JPH03235295A - Non-volatile storage device - Google Patents

Non-volatile storage device

Info

Publication number
JPH03235295A
JPH03235295A JP2030241A JP3024190A JPH03235295A JP H03235295 A JPH03235295 A JP H03235295A JP 2030241 A JP2030241 A JP 2030241A JP 3024190 A JP3024190 A JP 3024190A JP H03235295 A JPH03235295 A JP H03235295A
Authority
JP
Japan
Prior art keywords
mos transistor
memory cell
ground potential
address selection
selection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2030241A
Other languages
Japanese (ja)
Inventor
Masayuki Yamashita
山下 正之
Tatsuki Koshiyou
古庄 辰記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2030241A priority Critical patent/JPH03235295A/en
Publication of JPH03235295A publication Critical patent/JPH03235295A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the number of leaked current paths generating a memory cell to be connected to a bit line, and to stablize operations by commonly connecting only the source of the memory cell to be connected to a word line and connecting an MOS transistor at an interval with a ground potential. CONSTITUTION:At the time of write, a first address select signal 2 is selected and at such a time, a first MOS transistor Tr1 is conducted. At such a time, a second address select signal 5 is not selected and a second Tr4 is not conducted. When a bit line B1 is turned to 9V and the word line is turned to 12.5V, a memory cell 1.1 is selected and written. Then, memory cells M3.1 and M4.1 connected to the line B1 cuts the path from the source to a ground potential 3 by not conducting Tr4, and the leaked current is not generated in this path. Similarly, at the time of read, the Tr4 is not conducted and the leaked current is not generated. Thus, the number of leaked current paths to the ground potential to be connected to one bit line is decreased and both write/read operations can be stablized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気的に情報の書込みが可能なFAMO5型記
憶素子を用いたEPROMのような不揮発性記憶装置に
関し、特に不揮発性記憶装置の記憶素子のアレイ構造を
提供するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a non-volatile memory device such as an EPROM using a FAMO5 type memory element in which information can be written electrically, and particularly to a non-volatile memory device such as an EPROM. It provides an array structure of elements.

〔従来の技術〕[Conventional technology]

従来、この種の不揮発性記憶装置としては第2図に示す
ような記憶素子のアレイ構造が一般的であった。第2図
はFAMO5型記憶素子を行方向にm行、列方向に1列
マトリックス状に配置した斜視図を示し、図において、
(W! )〜(Wm)は行を区分するワード線、(B1
)〜(Bn)は列を区分するビット線で、それぞれワー
ド線、ビット線の交点で決定される部分に記憶素子(以
下メモリセルと呼ぶ)CM(1−1)) 〜(M(m、
m))が配置されている。また、それぞれのメモリセI
しの低電位側端子(以下ソースと呼ぶ)は接地電位(3
)に接続されている。
Conventionally, this type of nonvolatile memory device has generally had an array structure of memory elements as shown in FIG. FIG. 2 is a perspective view of FAMO5 type memory elements arranged in a matrix with m rows in the row direction and one column in the column direction.
(W!) to (Wm) are word lines that divide rows, (B1
) to (Bn) are bit lines that divide columns, and memory elements (hereinafter referred to as memory cells) CM (1-1)) to (M (m,
m)) is located. Also, each memory cell I
The lower potential side terminal (hereinafter referred to as source) is at ground potential (3
)It is connected to the.

次にL 作+こついて説明する。メモリセルへの情報書
込みはビット線1こつなかっているドレインを9V程度
とし、ワード線]?:つながっているゲートをIZ5V
程度とすることIこより、メモリセルのチャネル領域で
ホットキャリアが発生し、そのホットキャリアがフロー
ティングゲートfこ蓄積されること)こより達成される
。すなわち、第2図のメモリセル(M(1、1))に情
報を書込む場合はビット線(B1)を9Vlこし、ワー
ド線(Wl)をIL5Vとすることfこよりなされる。
Next, I will explain about L's work + tricks. To write information to a memory cell, set the voltage of the unconnected drain of one bit line to about 9V, and set the word line]? :IZ5V the connected gate
This is achieved by the fact that hot carriers are generated in the channel region of the memory cell, and the hot carriers are accumulated in the floating gate. That is, when writing information to the memory cell (M(1,1)) in FIG. 2, the bit line (B1) is set at 9Vl and the word line (Wl) is set at IL5V.

以上のように所望の情報が書込1れたのちfこ読み出し
を行なうわけであるが、その場合はビット線(Bl)を
1v程度にし、ワード線(Wl)を5v程度とする。こ
れ1こより、メモリセル(M(1,1))が書込まれて
いる場合はしきい値電圧が高くなっているためlζ非導
通となる。逆fこ4書込まれていない場合はしきい値電
圧が低くなっているため導通となる。この時(こ発生す
る導通電流により情報が正確に読み出されるものである
After the desired information has been written as described above, f times are read. In this case, the bit line (Bl) is set to about 1V and the word line (Wl) is set to about 5V. From this, when the memory cell (M(1,1)) is written, the threshold voltage is high, so lζ becomes non-conductive. If the reverse f4 is not written, the threshold voltage is low, so it becomes conductive. At this time, information can be read accurately due to the conduction current generated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の不揮発性記憶装置のアレイ構造は以上のよう1こ
嘴成されていたので、1本のビット線に対し多数のメモ
リセルがつながっており、かつメモリセルのソースが接
地電位であるため、メモリセlし1つ分で発生するもれ
電流が小さくとも、ビット線1本から接地電位への全も
れ電流はかなり大きくなり、これシζより書込み効率が
低下し、読み出(−時の動作余裕が減少する等の問題点
があった。
Since the array structure of conventional non-volatile memory devices was formed in one piece as described above, a large number of memory cells are connected to one bit line, and the source of the memory cell is at ground potential. Even if the leakage current generated by one memory cell is small, the total leakage current from one bit line to the ground potential becomes quite large, and this reduces the write efficiency by There were problems such as a decrease in operating margin.

本発明はJ:、化のような問題点を解消するためになさ
れたもので、1本のビット線から接地電位へのもれWl
流を減少させ動作安定性を向上させた不揮発性記憶装置
を優ることを目的とする。
The present invention was made to solve the problems such as the leakage from one bit line to the ground potential.
The purpose of this invention is to improve a non-volatile memory device that reduces current and improves operational stability.

〔課題を解決するための手段および作用〕本発明に係る
メモリアレイ構造は1本のビット線につながるメモリセ
fしにより発生するもれ電流経路を減少すべく、少なく
とも1木取りのワード線1こつながるメモリセルのみソ
ースを共通接続し、接地電位との間にMOS トランジ
スタを挿入し、ビット線から接地電位へのもれ電流経路
を減少させるものである。
[Means and effects for solving the problem] The memory array structure according to the present invention connects at least one word line with one wood cut in order to reduce the leakage current path caused by the memory cell connected to one bit line. The sources of only the memory cells are connected in common, and a MOS transistor is inserted between the memory cells and the ground potential to reduce the leakage current path from the bit line to the ground potential.

〔実施例〕〔Example〕

以下、本発明の一実施例を図1ζついて説明する。 An embodiment of the present invention will be described below with reference to FIG. 1ζ.

第1図は本発明の一実施例である不揮発性記憶装置の斜
視図で、簡単のため)こ4行、4列のメモリアレイ構造
を示している。図において、 (Bl)〜(B4)はそ
れぞれビット線、(Wl)〜(W4)はそれぞれワード
線で、ビット線とワード線の交点で決定されるメモリセ
ルを(M(1・1))〜(M(4,4))とする。
FIG. 1 is a perspective view of a nonvolatile memory device that is an embodiment of the present invention, and for simplicity, shows a memory array structure of four rows and four columns. In the figure, (Bl) to (B4) are bit lines, (Wl) to (W4) are word lines, and the memory cell determined by the intersection of the bit line and word line is (M(1・1)). ~(M(4,4)).

また、ワード線(Wl )、 (W2)につながるメモ
リセIしくM(1,1))〜(M(2,4))のソース
を共通接続し、この共通接続端子と接地電位(3)の間
Eこ第1のMOSトランジスタ(1)を挿入する。ここ
で第1のMOSトランジスタ(1)のゲート入力信号は
メモリセIし選択のための第1のアドレス選択信号(2
)である、また、ワードII (W3)、(W4)につ
ながるメモリセル(M(3,1))〜(M(4,4))
のソースを共通接続し、この共通接続端子と接地電位(
3)の間に第2のMOS トランジスタ(4)のゲート
入力信号はメモリセル選択のための第2のアドレス選択
信号(5)である。なお、アドレス選択信号(2)及び
(5)はそれぞれ異なるものである。
In addition, the sources of the memory cells I (M(1,1)) to (M(2,4)) connected to the word lines (Wl) and (W2) are commonly connected, and this common connection terminal is connected to the ground potential (3). A first MOS transistor (1) is inserted between E and E. Here, the gate input signal of the first MOS transistor (1) is sent to the memory cell I and the first address selection signal (2
), and memory cells (M(3,1)) to (M(4,4)) connected to word II (W3), (W4)
Commonly connect the sources of , and connect this common connection terminal to the ground potential (
During 3), the gate input signal of the second MOS transistor (4) is the second address selection signal (5) for memory cell selection. Note that the address selection signals (2) and (5) are different from each other.

次に動作Eごついて説明する。メモリセル(M(1,1
))について書込み、読み出しを行なう場合1こついて
説明する。まず書込む場合は、アドレス選択信号(2)
が選択され第1のMOSトランジスタ(1)を導通させ
る。このとき、アドレス選択信号(5)は非選択となり
、第2のMOS トランジスタ(4)は非導通となる。
Next, operation E will be explained. Memory cell (M(1,1
)) When writing and reading data, we will explain one problem. When writing first, address selection signal (2)
is selected and makes the first MOS transistor (1) conductive. At this time, the address selection signal (5) becomes non-selected and the second MOS transistor (4) becomes non-conductive.

ここでビット1i(Bl)が9v程度、ワードINが1
25V程度となると、メモリセル(M(1,1))が選
択され書込みがなされる。この時、ビットII (Bl
)につながっているメモリセル(M(3,1))及び(
M(4,1))法そのソースから接地電位(3)までの
経路が第2のMOS トランジスタ(4)が非導通とな
ることにより切断されているので、この経路によるもれ
電流は発生しない。これにより十分に高い電圧がレベル
低下することなく、メモリセル(M(1,1))に印加
されることになり十分な書込み効率が得られる。
Here, bit 1i (Bl) is about 9V, word IN is 1
When the voltage reaches about 25V, the memory cell (M(1,1)) is selected and written. At this time, bit II (Bl
) connected to memory cells (M(3,1)) and (
Since the path from the M(4,1) method source to the ground potential (3) is cut off when the second MOS transistor (4) becomes non-conductive, no leakage current occurs through this path. . As a result, a sufficiently high voltage is applied to the memory cell (M(1,1)) without a drop in level, and sufficient write efficiency can be obtained.

また、読み出しの場合も同じくアドレス選択信号(2)
が選択され第1のMOSトランジスタ(1)を導通させ
る。この時、アドレス選択信号(6)は非選択となリ、
第2のMOS t−ランジスタ(4)は非導通となる。
Also, in the case of reading, the address selection signal (2)
is selected and makes the first MOS transistor (1) conductive. At this time, the address selection signal (6) is non-selected.
The second MOS t-transistor (4) becomes non-conductive.

ここで、ビット線(B1)が1v程度、ワード線(Wl
)が5V程度となるとメモリセル(M(1,1))が選
択され、書込まれている場合はしきい値電圧が高くなっ
ているため非導通となる。逆に書込まれていない場合は
しきい値電圧が低くなっているため導通する。この時ビ
ット線(B1)につながっているメモリセル(M(3,
1))及び(M(4,1))は、そのソースから接地電
位(3)までの経路が第2のMOSトランジスタ(4)
が非導通となることにより切断されているので、この経
路(こよるもれ電流は発生しない。
Here, the bit line (B1) is about 1V, the word line (Wl
) becomes about 5V, the memory cell (M(1,1)) is selected, and if it is written, it becomes non-conductive because the threshold voltage is high. On the other hand, if it is not written, the threshold voltage is low and it becomes conductive. At this time, the memory cells (M(3,
1)) and (M(4,1)), the path from its source to the ground potential (3) is the second MOS transistor (4).
Since this path is disconnected by becoming non-conductive, no leakage current occurs.

これにより、メモリセルが導通する場合に生じる電流中
に、他のメモリセルの電流経路により発生する電流分が
減少するので、正確な読み出しが可能となる。
This reduces the amount of current generated by the current paths of other memory cells in the current generated when the memory cell becomes conductive, allowing accurate reading.

なお、上記実施例では第1.第2のトランジスタ(1)
 、 (4)はMOSトランジスタの場合について説明
したが、もちろんPチャネル型でもNチャネル型でもに
、紀説明の通り動作させることにより同様の効果を得る
ことができる。
Note that in the above embodiment, the first. Second transistor (1)
, (4) has been described for the case of a MOS transistor, but of course, the same effect can be obtained with either a P-channel type or an N-channel type by operating as described in the previous section.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、メモリセルのアレイ構造
をソース部分を分割し、アドレス選択信号によりソース
選択をするようにしたので%1本のビット線につながる
接地電位へのもれ電流経路が減少するため、書込み動作
、読み出し動作ともに安定な不揮発性記憶装置が得られ
るという効果がある。
As described above, according to the present invention, the memory cell array structure is divided into source parts, and the source is selected by the address selection signal, so that the leakage current path to the ground potential connected to one bit line is reduced. Since this decreases, there is an effect that a nonvolatile memory device that is stable in both write operations and read operations can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である不揮発性記憶装置のメ
モリセルアレイ構造を示す斜視図、第2図は従来の不揮
発性記憶装置のメモリセルアレイ構造を示す斜視図であ
る。 図において、(1)は第1のMOS トランジスタ、(
りは第1のアドレス選択信号、(3)は接地電位、(4
)は第2のMOS l−ランジスタ、(5)は第2のア
ドレス選択信号、(Bl −Bn)はビット線、(Wl
 〜Wm)はワード線、(M(1,1) 〜M(m、 
n))はメモリセルを示す。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a perspective view showing a memory cell array structure of a nonvolatile memory device according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a memory cell array structure of a conventional nonvolatile memory device. In the figure, (1) is the first MOS transistor, (
(3) is the ground potential, (4) is the first address selection signal,
) is the second MOS l-transistor, (5) is the second address selection signal, (Bl - Bn) is the bit line, (Wl
~Wm) is the word line, (M(1,1) ~M(m,
n)) indicates a memory cell. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  基板上に基板とは逆導電型の拡散領域を一定間隔をお
いて配し、その上部を絶縁膜でおおい、前記間隔上かつ
前記絶縁膜上部に電荷蓄積層を配し、前記電荷蓄積層上
部に電極を配した構造を少なくとも持つ電気的に情報記
録が可能な記憶素子を行及び列方向にマトリックス状に
配した不揮発性記憶装置において、前記記憶素子の低電
位側端子を少なくとも1本以上の行線方向にそつて共通
接続し、前記共通接続された低電位側端子と接地電位間
に第1のMOSトランジスタを挿入し、前記第1のMO
Sトランジスタのゲート入力信号を第1のアドレス選択
信号とし、さらに、前記行線とは異なる少なくとも1本
以上の行線に対しても前記同様に第2のMOSトランジ
スタを挿入し、前記第2のMOSトランジスタのゲート
入力信号を前記アドレス選択信号とは異なる第2のアド
レス選択信号とした記憶素子の低電位側端子を少なくと
も2つ以上の異なる端子としたことを特徴とする不揮発
性記憶装置。
Diffusion regions having a conductivity type opposite to that of the substrate are disposed on the substrate at regular intervals, the upper portions of the diffusion regions are covered with an insulating film, a charge storage layer is disposed on the spacing and above the insulating film, and a charge storage layer is disposed on the top of the charge storage layer. In a nonvolatile memory device in which memory elements capable of electrically recording information and having at least a structure in which electrodes are arranged are arranged in a matrix in the row and column directions, the low potential side terminals of the memory elements are connected to at least one or more terminals. A first MOS transistor is commonly connected along the row line direction and inserted between the commonly connected low potential side terminal and ground potential, and the first MOS transistor
The gate input signal of the S transistor is used as a first address selection signal, and a second MOS transistor is inserted in the same manner as above for at least one row line different from the row line, and the second MOS transistor is 1. A nonvolatile memory device characterized in that a gate input signal of a MOS transistor is a second address selection signal different from the address selection signal, and low potential side terminals of a storage element are at least two different terminals.
JP2030241A 1990-02-08 1990-02-08 Non-volatile storage device Pending JPH03235295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030241A JPH03235295A (en) 1990-02-08 1990-02-08 Non-volatile storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030241A JPH03235295A (en) 1990-02-08 1990-02-08 Non-volatile storage device

Publications (1)

Publication Number Publication Date
JPH03235295A true JPH03235295A (en) 1991-10-21

Family

ID=12298215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030241A Pending JPH03235295A (en) 1990-02-08 1990-02-08 Non-volatile storage device

Country Status (1)

Country Link
JP (1) JPH03235295A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253592A (en) * 2010-06-02 2011-12-15 Fujitsu Semiconductor Ltd Semiconductor memory device production method and semiconductor memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025470A (en) * 1988-01-26 1990-01-10 Sgs Thomson Microelectron Sa Floating gate eeprom having source line selection transistor
JPH0376098A (en) * 1989-08-18 1991-04-02 Hitachi Ltd Semiconductor nonvolatile storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025470A (en) * 1988-01-26 1990-01-10 Sgs Thomson Microelectron Sa Floating gate eeprom having source line selection transistor
JPH0376098A (en) * 1989-08-18 1991-04-02 Hitachi Ltd Semiconductor nonvolatile storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253592A (en) * 2010-06-02 2011-12-15 Fujitsu Semiconductor Ltd Semiconductor memory device production method and semiconductor memory device

Similar Documents

Publication Publication Date Title
KR920001917B1 (en) Nonvolatile semiconductor memory device
US7324387B1 (en) Low power high density random access memory flash cells and arrays
US6380636B1 (en) Nonvolatile semiconductor memory device having an array structure suitable to high-density integrationization
US4425632A (en) Nonvolatile semiconductor memory device
US5392238A (en) Nonvolatile semiconductor memory device
EP0880144A2 (en) Read only memory
TW412861B (en) Non-volatile semiconductor memory
KR960005620A (en) Nonvolatile memory
JPH06291332A (en) Semiconductor memory device and use thereof
JPH027295A (en) Non-volatile semiconductor memory
JP2007157280A (en) Virtual grounding type nonvolatile semiconductor memory device
JP2004103161A (en) Non-volatile semiconductor memory
EP0645713B1 (en) Word line redundancy nonvolatile semiconductor memory
KR890008846A (en) Nonvolatile Dynamic Semiconductor Memory
CN115249502A (en) NOR flash memory array and data writing method, reading method and erasing method thereof
JP2003037192A (en) Non-volatile semiconductor storage device
KR0142510B1 (en) Nonvolatile semiconductor memory device equipped with means for suppressing drain disturbance phenomenon
KR100328895B1 (en) Non-volatile semiconductor memory
JPH03235295A (en) Non-volatile storage device
CN102456411B (en) Semiconductor memory
JP2755232B2 (en) Non-volatile semiconductor memory
JP3960030B2 (en) Ferroelectric memory
JPS6126158B2 (en)
JPS6126997A (en) Semiconductor memory device
KR0130548B1 (en) Non-vocatle semiconductor memory device with voltage stabilizing electrode