JPH03234393A - Welding method utilizing laser beam - Google Patents

Welding method utilizing laser beam

Info

Publication number
JPH03234393A
JPH03234393A JP2030287A JP3028790A JPH03234393A JP H03234393 A JPH03234393 A JP H03234393A JP 2030287 A JP2030287 A JP 2030287A JP 3028790 A JP3028790 A JP 3028790A JP H03234393 A JPH03234393 A JP H03234393A
Authority
JP
Japan
Prior art keywords
powder
welding
low
laser
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2030287A
Other languages
Japanese (ja)
Other versions
JP2812772B2 (en
Inventor
Fumito Yoshino
芳野 文人
Hiroyuki Shimizu
弘之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2030287A priority Critical patent/JP2812772B2/en
Publication of JPH03234393A publication Critical patent/JPH03234393A/en
Application granted granted Critical
Publication of JP2812772B2 publication Critical patent/JP2812772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain a sound welded joint with high efficiency by supplying metal powder consisting of low C, low Si, low Mn and the balance Fe substantially as filler metal. CONSTITUTION:The laser beam is oscillated from a laser beam oscillator 1 and a bead 4 is formed on base metals 3 to perform welding by using a torch 2. At that time, the metal powder consisting of low C, low Si, low Mn and the balance Fe substantially is supplied from a powder feeder 5. The powder contains <=0.30wt.% C and 0.5-9.5% deoxidizer mainly composed of Si and Mn. As necessary, the powder further contains >=1 kind of, by wt.%, 0.01-0.15% Ti, 0.01-0.15% Nb, 0.025-0.15% P and 0.01-0.15% Zr. Consequently, a filler metal component can be easily changed.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、レーザによる溶接方法に係り、より詳しくは
、溶加材として粉末を用いるレーザ溶接方法に関する。 (従来の技術及び解決しようとする課題)レーザ加工技
術の1つとして、レーザ溶接が知られている。 レーザ溶接は、高エネルギー密度で、大気中で減衰せず
、光エネルギーである等の特長を有するレーザを熱源に
用いた接合法であり、CO2レーザ、YAGレーザなど
が用いられている。このため、高速溶接ができ、薄板の
突合せ溶接や重ね溶接に利用されている。また、電子ビ
ーム溶接のように真空加工室を必要とせず、マルチ加工
も可能であるので、電子ビーム溶接に代わる溶接法とし
て採用されつつある。 従来、レーザ溶接では、溶加材を用いずに実施する方法
と、比較的中炭素量でSiやMnを含有するワイヤー状
溶加材を用いる方法の2通りが採用されていた。 しかし、前者のように溶加材を用いないレーザ溶接の場
合には、母材の目違い、ギャップに対する許容範囲が狭
く、またブローホールやピットが出易いという問題があ
った。 一方、後者のように、ワイヤ状溶加材を用いたレーザ溶
接の場合には、以下のような問題がある。 まず、溶接途中の開先精度、開先の曲がり、プルーム(
母材の超微粉)の発生量の変化等の各種変動があった場
合、レスポンスが悪いことから、急にはそれに応じた対
応ができず、結果としてワイヤが座屈する結果、それ以
上溶接を続けることが困難になる。特に溶接速度が3〜
4m/winといった速い場合に起こり易い。 また、溶接金属の成分としては、溶加材成分が大きく左
右することは勿論であるが、ワイヤ状にした場合はその
ワイヤで決定され、僅かな成分変更が必要な場合にも別
途違った種類のワイヤを準備する必要がある。 また、通常、ワイヤ状溶加材はT丁G溶接のように斜め
礒から送給されるが、このような送給ではワイヤの狙い
点のセットが難しく、また直進性のあるレーザビームの
影となり、能率的に溶接する上で問題があった。 更には、従来のワイヤは比較的中炭素量でSi、Mnを
含有する鋼ワイヤが用いられていたが、溶接後の溶接金
属の硬さ(すなわち、引張強度)が高くなり過ぎ、母材
との強度差が大きく、溶接継手として問題が多い、また
、亜鉛メツキ鋼板などを溶接した場合にはブローホール
、ビット等の欠陥が多発する問題もある。 本発明は、上記従来技術の問題点を解決し、溶接途中の
諸国子が変動しても、それに即応して調整できると共に
、溶加材成分を容易に変更でき、かつ、健全な溶接継手
が高能率で得られるレーザ溶接方法を提供することを目
的とするものである。 (課題を解決するための手段) 本発明者は、前記課題を解決するために、溶加材の性状
、成分組成、送給態様等々について鋭意研究を重ねた結
果、溶加材として所定の粉末を供給することにより可能
であることを見い出し、ここに本発明をなしたものであ
る。 すなわち、本発明は、レーザを熱源として溶接するに際
し、溶加材として低C1低Si及び低Mnで残部が実質
的に鉄からなる金属粉末を供給することを特徴とするも
のである。 また、他の本発明は、レーザを熱源として溶接するに際
し、溶加材として1重量%で(以下、同じ)、C: 0
.30%以下と、主としてSi及びMnからなる脱酸剤
=5〜30%を含有し、必要に応じて更にTi:0.0
1〜0.15%、Nb:0.Ol〜0.15%、P:0
.025〜0615%及びZr: 0.01−0.15
%の1種又は2種以上を含有する脱酸剤含有粉末を供給
することを特徴とするものである。 以下に本発明を更に詳細に説明する。 (′作用) まず、本発明において溶加材の態様として粉末を供給す
る理由を説明する。 第1に、溶加材が粉末状であると、ワイヤの送給に伴う
レスポンスの悪さ、座屈、溶接続行性等々の問題がなく
なる。 第2に、ワイヤの成分を変更する場合には種々の成分組
成のワイヤを準備しておく必要があるが、粉末状で用い
ると、混合する粉末成分のうちの必要な成分のみを変更
すればよいので、容易に成分調整することができる。粉
末中に造滓剤、鉄粉を適宜混合させることにより、溶接
金属の清浄度の向上、溶接の能率向上も可能となる。 勿論、粉末の成分を適切に調整することにより、溶接継
手と母材との強度差の問題も解決できる。 第3に、溶加材が粉末状であると、ワイヤの場合のよう
に直進性のあるレーザビームの影になる程度が少なく、
むしろレーザビーム散乱による吸収能が向上できるので
、被溶接部への熱効率を向上させ、能率の良い溶接を行
なうことができる。 また、レーザビームと同軸方向から粉末を供給すること
もできる。 なお、レーザを熱源とする溶接において、シールド効果
を得るために母材上にフラックスを載置する方法(特開
昭62−21479号参照)があるが、単に通常のフラ
ックスを用い、しかもこのフラックスをレーザビームに
直接供給するのではないので、本発明の課題を何ら解決
し得る方法ではない。また、レーザ肉盛において合金化
粉末を母村上に載置する方法(特開昭62−38789
号〜38792号参照)があるが、これも同様に本発明
の課題を何ら解決し得る方法ではない。 次に1本発明における粉末の成分限定理由について説明
する。 (1)溶加材が低C金属粉末の場合: C: 従来のワイヤは比較的中炭素量のものであるため、溶接
金属が急冷されて硬化し過ぎるという問題があったが、
本発明では、粉末中の炭素含有量を0.10%以下の如
く低含有量とするので、そのような問題を解消できる。 好ましくは、C≦0゜005%である。 Si、Mn: 前述の急冷による硬化作用に対してはSiとMn含有量
も影響を及ぼすので、低Si、低Mn含有量とする。好
ましくは、SiS2.30%、MnS2゜50%である
。 その他の成分としては、脱酸効果があって溶接金属の強
度上昇に寄与しない元素(Afl、Zrなど)を適宜含
有させることができる。残部は実質的に鉄粉である。 このような金属粉末は、各成分の単独粉末の混合物とし
て、或いは適宜合金粉末として調整してもよい。金属粉
末の粒度、供給量等々も適宜決定される。 (2)溶加材が脱酸剤含有粉末の場合:Si、Mn(脱
酸剤): 脱酸剤は、溶融金属の粘性及びスラブの発生量を調整し
て、特に亜鉛メツキ鋼板の場合には亜鉛蒸気の成長、浮
上、大気への放出等を制御し、ブローホール、ピットな
どの気孔の発生を抑制し、並びにビードの外観、形状等
の溶接作業性や溶接金属の強度、靭性等の機械的性能を
実用上問題のない範囲に管理することができる。そのた
めには、脱酸剤を0.5〜9.5%含有させる。0.5
%よりも少ないとそのような効果が得られず、また9゜
5%よりも多いと、溶接金属の強度が高くなり過ぎ、そ
れによる靭性低下が生じ、特に母材やHAZ(熱影響部
)との強度差が大きくなるので望ましくない。 代表的な脱酸剤としては、Si、Mnなどが挙げられる
。これらは単体で用いても、またFe−8L、Fe−M
n、FeFe−8i−、Fe−8i−Zr等の化合物と
して用いてもよい。 C: Cを0.30%以下で含有させることができる。 Cは、溶融金属の中でGO又はCO2ガスを発生させ、
溶融池を撹拌する作用があり、特に亜鉛メツキ鋼板の溶
接の場合、溶融金属中の亜鉛蒸気の浮上及び大気への放
出が促進され、気孔の発生数を減少できる。しかし、C
が0.30%よりも多いとCOやCO2ガスの発生量が
増加し、却って気孔の発生を招く、Cは単体で用いても
、又他のFe−Mn−C等原料中に含有された形で添加
してもよい。 Ti、Zr、Nb: また、Ti、Zr、Nbを合金元素として含有させるこ
とができ、Ti: 0.01〜0.15%、Zr:0.
01〜0.15%、Nb:0.01〜0.15%の1種
又は2種以上を含有させるのが好ましい。 これらTi、Zr、Nbは、特に亜鉛メツキ鋼板を溶接
する場合、亜鉛と化合物を生成したり、溶融金属の粘度
を上げるなどの作用もあり、ピット、ブローホールの低
減効果が顕著である。なお、それぞれ下限値未満では気
孔防止効果が得られず、また上限値より多量であると溶
接金属の耐割れ性、伸び、靭性等の機械的性能を低下さ
せる。 Ti、Zr、Nbは、単体で用いても、また化合物や他
のFe−Zr−5i、 Fe−Zr、 Fe−Ti、 
Fe−Nb等原料に含有された形で用いてもよい。 他の成分としては、Fa、Pなどを適宜含有させること
ができる。 Feは溶接能率の向上を図ることができる。また、特に
亜鉛メツキ鋼板の溶接の場合、スラグ発生量を少なくし
て亜鉛蒸気が溶融池から大気へ放出するのを促進する効
果がある。そのためには、Fe含有量は65〜90%が
望ましい。 Pは、特に亜鉛メツキ鋼板を溶接する場合、亜鉛の融点
以上の温度において亜鉛と安定な化合物(P−Zn系、
P−Zn−Fe系等)を生成し、亜鉛蒸気の発生量を減
少し、気孔の発生を抑制する効果がある。そのためには
、0.025〜0.15%含有させる。Pは単体で用い
ても、また他の原料Fa−P等中に含有された形で含有
させてもよい。 造滓剤としては、適当なものを使用でき、3゜5%以下
で含有させるのが望ましい。 なお、粉末の大きさは、直径として1〜200μm程度
が適当である。1μm以下ではヒユームが多くなり、歩
留りが低下し、また酸化し易くなり、200μm以上で
は溶けにくい。 このような成分組成の粉末は、第1図に示すように、粉
末供給管を用いてレーザビーム中に供給すればよい。そ
の際、キャリヤーガス(A rなど)を用いることもで
きる。また、酸化防止、スパッタ防止等々のためにAr
、Heなどのシールドガスをアシストガスとして用いて
もよい。粉末送給ノズル中にアルゴンガスを高速で送る
ことでアシストガス(プルーム除去のためのガス)の効
果も得ることが可能で、また構造も簡単になる。勿論、
送給ノズルとアシストガス用ノズルは別々でもよい。 レーザ溶接の主な条件としては、レーザ光の種類、ビー
ムモード、出力、溶接速度などがあるが、それらは特に
制限されるものではない。 レーザ光の種類には気体レーザ(例、CO2レーザ)や
固体レーザ(例、YAGレーザ)などがあるが、大きな
出力が得られるCO2レーザが望ましい。 レーザビームモードにはシングルモード、マルチモード
、リングモードなどがある。パワー密度はシングルモー
ドが最も高いが、溶込み特性やギャップ裕度等の点から
、マルチモードやリングモードが望ましい。 出力、溶接速度等の実用的範囲としては、出力は1〜5
KW、溶接速度は1.0〜5.On/lll1nである
。 なお、ビームスキャナーを用いてレーザビームを左右に
往復運動させつつ溶接すると、ギャップ裕度、狙いずれ
等に有効であるほか、溶融金属プールが撹拌されるので
、ブローホール等を低減する効果がある。 勿論、本発明は、母材の材質、板厚等にも制限がないこ
とは云うまでもなく、薄板の突合せ溶接、重ね溶接に適
しており、また亜鉛メツキ鋼板の溶接も可能である。 (実施例) 次に本発明の実施例を示す。 失速」12 第1図に示す溶接施工要領にて、溶加材として、粉末と
してC<0.005%、Si<0.0↓%、Mn:0.
063%、P:0.005%、S : O,OO4%を
含有する鋼粉末を供給し、レーザ溶接試験を行なった。 レーザ溶接条件としては、CO2レーザを用い、出力を
2.5〜3KWの範囲で変化させ、モードはマルチモー
ドとし、溶接速度は200〜300■/■inの範囲で
変化させた。Arガスをアシストガスとして流量50 
Q /winで用いた。また、溶接継手は突合せ継手と
し、母材には1.2−■厚の5pcc材(JIS  G
3141)を使用した。 また、比較例として、従来のワイヤを用い、他は同じ条
件でレーザ溶接試験を行なった。 溶接金属の硬さを測定すると共に、X線透過試験により
溶接欠陥(気孔)を調査した。その結果を第1表に示す
。 第1表より明らかなように、比較例の場合には、溶接金
属の硬さが高くなり過ぎ、母材との強度差が大きい。ま
た、比較例の場合には、溶接速度が速いため、ワイヤの
送給が追従できない場合もあった・ 一方、本発明例の場合には、溶接金属と母材との硬さの
差が)(v50程度であり、この硬さの違いは引張強さ
で15 kgf / am”程度の違いに相当し、比較
例に比べて良好な継手が得られた。 (注) 硬さはn==3の平均値である。 去m 第2表に示す成分組成の造滓剤含有金属粉末を準備した
。その場合の原料粉としては、CはFeMn−C,Fe
−Mn−Cを用い、PはFe−Pを用い、ZrはFe−
ZrもしくはFe−Zr−8i又はZrを用い、Tiは
Fe−Ti又はTiを用い、NbはFe−Nb又はNb
を用い、またFeは鉄粉を用い、脱酸剤はSi、Mnの
鉄合金を用いて、成分調整した。造滓剤には主としてア
ルカリ金属類の化合物を用いた。 次いで、この粉末を用いて、実施例1の場合と同様の条
件でレーザ溶接試験を行なった。但し、溶接速度は80
〜200 cod/ Uainの範囲で変化させ、アシ
ストガスの流量を20Q/minとし、母材には2.3
mm厚、亜鉛目付量90 / 90g/m2の亜鉛メツ
キ鋼板を使用した。 また、比較例として、従来のワイヤを用い、他は同し条
件でレーザ溶接試験を行なった。 ブローホールの発生状況を調べた結果を第2表に示す。 第2表より明らかなように、本発明例はいずれもブロー
ホールの発生があまり見られないのに対し、比較例の場
合にはブローホールの発生が多数認められた。
(Industrial Application Field) The present invention relates to a laser welding method, and more particularly to a laser welding method using powder as a filler metal. (Prior Art and Problems to be Solved) Laser welding is known as one of laser processing techniques. Laser welding is a joining method that uses a laser as a heat source, which has features such as high energy density, no attenuation in the atmosphere, and optical energy, and CO2 laser, YAG laser, etc. are used. For this reason, high-speed welding is possible and it is used for butt welding and lap welding of thin plates. Furthermore, unlike electron beam welding, it does not require a vacuum processing chamber and multi-processing is possible, so it is being adopted as a welding method in place of electron beam welding. Conventionally, two methods have been adopted for laser welding: a method without using a filler metal, and a method using a wire-shaped filler metal containing Si and Mn with a relatively medium carbon content. However, in the case of laser welding that does not use a filler metal as in the former case, there are problems in that the tolerance range for misalignment of base metals and gaps is narrow, and blowholes and pits are likely to appear. On the other hand, in the latter case, laser welding using a wire-shaped filler metal has the following problems. First, we need to check the groove accuracy during welding, the bending of the groove, and the plume (
If there are various fluctuations such as changes in the amount of ultra-fine powder (ultra-fine powder in the base metal) generated, the response is poor and it is not possible to take appropriate measures immediately, resulting in the wire buckling and welding to continue. things become difficult. Especially when the welding speed is 3~
This is likely to occur at high speeds such as 4m/win. In addition, it goes without saying that the composition of the weld metal is greatly influenced by the filler metal composition, but if it is made into a wire, it is determined by the wire, and if a slight change in composition is required, a different type can be used. You need to prepare the wire. In addition, wire-shaped filler metal is normally fed diagonally as in T-G welding, but with this feeding, it is difficult to set the aiming point of the wire, and the wire is affected by the laser beam, which travels in a straight line. Therefore, there was a problem in efficiently welding. Furthermore, conventional wires have been made of steel wires that have a relatively medium carbon content and contain Si and Mn; There is a large difference in strength, which causes many problems as welded joints, and when galvanized steel sheets are welded, there is also the problem of frequent defects such as blowholes and bits. The present invention solves the above-mentioned problems of the prior art, allows for immediate adjustments to be made in response to fluctuations in the number of factors during welding, allows for easy change of filler metal composition, and provides a sound welded joint. The purpose of this invention is to provide a laser welding method that is highly efficient. (Means for Solving the Problems) In order to solve the above problems, the present inventor has conducted extensive research on the properties, component composition, feeding mode, etc. of filler metals, and as a result, the present inventor has developed a powder as a filler metal. We have discovered that this is possible by supplying the following, and have hereby made the present invention. That is, the present invention is characterized in that when performing welding using a laser as a heat source, a metal powder containing low C1, low Si, and low Mn, with the remainder substantially consisting of iron, is supplied as a filler metal. In addition, in another aspect of the present invention, when welding using a laser as a heat source, the filler metal is 1% by weight (the same applies hereinafter), and C: 0.
.. Ti: 30% or less and a deoxidizing agent mainly composed of Si and Mn = 5 to 30%, and if necessary, Ti: 0.0
1 to 0.15%, Nb: 0. Ol~0.15%, P:0
.. 025-0615% and Zr: 0.01-0.15
The invention is characterized in that it provides a deoxidizing agent-containing powder containing one or more of %. The present invention will be explained in more detail below. ('Function) First, the reason why powder is supplied as an embodiment of the filler material in the present invention will be explained. First, if the filler metal is in powder form, problems such as poor response, buckling, and continuity of welding associated with wire feeding are eliminated. Second, when changing the composition of the wire, it is necessary to prepare wires with various compositions, but when used in powder form, you only need to change the necessary components of the powder components to be mixed. The ingredients can be easily adjusted. By appropriately mixing a slag forming agent and iron powder into the powder, it is possible to improve the cleanliness of the weld metal and the efficiency of welding. Of course, the problem of the difference in strength between the welded joint and the base metal can also be solved by appropriately adjusting the powder components. Thirdly, when the filler metal is in powder form, it is less likely to be shadowed by a laser beam that travels in a straight line, as is the case with wire.
Rather, since the absorption ability due to laser beam scattering can be improved, the thermal efficiency to the welded part can be improved and efficient welding can be performed. Further, the powder can also be supplied from the same axis as the laser beam. In addition, in welding using a laser as a heat source, there is a method of placing flux on the base material in order to obtain a shielding effect (see Japanese Patent Application Laid-Open No. 62-21479). Since this method does not directly supply the laser beam to the laser beam, it is not a method that can solve the problems of the present invention. In addition, a method of placing alloyed powder on a mother plate in laser deposition (Japanese Patent Laid-Open No. 62-38789
No. 38792), but this is also not a method that can solve the problems of the present invention. Next, the reasons for limiting the components of the powder in the present invention will be explained. (1) When the filler metal is a low C metal powder: C: Since conventional wires have a relatively medium carbon content, there was a problem that the weld metal was rapidly cooled and hardened too much.
In the present invention, such a problem can be solved because the carbon content in the powder is made low, such as 0.10% or less. Preferably, C≦0°005%. Si, Mn: Since the Si and Mn contents also affect the hardening effect due to the aforementioned rapid cooling, the Si and Mn contents are set to be low. Preferably, SiS is 2.30% and MnS is 2.50%. As other components, elements (Afl, Zr, etc.) that have a deoxidizing effect and do not contribute to an increase in the strength of the weld metal can be included as appropriate. The remainder is essentially iron powder. Such metal powder may be prepared as a mixture of individual powders of each component, or as an appropriate alloy powder. The particle size, supply amount, etc. of the metal powder are also determined as appropriate. (2) When the filler material is a powder containing a deoxidizing agent: Si, Mn (deoxidizing agent): The deoxidizing agent is used to adjust the viscosity of the molten metal and the amount of slab generation, especially in the case of galvanized steel sheets. Controls the growth, floating, and release of zinc vapor into the atmosphere, suppresses the formation of pores such as blowholes and pits, and improves welding workability such as the appearance and shape of the bead, and the strength and toughness of the weld metal. Mechanical performance can be controlled within a range that does not cause any practical problems. For that purpose, 0.5 to 9.5% of a deoxidizing agent is contained. 0.5
If it is less than 9.5%, such an effect cannot be obtained, and if it is more than 9.5%, the strength of the weld metal becomes too high, resulting in a decrease in toughness, especially in the base metal and HAZ (heat affected zone). This is not desirable because the difference in strength between the Typical deoxidizers include Si, Mn, and the like. Even if these are used alone, they can also be used as Fe-8L, Fe-M
It may be used as a compound such as n, FeFe-8i-, Fe-8i-Zr. C: C can be contained at 0.30% or less. C generates GO or CO2 gas in the molten metal,
It has the effect of stirring the molten pool, and particularly when welding galvanized steel sheets, it promotes the floating and release of zinc vapor in the molten metal to the atmosphere, reducing the number of pores. However, C
If C is more than 0.30%, the amount of CO and CO2 gas generated will increase, which will actually lead to the generation of pores. It may be added in the form of Ti, Zr, Nb: Also, Ti, Zr, and Nb can be contained as alloying elements, with Ti: 0.01 to 0.15%, Zr: 0.
It is preferable to contain one or more of Nb: 0.01 to 0.15% and Nb: 0.01 to 0.15%. Especially when welding galvanized steel sheets, these Ti, Zr, and Nb have effects such as forming compounds with zinc and increasing the viscosity of molten metal, and have a remarkable effect of reducing pits and blowholes. Note that if the amount is less than the lower limit, the pore prevention effect cannot be obtained, and if the amount is more than the upper limit, the mechanical performance of the weld metal such as crack resistance, elongation, and toughness is reduced. Ti, Zr, and Nb can be used alone or in compounds or other Fe-Zr-5i, Fe-Zr, Fe-Ti,
It may be used in a form contained in raw materials such as Fe-Nb. As other components, Fa, P, etc. can be included as appropriate. Fe can improve welding efficiency. In addition, particularly in the case of welding galvanized steel sheets, it has the effect of reducing the amount of slag generated and promoting the release of zinc vapor from the molten pool to the atmosphere. For that purpose, the Fe content is preferably 65 to 90%. Particularly when welding galvanized steel sheets, P is a compound that is stable with zinc at temperatures above the melting point of zinc (P-Zn series,
This has the effect of reducing the amount of zinc vapor generated and suppressing the generation of pores. For that purpose, it is contained in an amount of 0.025 to 0.15%. P may be used alone or may be contained in other raw materials such as Fa-P. Any suitable slag forming agent can be used, and it is desirable to contain it in an amount of 3.5% or less. Note that the appropriate size of the powder is about 1 to 200 μm in diameter. If it is less than 1 μm, there will be a lot of fume, the yield will be reduced, and it will be easily oxidized, and if it is more than 200 μm, it will be difficult to dissolve. Powder having such a component composition may be supplied into a laser beam using a powder supply pipe as shown in FIG. At that time, a carrier gas (such as Ar) can also be used. In addition, Ar is used to prevent oxidation, spatter, etc.
, He or the like may be used as the assist gas. By sending argon gas into the powder feeding nozzle at high speed, it is possible to obtain the effect of assist gas (gas for plume removal), and the structure is also simplified. Of course,
The feeding nozzle and the assist gas nozzle may be separate. The main conditions for laser welding include the type of laser beam, beam mode, output, welding speed, etc., but these are not particularly limited. Types of laser light include gas lasers (for example, CO2 lasers) and solid-state lasers (for example, YAG lasers), but CO2 lasers that can provide a large output are desirable. Laser beam modes include single mode, multimode, ring mode, etc. Single mode has the highest power density, but multimode and ring mode are preferable from the viewpoint of penetration characteristics and gap tolerance. The practical range of output, welding speed, etc. is 1 to 5.
KW, welding speed is 1.0-5. On/llll1n. Note that welding while using a beam scanner to move the laser beam back and forth from side to side is effective for improving gap tolerance, aiming, etc., as well as stirring the molten metal pool, which has the effect of reducing blowholes, etc. . Needless to say, the present invention is suitable for butt welding and lap welding of thin plates, and is also capable of welding galvanized steel plates, as there are no restrictions on the material of the base material, the plate thickness, etc. (Example) Next, an example of the present invention will be shown. Stall'' 12 According to the welding procedure shown in Fig. 1, C<0.005%, Si<0.0↓%, Mn:0.
A laser welding test was conducted by supplying steel powder containing 0.063%, P: 0.005%, and 4% S:O, OO. As for the laser welding conditions, a CO2 laser was used, the output was varied in the range of 2.5 to 3 KW, the mode was set to multimode, and the welding speed was varied in the range of 200 to 300 ■/■in. Flow rate 50 using Ar gas as assist gas
Used in Q/win. In addition, the welded joints are butt joints, and the base material is 1.2-■ thick 5 pcc material (JIS G
3141) was used. Further, as a comparative example, a laser welding test was conducted using a conventional wire under the same conditions. The hardness of the weld metal was measured, and weld defects (pores) were investigated using an X-ray transmission test. The results are shown in Table 1. As is clear from Table 1, in the case of the comparative example, the hardness of the weld metal is too high, and the difference in strength from the base metal is large. In addition, in the case of the comparative example, the welding speed was so fast that the wire feeding could not follow it in some cases.On the other hand, in the case of the inventive example, the difference in hardness between the weld metal and the base metal (v50, and this difference in hardness corresponds to a difference in tensile strength of about 15 kgf/am", and a better joint was obtained compared to the comparative example. (Note) The hardness is n== A slag-forming agent-containing metal powder having the composition shown in Table 2 was prepared.The raw material powder in this case was FeMn-C, FeMn-C, FeMn-C, FeMn-C,
-Mn-C is used, P is Fe-P, Zr is Fe-
Zr or Fe-Zr-8i or Zr is used, Ti is Fe-Ti or Ti, Nb is Fe-Nb or Nb
The components were adjusted using iron powder as Fe, and an iron alloy of Si and Mn as the deoxidizing agent. Compounds of alkali metals were mainly used as the slag forming agent. Next, a laser welding test was conducted using this powder under the same conditions as in Example 1. However, the welding speed is 80
~200 cod/Uain, the assist gas flow rate was 20Q/min, and the base material was 2.3
A galvanized steel sheet with a thickness of mm and a zinc coating weight of 90/90 g/m2 was used. Further, as a comparative example, a laser welding test was conducted using a conventional wire under the same conditions. Table 2 shows the results of investigating the occurrence of blowholes. As is clear from Table 2, the occurrence of blowholes was not observed in any of the examples of the present invention, whereas the occurrence of many blowholes was observed in the case of the comparative example.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、レーザ溶接にお
いて、溶加材として特定組成の粉末を供給するので、溶
接途中の諸因子が変動しても即応して調整できると共に
、溶加材成分を容易に変更でき、かつ、継手強度、気孔
等が健全な溶接継手を高能率で得ることができる。
(Effects of the Invention) As detailed above, according to the present invention, powder of a specific composition is supplied as filler metal in laser welding, so even if various factors change during welding, adjustments can be made immediately. At the same time, the filler metal components can be easily changed, and a welded joint with good joint strength, pores, etc. can be obtained with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるレーザ溶接の施工要領を示す図
である。 1・・・レーザ発振器、2・・・トーチ、3・・・母材
、4・・・ビード、5・・・粉末供給装置。
FIG. 1 is a diagram showing the procedure for laser welding according to the present invention. DESCRIPTION OF SYMBOLS 1... Laser oscillator, 2... Torch, 3... Base material, 4... Bead, 5... Powder supply device.

Claims (2)

【特許請求の範囲】[Claims] (1)レーザを熱源として溶接するに際し、溶加材とし
て低C、低Si及び低Mnで残部が実質的に鉄からなる
金属粉末を供給することを特徴とするレーザによる溶接
方法。
(1) A welding method using a laser, which is characterized in that when performing welding using a laser as a heat source, a metal powder with low C, low Si, and low Mn and the remainder substantially consisting of iron is supplied as a filler metal.
(2)前記粉末が、C:0.30wt%以下と、主とし
てSi及びMnからなる脱酸剤:0.5〜9.5wt%
を含有し、必要に応じて更にTi:0.01〜0.15
wt%、Nb:0.01〜0.15wt%、P:0.0
25〜0.15wt%及びZr:0.01〜0.15w
t%の1種又は2種以上を含有する脱酸剤含有粉末であ
る請求項1に記載の方法。
(2) The powder contains C: 0.30 wt% or less and a deoxidizing agent mainly composed of Si and Mn: 0.5 to 9.5 wt%.
Contains Ti: 0.01 to 0.15 if necessary.
wt%, Nb: 0.01-0.15 wt%, P: 0.0
25-0.15wt% and Zr: 0.01-0.15w
The method according to claim 1, which is a deoxidizing agent-containing powder containing one or more types of t%.
JP2030287A 1990-02-09 1990-02-09 Laser welding method Expired - Fee Related JP2812772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030287A JP2812772B2 (en) 1990-02-09 1990-02-09 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030287A JP2812772B2 (en) 1990-02-09 1990-02-09 Laser welding method

Publications (2)

Publication Number Publication Date
JPH03234393A true JPH03234393A (en) 1991-10-18
JP2812772B2 JP2812772B2 (en) 1998-10-22

Family

ID=12299507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030287A Expired - Fee Related JP2812772B2 (en) 1990-02-09 1990-02-09 Laser welding method

Country Status (1)

Country Link
JP (1) JP2812772B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170088A (en) * 1997-12-04 1999-06-29 Nippon Steel Corp Metal cored filler wire for hot laser welding of steel products
US7767318B2 (en) * 2006-11-21 2010-08-03 United Technologies Corporation Laser fillet welding
JP2014531322A (en) * 2011-09-30 2014-11-27 ウイスコ テイラード ブランクス ゲゼルシャフト ミット ベシュレンクテル ハフツングWISCO Tailored Blanks GmbH Method and apparatus for joint welding of coated sheet metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322837A (en) * 1976-08-16 1978-03-02 Hitachi Ltd Highhspeed welding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565987B2 (en) 1988-07-07 1996-12-18 新日本製鐵株式会社 High speed gas shield arc solid wire for fillet bath contact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322837A (en) * 1976-08-16 1978-03-02 Hitachi Ltd Highhspeed welding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170088A (en) * 1997-12-04 1999-06-29 Nippon Steel Corp Metal cored filler wire for hot laser welding of steel products
US7767318B2 (en) * 2006-11-21 2010-08-03 United Technologies Corporation Laser fillet welding
JP2014531322A (en) * 2011-09-30 2014-11-27 ウイスコ テイラード ブランクス ゲゼルシャフト ミット ベシュレンクテル ハフツングWISCO Tailored Blanks GmbH Method and apparatus for joint welding of coated sheet metal
EP2760623B1 (en) 2011-09-30 2016-02-03 WISCO Tailored Blanks GmbH Method of joint-welding coated sheet metals using a gas-powder flow
US9468995B2 (en) 2011-09-30 2016-10-18 Wisco Tailored Blanks Gmbh Method and device for joint-welding coated metal sheets

Also Published As

Publication number Publication date
JP2812772B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
EP1350592A1 (en) Steel wire for mag welding and mag welding method using the same
JP4035335B2 (en) Combined arc and laser welding process
JP2011131243A (en) Arc welding method and arc weld joint of galvanized steel plate
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
JPH055586B2 (en)
JP2812772B2 (en) Laser welding method
JP2711007B2 (en) Laser welding method
JP3740725B2 (en) Filler material for laser welding of martensitic stainless steel
JP3351139B2 (en) Welding method for low alloy high strength steel
JPH10180488A (en) Flux cored wire for electro gas arc welding
JP5280060B2 (en) Gas shield arc welding method
JP3735195B2 (en) Metal cored filler wire for hot laser welding of steel
JP4492028B2 (en) Laser beam welded joint and method for manufacturing laser beam welded joint
JP2005219062A (en) Yag-laser and arc hybrid welding method
JP4505076B2 (en) Electron beam welding method for obtaining weld metal with excellent low temperature toughness
JPH0647582A (en) Wire for laser welding and laser welding method
JP2804973B2 (en) MIG welding method for high Mn non-magnetic steel for cryogenic use
JP3145228B2 (en) Laser welding method for thin steel plate
JPH1110391A (en) Flux cored wire for multielectrode vertical electrogas arc welding for extra thick plate
JP2892575B2 (en) Non-consumable nozzle type electroslag welding wire and welding method
KR100651784B1 (en) Device of tandem electro gas arc welding and weldig method thereof
JP2003145286A (en) Method for laser beam welding of steel members
JP2614892B2 (en) Gas shielded arc welding method
JP3525191B2 (en) CO2 gas welding steel wire and method for producing the same
KR20230046213A (en) One-side butt welding method and welded joint manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees