3を流したままの状態で室温まで冷却
した。
Next, the temperature of the substrate was raised to 700° C., and the film was further grown to a thickness of 3 μm. In this state, the supply of TMG and DMZ is stopped, and after there is no TMG in the reaction tube, TMG is added again.
and SiH4 were flowed to grow an n-type GaAs layer to a thickness of 2 μm. In this state, the supply of TMG and SiH4 was stopped, and the reactor was cooled to room temperature while AsH3 continued to flow.

反応管内をN2で置換した後、薄膜成長させた基板を取
出し、この上にレジストを塗布し、フォトリソグラフを
用いて、10mmの幅の縞状の保護膜を形成し、GaA
s層を硫酸系エツチング液で選択的にエツチングし、A
u合金を蒸着してn型シリコン層の上とp−GaAsに
接する櫛状の電極とを形成した。さらに、最上面である
n−GaAsの上にフォトリソグラフを用いて、上記の
櫛状電極の間に櫛状の電極を蒸着して形成させた。
After replacing the inside of the reaction tube with N2, the substrate on which the thin film had been grown was taken out, a resist was applied thereon, and a striped protective film with a width of 10 mm was formed using photolithography.
The s layer was selectively etched with a sulfuric acid-based etching solution, and A
A comb-shaped electrode was formed on the n-type silicon layer and in contact with the p-GaAs by vapor depositing a u-alloy. Furthermore, comb-shaped electrodes were deposited and formed between the above-mentioned comb-shaped electrodes using photolithography on the uppermost n-GaAs surface.

また、単結晶シリコン太陽電池となる基板の裏面には均
一にAu合金を蒸着させて電極を形成した。
Furthermore, an electrode was formed by uniformly depositing an Au alloy on the back surface of the substrate that would become a single-crystal silicon solar cell.

第1図は、このようにして得られたタンデム型太陽電池
を示す断面図であり、第2図は第1図の実施例の平面図
である。第1図および第2図を参照して、p−シリコン
層2の上にはn−シリコン層3が形成され、n−シリコ
ン層3の上にはp−GaAs層4およびその上のn−G
aAs層5が第2図に示すようにジグザグ状に形成され
ている。
FIG. 1 is a sectional view showing the tandem solar cell thus obtained, and FIG. 2 is a plan view of the embodiment of FIG. 1. Referring to FIGS. 1 and 2, an n-silicon layer 3 is formed on a p-silicon layer 2, a p-GaAs layer 4 is formed on the n-silicon layer 3, and an n- G
The aAs layer 5 is formed in a zigzag shape as shown in FIG.

電極6はn−シリコン層3の上に形成され、電極7はn
−GaAs層5の上に形成されている。また電極1はp
−シリコン層2の裏面に一様に形成されている。
Electrode 6 is formed on the n-silicon layer 3 and electrode 7 is formed on the n-silicon layer 3.
- formed on the GaAs layer 5; Also, electrode 1 is p
- It is uniformly formed on the back surface of the silicon layer 2.

以上のようなタンデム型太陽電池に、AMl。AMl is used for tandem solar cells such as those mentioned above.

5の標準太陽光を照射したところ、中間の電極6と最表
面の電極7の間で開放電圧0.98V、短絡電流22m
A/cm2であった。中間の電極6と裏面電極1の間で
は0.7v、14mA/cm2であった。
When irradiated with standard sunlight of 5, the open circuit voltage was 0.98 V and the short circuit current was 22 m between the middle electrode 6 and the outermost electrode 7.
It was A/cm2. The voltage was 0.7 V and 14 mA/cm2 between the middle electrode 6 and the back electrode 1.

単結晶シリコン太陽電池とその上のGaAs化′合化生
合物半導体薄膜太陽電池効率は、それぞれ7%と17%
であり、合計は24%であった。GaAs基板上にAI
!GaAs薄膜太陽電池を積層した従来のタンデム型の
太陽電池における変換効率は約20%であるので、この
従来の太陽電池よりも高い変換効率を示した。
The efficiency of monocrystalline silicon solar cells and GaAs compound semiconductor thin film solar cells on them is 7% and 17%, respectively.
The total was 24%. AI on GaAs substrate
! The conversion efficiency of a conventional tandem type solar cell in which GaAs thin film solar cells are stacked is about 20%, so the conversion efficiency was higher than that of this conventional solar cell.

実施例2 実施例1と同様にしてP−N接合が形成された、単結晶
シリコン太陽電池となるシリコン基板をMOVPE装置
中に入れ、水素雰囲気下に900℃に昇温しで基板上の
表面酸化膜を除去した。次にこの基板を400℃に降温
し、600人の厚みのZnドープp9型GaAs層を成
膜した。次に基板を700℃に昇温し、Znドープp型
のGaAS層およびSiドープn型のGaAs層をそれ
ぞれ3μmの厚みで成膜した。次に、この上にAlo、
 e G a o、A sのアンドープ層0.5μmを
成長させ、続いてp型およびn型のAlo7GaO、A
s層をそれぞれ6μmの厚みで成長させた。
Example 2 A silicon substrate that would become a single crystal silicon solar cell, on which a P-N junction was formed in the same manner as in Example 1, was placed in an MOVPE apparatus, and the temperature was raised to 900°C in a hydrogen atmosphere to remove the surface of the substrate. The oxide film was removed. Next, the temperature of this substrate was lowered to 400° C., and a Zn-doped p9 type GaAs layer with a thickness of 600 cm was formed. Next, the temperature of the substrate was raised to 700° C., and a Zn-doped p-type GaAs layer and a Si-doped n-type GaAs layer were each formed to a thickness of 3 μm. Next, on top of this, Alo,
Grow a 0.5 μm undoped layer of e Gao, As, followed by p-type and n-type Alo7GaO, A
Each s-layer was grown to a thickness of 6 μm.

第3図はこの実施例を説明するための断面図である。以
上のようにして得られたウェハは、第3図に示すように
p−シリコン層11の上にn−シリコン層12が積層さ
れ、このn−シリコン層12の上にp”−GaAs層1
3、p−GaAs層14、n−GaAs層15、アンド
ープAA’GaAs層16、p−AlGaAs層17、
およびnAA’GaAsAlGaAs層17構成されて
いる。第3図に示すように、このウェハの端部を斜めに
研磨し、n−シリコン層12とp−GaAs層14の間
の部分に電極20を形成し、さらにn−GaAs層15
の上に電極21、p−AlGaAs層17の上に電極2
2、n−AlGaAs層18の上に電極23を、p−シ
リコン層11の裏面に電極19を、それぞれAu合金を
蒸着することにより形成した。
FIG. 3 is a sectional view for explaining this embodiment. The wafer obtained in the above manner has an n-silicon layer 12 laminated on a p-silicon layer 11, as shown in FIG.
3, p-GaAs layer 14, n-GaAs layer 15, undoped AA'GaAs layer 16, p-AlGaAs layer 17,
and nAA'GaAsAlGaAs layer 17. As shown in FIG. 3, the edge of this wafer is polished diagonally, an electrode 20 is formed between the n-silicon layer 12 and the p-GaAs layer 14, and an electrode 20 is formed between the n-silicon layer 12 and the p-GaAs layer 14.
An electrode 21 is placed on top of the p-AlGaAs layer 17, and an electrode 2 is placed on top of the p-AlGaAs layer 17.
2. An electrode 23 was formed on the n-AlGaAs layer 18, and an electrode 19 was formed on the back surface of the p-silicon layer 11 by vapor-depositing an Au alloy.

以上のようにして得られたタンデム型太陽電池に、AM
I、5の標準太陽光を照射したところ電極23と電極2
2の間で1.4V、電極21と電極20の間で1.OV
、電極20と電極19の間で0.6Vの開放電圧が測定
された。
AM
When irradiated with standard sunlight of I, 5, electrode 23 and electrode 2
1.4V between electrodes 21 and 20, and 1.4V between electrodes 21 and 20. O.V.
, an open circuit voltage of 0.6 V was measured between electrode 20 and electrode 19.

また、変換効率は30%であり、従来のタンデム型太陽
電池より高い値が得られた。
Furthermore, the conversion efficiency was 30%, which is higher than that of conventional tandem solar cells.

実施例3 実施例1と同様にBドープのシリコン基板の表面に、A
sを拡散させることによってP−N接合を形成し、単結
晶シリコン太陽電池となり得る基板を形成した。このシ
リコン基板の上に、CVD法により多結晶シリコンを2
mmの間隔で網状の電極を作製した。この基板を、MO
VPE装置内にいれ、TMA、TMG、およびAsH3
を原料ガスとして、基板温度400℃で、p” −Ga
AS層を600Aの厚みで成膜した。
Example 3 As in Example 1, A was applied to the surface of a B-doped silicon substrate.
By diffusing s, a PN junction was formed, and a substrate that could become a single crystal silicon solar cell was formed. Two layers of polycrystalline silicon are deposited on this silicon substrate using the CVD method.
A net-like electrode was prepared with an interval of mm. This board is MO
In the VPE device, TMA, TMG, and AsH3
p”-Ga as the raw material gas and at a substrate temperature of 400°C.
An AS layer was formed to a thickness of 600A.

基板温度700℃とし、この上に以下に示すような組成
と厚みの膜を連続して成長させた。
The substrate temperature was set to 700° C., and a film having the composition and thickness shown below was successively grown thereon.

第1層:組成Alo9Gao、As :厚み0゜1μm
:電気特性n0 第2層:組成A I O,B G a o、 2 A 
s :厚み4μm;電気特性n 第3層二組成AA’o、s Gao、2 As :厚み
6μm;電気特性p 第4層1組成Aj’o9Gao、I As :厚み0゜
1μm:電気特性n 第5層:組成A I 0.35G a O,65A S
 :厚み1μm:電気特性n+ 第6層;組成GaAs :厚み1μm=電気特電気 特性層:組成GaAs :厚み3μm:電気特性シリコ
ン基板のp“−GaAs層の上に上記の第7層から第1
層を順次積層させた。RIE法で第4層まで選択的にエ
ツチングしてAu合金電極を蒸着して形成した。
1st layer: Composition Alo9Gao, As: Thickness 0°1 μm
: Electrical properties n0 2nd layer: Composition A IO, B G a o, 2 A
s: Thickness 4 μm; Electrical properties n 3rd layer two compositions AA'o, s Gao, 2 As: Thickness 6 μm; Electrical properties p 4th layer 1 composition Aj'o9Gao, I As: Thickness 0°1 μm: Electrical properties nth 5 layers: composition A I 0.35G a O, 65A S
: Thickness 1 μm: Electrical properties n+ 6th layer; Composition GaAs: Thickness 1 μm = Electric properties Layer: Composition GaAs: Thickness 3 μm: Electric properties
The layers were stacked one after the other. The fourth layer was selectively etched using the RIE method, and an Au alloy electrode was then deposited.

このようにして得られたタンデム型太陽電池にAMl、
5の標準太陽光を照射したところ、3箇所のP−N接合
の間にそれぞれ、1.5.1.1、および0.7Vの開
放電圧が発生した。また、変換効率は30%であり、従
来のタンデム型太陽電池よりも高い値を示した。
In the tandem solar cell obtained in this way, AMl,
When irradiated with standard sunlight of No. 5, open circuit voltages of 1.5, 1.1 and 0.7 V were generated between the three P-N junctions, respectively. Furthermore, the conversion efficiency was 30%, which is higher than that of conventional tandem solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例のタンデム型太陽電池を
示す断面図である。 第2図は、第1図の実施例の平面図である。 第3図は、この発明の他の実施例を示す断面図である。 図において、1は電極、2はp−シリコン層、3はn−
シリコン層、4はp−GaAs層、5はn−GaAs層
、−6,7は電極、11はp−シリコン層、12はn−
シリコン層、13はp“−GaAs層、14はp−Ga
As層、15はn−GaAs層、16はアンドープAA
’GaAs層、17はp−AJGaAs層、18はn−
AJGaAS層、19,20.21,22.23は電極
を示す。 第2図 第3図
FIG. 1 is a sectional view showing a tandem solar cell according to an embodiment of the present invention. FIG. 2 is a plan view of the embodiment of FIG. 1. FIG. 3 is a sectional view showing another embodiment of the invention. In the figure, 1 is an electrode, 2 is a p-silicon layer, and 3 is an n-
Silicon layer, 4 is p-GaAs layer, 5 is n-GaAs layer, -6, 7 are electrodes, 11 is p-silicon layer, 12 is n-
Silicon layer, 13 is p"-GaAs layer, 14 is p-Ga
As layer, 15 is n-GaAs layer, 16 is undoped AA
'GaAs layer, 17 is p-AJGaAs layer, 18 is n-
In the AJGaAS layer, 19, 20.21, 22.23 indicate electrodes. Figure 2 Figure 3

Claims (6)

【特許請求の範囲】[Claims] (1)単結晶シリコン太陽電池と、禁制帯幅が1.5e
V以上2.3eV以下の化合物半導体からなる薄膜太陽
電池とを積み重ねたタンデム構造の太陽電池であって、 前記単結晶シリコン太陽電池および前記化合物半導体の
薄膜太陽電池がヘテロ接合形成技術により一方の上に他
方を連続成長させることによって積み重ねられたもので
ある、タンデム型太陽電池。
(1) Single crystal silicon solar cell and forbidden band width of 1.5e
A solar cell having a tandem structure in which thin film solar cells made of a compound semiconductor with a voltage of V or more and 2.3 eV or less are stacked, wherein the single crystal silicon solar cell and the compound semiconductor thin film solar cell are stacked on one side by a heterojunction formation technique. Tandem solar cells are stacked by growing one layer on top of the other layer in succession.
(2)前記化合物半導体がGaAs、GaPおよびIn
Pからなる群より選ばれる少なくとも1種である、請求
項1に記載のタンデム型太陽電池。
(2) The compound semiconductor is GaAs, GaP, and In.
The tandem solar cell according to claim 1, wherein the tandem solar cell is at least one selected from the group consisting of P.
(3)前記化合物半導体がAlGaAs、AlGaP、
InAlAs、InAlPおよびGaInPからなる群
より選ばれる少なくとも1種である、請求項1に記載の
タンデム型太陽電池。
(3) The compound semiconductor is AlGaAs, AlGaP,
The tandem solar cell according to claim 1, which is at least one selected from the group consisting of InAlAs, InAlP, and GaInP.
(4)単結晶シリコン太陽電池と、GaAs、GaPお
よびInPからなる群より選ばれる少なくとも1種から
なる第1の化合物半導体薄膜太陽電池と、AlGaAs
、AlGaP、InAlAs、InAlPおよびGaI
nPからなる群より選ばれる少なくとも1種であって前
記第1の化合物半導体薄膜太陽電池より禁制帯幅の大き
な化合物半導体からなる第2の化合物半導体薄膜太陽電
池とを積み重ねた、請求項1に記載のタンデム型太陽電
池。
(4) A single crystal silicon solar cell, a first compound semiconductor thin film solar cell made of at least one member selected from the group consisting of GaAs, GaP, and InP, and an AlGaAs
, AlGaP, InAlAs, InAlP and GaI
2. A second compound semiconductor thin film solar cell made of at least one compound semiconductor selected from the group consisting of nP and having a larger forbidden band width than the first compound semiconductor thin film solar cell. tandem solar cell.
(5)単結晶シリコン太陽電池の上に、GaAs薄膜太
陽電池と、AlGaAs薄膜太陽電池を順次連続成長さ
せて積み重ねたタンデム型太陽電池であって、AlGa
As薄膜太陽電池のP−N接合型光電変換層のアルミニ
ウム組成比が0.6以上であり、かつ前記P−N接合型
光電変換層の合計の厚みが5μm以上である、請求項1
に記載のタンデム型太陽電池。
(5) A tandem solar cell in which a GaAs thin film solar cell and an AlGaAs thin film solar cell are successively grown and stacked on a single crystal silicon solar cell,
Claim 1, wherein the aluminum composition ratio of the P-N junction type photoelectric conversion layer of the As thin film solar cell is 0.6 or more, and the total thickness of the P-N junction type photoelectric conversion layer is 5 μm or more.
The tandem solar cell described in .
(6)単結晶シリコン太陽電池のP−N接合型光電変換
層のGaAs薄膜太陽電池側の導電性がN型である請求
項5に記載のタンデム型太陽電池。
(6) The tandem solar cell according to claim 5, wherein the GaAs thin film solar cell side of the P-N junction photoelectric conversion layer of the single crystal silicon solar cell has N-type conductivity.
JP2031203A 1990-02-10 1990-02-10 Tandem type solar battery Pending JPH03235370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031203A JPH03235370A (en) 1990-02-10 1990-02-10 Tandem type solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031203A JPH03235370A (en) 1990-02-10 1990-02-10 Tandem type solar battery

Publications (1)

Publication Number Publication Date
JPH03235370A true JPH03235370A (en) 1991-10-21

Family

ID=12324861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031203A Pending JPH03235370A (en) 1990-02-10 1990-02-10 Tandem type solar battery

Country Status (1)

Country Link
JP (1) JPH03235370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070059A (en) * 2011-09-22 2013-04-18 Boeing Co:The Multi-layer back surface field layer in solar cell structure
CN103378205A (en) * 2012-04-13 2013-10-30 杜邦太阳能有限公司 Solar module
JP2014183066A (en) * 2013-03-18 2014-09-29 Nippon Telegr & Teleph Corp <Ntt> Solar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070059A (en) * 2011-09-22 2013-04-18 Boeing Co:The Multi-layer back surface field layer in solar cell structure
CN103378205A (en) * 2012-04-13 2013-10-30 杜邦太阳能有限公司 Solar module
JP2014183066A (en) * 2013-03-18 2014-09-29 Nippon Telegr & Teleph Corp <Ntt> Solar battery

Similar Documents

Publication Publication Date Title
US5342453A (en) Heterojunction solar cell
JP3318658B2 (en) High efficiency solar cell and its manufacturing method
US5316593A (en) Heterojunction solar cell with passivated emitter surface
JP6040189B2 (en) Inverted multijunction solar cell with IV / III-V group hybrid alloy
US7217882B2 (en) Broad spectrum solar cell
TWI594449B (en) Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
US4688068A (en) Quantum well multijunction photovoltaic cell
JP3657143B2 (en) Solar cell and manufacturing method thereof
JP2010118666A (en) Alternative substrate of inversion altered multi-junction solar battery
JP2010263222A (en) Multijunction solar cell with group iv/iii-v hybrid alloy
TW200941741A (en) Heterojunction subcells in inverted metamorphic multijunction solar cells
US9324911B2 (en) Methods of fabricating dilute nitride semiconductor materials for use in photoactive devices and related structures
WO2017084491A1 (en) Dual-junction thin film solar cell assembly, and manufacturing method thereof
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
JPS63100781A (en) Semiconductor element
JPH03285368A (en) Gaas solar cell
US20120073658A1 (en) Solar Cell and Method for Fabricating the Same
Saxena et al. High‐efficiency AlGaAs/GaAs concentrator solar cells by organometallic vapor phase epitaxy
JPH03235370A (en) Tandem type solar battery
CN102738292A (en) Multi-junction laminated cell and manufacturing method thereof
CN105355668A (en) In(0.3)Ga(0.7)As cell with amorphous buffer layer structure and preparation method thereof
CN210052751U (en) Multi-junction solar cell
JPH0982995A (en) Compound semiconductor wafer and solar cell
JPH08204215A (en) Series connected solar cell
JPH0955522A (en) Tunnel diode