JPH03233901A - Resistor and its manufacture - Google Patents

Resistor and its manufacture

Info

Publication number
JPH03233901A
JPH03233901A JP2029018A JP2901890A JPH03233901A JP H03233901 A JPH03233901 A JP H03233901A JP 2029018 A JP2029018 A JP 2029018A JP 2901890 A JP2901890 A JP 2901890A JP H03233901 A JPH03233901 A JP H03233901A
Authority
JP
Japan
Prior art keywords
resistor
titanium
ruthenium
silicon
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2029018A
Other languages
Japanese (ja)
Inventor
Kazuyuki Okano
和之 岡野
Yasuto Isozaki
康人 礒崎
Chiharu Hayashi
千春 林
Tatsuo Ogawa
立夫 小川
Hiroshi Hasegawa
洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2029018A priority Critical patent/JPH03233901A/en
Publication of JPH03233901A publication Critical patent/JPH03233901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To make a characteristic good and to adjust a resistance value in a wide range by a method wherein a mixture is formed of oxides of ruthenium, titanium and silicon and a crystal phase is formed as a rutile single phase. CONSTITUTION:When the composition of 70mol% of ruthenium, 20mol% of titanium and 10mol% of silicon is set, its area resistance range can be adjusted from 152OMEGA to 500kOMEGA The resistance value of a resistor can be changed by changing a baking temperature. When a chemical composition, a film thickness and a treatment temperature are adjusted, an area resistance of about 5OMEGA to 10 MOMEGA can be obtained. The crystal structure of the resistor is of a tetragonal rutile type; its lattice constant is decided mainly by the ratio of ruthenium to titanium, and this causes an increase in the resistance value by a rise in the baking temperature. Thereby, the resistance value of the resistor whose noise characteristic is enhanced and whose power-resistance property is excellent can be adjusted in a wide range.

Description

【発明の詳細な説明】 2 ベーン 産業上の利用分野 本発明は各種エレクトロニクス機器に使用される抵抗体
勢よびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 2. Field of Vane Industrial Application The present invention relates to a resistor structure used in various electronic devices and a method for manufacturing the same.

従来の技術 酸化ルテニウム釦よびその化合物は化学的に安定であっ
て、それを導電性の主成分とする抵抗体は広範に利用さ
れている。その構造は、導電性粒子が絶縁性のガラスな
どのマ)IJフックス中網目状に配置された形であり、
抵抗値はそれら二者の比率を変化させることによって決
する。これらは、印刷と焼成によって低コストで製造す
ることができるが、前述のような複雑な構造であるため
、パフ−特性やノイズ特性の点で、金属皮膜などを用い
たいわゆる薄膜抵抗体に比べて劣っている。
BACKGROUND OF THE INVENTION Ruthenium oxide buttons and their compounds are chemically stable, and resistors containing them as a main conductive component are widely used. Its structure is such that conductive particles are arranged in a mesh shape in an IJ hook made of insulating glass, etc.
The resistance value is determined by changing the ratio of the two. These can be manufactured at low cost by printing and firing, but because of their complex structure as mentioned above, they are inferior to so-called thin film resistors using metal films in terms of puff characteristics and noise characteristics. It's inferior.

発明が解決しようとする課題 抵抗体のパワー特性やノイズ特性を改善するためには、
構造中の導電成分を多くする必要があるが、従来の酸化
ルテニウム系の抵抗材料では抵抗値の調整と基体に対す
る密着性の要求からガラスなどの絶縁材料の使用は不可
欠である。
Problems to be Solved by the Invention In order to improve the power characteristics and noise characteristics of the resistor,
It is necessary to increase the conductive component in the structure, but with conventional ruthenium oxide-based resistance materials, the use of insulating materials such as glass is essential because of the requirements for adjusting the resistance value and adhesion to the substrate.

3へ 本発明の目的は、このような従来の抵抗体の持つ欠点を
排除し、前記特性がよく、しかも抵抗値の調整が広範囲
にわたって可能な抵抗体を提供することにある。
3. It is an object of the present invention to eliminate the drawbacks of conventional resistors and provide a resistor that has the above-mentioned characteristics and whose resistance value can be adjusted over a wide range.

課題を解決するための手段 前記課題を解決するために本発明は、抵抗体の化学組成
をルテニウム、チタンおよびシリコンの酸化物の混合物
とし、結晶相をルチル単相としたものであって、これを
各金属を含有する化合物の熱分解か、又Fi気相堆積に
よって基体上に形成するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a resistor having a chemical composition of a mixture of oxides of ruthenium, titanium and silicon, and a single crystal phase of rutile. is formed on a substrate by thermal decomposition of a compound containing each metal or by vapor phase deposition of Fi.

作用 前述の構成とすることによう、抵抗体の構成粒子をほと
んどすべて導電性の材料とすることができ、そのノイズ
特性が向上する。−!た、構成材料が酸化物であるため
耐パワー性に優れた抵抗体を製造することができること
になる。
Effect: With the above structure, almost all of the constituent particles of the resistor can be made of conductive material, and its noise characteristics are improved. -! In addition, since the constituent material is an oxide, a resistor with excellent power resistance can be manufactured.

実施例 以下に本発明を具体的i実施例を挙げて説明する。Example The present invention will be explained below by giving specific examples.

実施例1 2−エチルヘキサン酸ルテニウムとチタン酸テトラnブ
チルおよびオルトケイ酸テトラベンジルの王者をメチル
イソブチルケトンに混合溶解して塗布液とした。96%
アルミナ基板上に軟化点790℃のホウケイ酸ガラスグ
レーズを1000℃で焼き付けて作成した基板に、この
塗布液をスピンコードし乾燥した後、大気中電気炉で熱
分解、焼成した。得られた抵抗体膜は、塗布液中の金属
化合物濃度およびスピンコードの回転数によってその膜
厚が変化し、それに応じて面積抵抗値が変化する。この
方法によって、例えばルテニウム50mo1%、チタン
30mo1%、シリコン20mo1%の抵抗体膜では、
焼成温度を700℃とすることによう約100g(膜厚
0.8μm)から約sM、2 (膜厚0.03μm)の
面積抵抗を得ることができ、また、ルテニウム70mo
1%、チタン20mo1%、リコン10mo1%の紹或
とすることによってその面積抵抗範囲を16!2から5
00に、2に調整することもできる。抵抗体の抵抗値は
、5 /\ 焼成温度を変化させることによっても変えることができ
、それを低下させると抵抗値は減少し、上昇させると抵
抗値は増大する。このように、本発明の抵抗体は化学組
成、膜厚釦よび処理温度を調節することによって、約5
gから10Mgの面積抵抗を得ることができる。
Example 1 The kings of ruthenium 2-ethylhexanoate, tetra-n-butyl titanate, and tetrabenzyl orthosilicate were mixed and dissolved in methyl isobutyl ketone to prepare a coating liquid. 96%
This coating solution was spin-coded onto a substrate prepared by baking a borosilicate glass glaze with a softening point of 790°C at 1000°C on an alumina substrate, dried, and then thermally decomposed and fired in an electric furnace in the atmosphere. The thickness of the obtained resistor film changes depending on the metal compound concentration in the coating liquid and the rotation speed of the spin cord, and the sheet resistance value changes accordingly. By this method, for example, in a resistor film of 50 mo1% ruthenium, 30 mo1% titanium, and 20 mo1% silicon,
By setting the firing temperature to 700°C, it is possible to obtain a sheet resistance of approximately sM,2 (film thickness 0.03 μm) from approximately 100 g (film thickness 0.8 μm).
By introducing 1% titanium, 20mo1% titanium, and 10mo1% silicon, the area resistance range is increased from 16!2 to 5.
It can also be adjusted to 00 or 2. The resistance value of the resistor can also be changed by changing the firing temperature; when it is lowered, the resistance value decreases, and when it is raised, the resistance value increases. In this way, the resistor of the present invention can be produced by adjusting the chemical composition, film thickness, and processing temperature.
A sheet resistance of 10 Mg can be obtained from g.

抵抗体の結晶構造はX線回折によって調べた。The crystal structure of the resistor was investigated by X-ray diffraction.

焼成温度が700℃以下である場合は、全組成において
正方晶のルチル型であって、その格子定数は主tにルテ
ニウムとチタンの比によって決することか明らかとなっ
た。焼成温度が800℃になると、X線回折の回折ピー
クに相分離を示す分裂が見られるようになり、これが前
述のような焼成温度の上昇にともなう抵抗値の増加を引
き起こしていると考えられる。
It has become clear that when the firing temperature is 700° C. or lower, the entire composition is a tetragonal rutile type, and its lattice constant is determined mainly by the ratio of ruthenium to titanium. When the firing temperature reaches 800°C, splitting indicating phase separation becomes visible in the diffraction peak of X-ray diffraction, and this is considered to be the cause of the increase in resistance value as the firing temperature increases as described above.

これら抵抗体を形成した基板を、幅0.8朋の短冊状に
ダイヤモンドカッターにて切断し、市販の銀ペーストを
用いて電極を形成して0.8MMX0.8闘の大きさの
抵抗体を有する抵抗器を作成した。
The substrate on which these resistors were formed was cut into strips with a width of 0.8 mm using a diamond cutter, and electrodes were formed using commercially available silver paste to form resistors with a size of 0.8 mm x 0.8 mm. I created a resistor with

抵抗体表面に保護ガラス層を市販のガラスペーストを塗
布して焼き付けることによって設け、これらの電流ノイ
ズをQuan−Tech社製のノイズメータを使って測
定した。この際の印加電圧は、抵抗器の定格電力を0.
25Wとして算出した電圧とした。この結果、少なくと
も抵抗値が1Mg以下のものでは一10dB以下の値が
得られ、抵抗値が減少するにしたがって電流ノイズも減
少し、10に、G’では一25dB 、5Kに’以下で
は−30(IB以下という特性が得られた。ノイズ特性
は、主に含有するシリコンの量と抵抗体の厚みによって
影響を受けることが明らかとなった。
A protective glass layer was provided on the surface of the resistor by applying and baking a commercially available glass paste, and the current noise was measured using a noise meter manufactured by Quan-Tech. The applied voltage at this time is the rated power of the resistor.
The voltage was calculated as 25W. As a result, at least when the resistance value is 1 Mg or less, a value of -10 dB or less is obtained, and as the resistance value decreases, the current noise also decreases. (Characteristics below IB were obtained.) It became clear that the noise characteristics were mainly affected by the amount of silicon contained and the thickness of the resistor.

前記の抵抗器に対して、1Wの電力を5秒間印加する耐
パワー試験を行ったところ、IMJ2以下の抵抗値のも
のでは抵抗値の変化が±0.05%であった。
When the resistor described above was subjected to a power durability test in which a power of 1 W was applied for 5 seconds, the change in resistance value was ±0.05% for those with a resistance value of IMJ2 or less.

本実施例の結果から、本発明の抵抗体が非常に優れたノ
イズ特性とパワー特性を有することがわかる。
The results of this example show that the resistor of the present invention has very excellent noise characteristics and power characteristics.

実施例2 7ベー7 2−エチルヘキサン酸ルテニウム、2−エチルヘキサン
酸チタンオキシドおよびエチルシリケート40(日本コ
ルコート社製)をターピネオールに溶解し、この溶液に
ロジンを添加、140℃以上の温度で加熱還流してロジ
ンを溶解させてペーストを作製した。
Example 2 7Ba7 Ruthenium 2-ethylhexanoate, titanium oxide 2-ethylhexanoate, and ethyl silicate 40 (manufactured by Nippon Colcoat) were dissolved in terpineol, rosin was added to this solution, and heated at a temperature of 140°C or higher. A paste was prepared by refluxing to dissolve the rosin.

分割のためのスリットが設けられた96%アルミナ基板
上に、軟化点650℃のガラスペーストをスクリーン印
刷し900℃で焼き付けた後、電極として銀−パラジウ
ムペーストを同様な方法で設けた基板に前述のペースト
をスクリーン印刷し乾燥した後、大気中700℃で熱分
解、焼成して抵抗体を形成し、さらに保護用のガラス層
を印刷、焼成によって形成して2012サイズの角板型
チップ抵抗器を作製した。
A glass paste with a softening point of 650°C was screen printed on a 96% alumina substrate with slits for division and baked at 900°C, and then a silver-palladium paste was applied as an electrode in a similar manner to a substrate as described above. After screen printing and drying the paste, the resistor was formed by thermal decomposition and firing at 700°C in the atmosphere, and a protective glass layer was further printed and fired to create a 2012 size square plate type chip resistor. was created.

分割して端面電極を焼き付けて完成されたチップ抵抗器
に対し実施例1と同様な測定を行ったところ、ペースト
の組成に応じた抵抗値と電流ノイズを有する抵抗器が得
られることがわかった。また、これらのパワー特性は実
施例1と同様であった。
When we performed the same measurements as in Example 1 on a completed chip resistor by dividing it and baking end-face electrodes, we found that a resistor with a resistance value and current noise corresponding to the composition of the paste could be obtained. . Further, these power characteristics were similar to those of Example 1.

木実施例で作製したペーストを用いてハイブリッドIC
や抵抗ネットワークの試作も行った力;、前述のチップ
抵抗器と同等の性能を有するものが得られた。
Hybrid IC using the paste made in the wood example
We also fabricated a prototype resistor network; we were able to create a resistor network with performance equivalent to that of the chip resistor described above.

以上の実施例で用いた各金属の化合物以外にも、適当な
溶剤に溶解し、また他の増粘成分などと相溶するもので
あれば、本発明の目的に使用することができる。
In addition to the metal compounds used in the above examples, any compound that is soluble in an appropriate solvent and compatible with other thickening components can be used for the purpose of the present invention.

また、実施例1.2と同様な組成に、各酸化物の粉末を
ボールミルで混合したものをターゲットとして、RFス
パッタで、ホウケイ酸ガラス板(lyo59. Cor
ning )上に形成した抵抗体に関しても、実施例1
と同様な性質を示すことがわかジ、同等な特性が得られ
た。
In addition, a borosilicate glass plate (lyo59. Cor
Regarding the resistor formed on the
It was found that the same properties were obtained, and the same properties were obtained.

発明の効果 以上の実施例から明らかなように本発明の抵抗体は、ル
テニウムとチタン、シリコンの酸化物の混合物で、ルチ
μ型の単一相である材料を用いることにより、従来の酸
化ルテニウム系抵抗体より9 ページ もノイズ特性やパワー特性に優れておシ、その工業上の
効果は大きいものである。
Effects of the Invention As is clear from the above embodiments, the resistor of the present invention is a mixture of oxides of ruthenium, titanium, and silicon, and by using a single-phase ruti-μ type material, It has better noise and power characteristics than other resistors, and its industrial effects are significant.

Claims (3)

【特許請求の範囲】[Claims] (1)ルテニウムとチタンおよびシリコンの酸化物の混
合物であって、その結晶相が正方晶のルチル型の単相で
ある抵抗体。
(1) A resistor that is a mixture of oxides of ruthenium, titanium, and silicon, and whose crystal phase is a single tetragonal rutile type.
(2)構造中に、ルテニウムを含有する化合物とチタン
を含有する化合物およびシリコンを含有する化合物を、
溶媒に溶解した液を耐熱性基体上に塗布し乾燥した後、
酸素を含有する雰囲気中で加熱、焼成して、ルテニウム
,チタンおよびシリコンの酸化物の混合物からなる膜を
形成することを特徴とする抵抗体の製造方法。
(2) A compound containing ruthenium, a compound containing titanium, and a compound containing silicon in the structure,
After coating the solution dissolved in a solvent on a heat-resistant substrate and drying it,
1. A method for manufacturing a resistor, comprising heating and firing in an oxygen-containing atmosphere to form a film made of a mixture of oxides of ruthenium, titanium, and silicon.
(3)構造中のチタンを含有する化合物およびシリコン
を含有する化合物が、チタン酸エステルもしくはチタン
の有機酸塩、およびケイ酸エステルもしくはシリコンの
有機酸塩である請求項2記載の抵抗体の製造方法。
(3) Production of the resistor according to claim 2, wherein the titanium-containing compound and the silicon-containing compound in the structure are a titanate ester or an organic acid salt of titanium, and a silicate ester or an organic acid salt of silicon. Method.
JP2029018A 1990-02-08 1990-02-08 Resistor and its manufacture Pending JPH03233901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029018A JPH03233901A (en) 1990-02-08 1990-02-08 Resistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029018A JPH03233901A (en) 1990-02-08 1990-02-08 Resistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH03233901A true JPH03233901A (en) 1991-10-17

Family

ID=12264673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029018A Pending JPH03233901A (en) 1990-02-08 1990-02-08 Resistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH03233901A (en)

Similar Documents

Publication Publication Date Title
JPS6314841B2 (en)
JPS5827303A (en) Thick film resistor composition
US4397915A (en) Electrical resistor material, resistor made therefrom and method of making the same
JPS5933868A (en) Electrode material for semiconductor device
US4322477A (en) Electrical resistor material, resistor made therefrom and method of making the same
US4378409A (en) Electrical resistor material, resistor made therefrom and method of making the same
JPH03233901A (en) Resistor and its manufacture
JPH05234703A (en) Resistance composition for manufacturing thick-film resistor
JPH07105282B2 (en) Resistor and method of manufacturing resistor
JPS60243280A (en) Formation of transparent electrode
JPS584801B2 (en) How to make thick film varistors
JPH03190201A (en) Resistance material and temperature dependent resistance layer in sensor for measuring temperature manufactured from these material
JPH04188603A (en) Resistor and manufacture thereof
JPH04209502A (en) Manufacture of resistor
JPH04214602A (en) Resistor and manufacture thereof
JPS6237801B2 (en)
JPS635881B2 (en)
RU12744U1 (en) HEATING ELEMENT
JPH01304702A (en) Manufacture of resistor, paste resistor, and resistive elements and thermal head
JPH04139802A (en) Resistor and its manufacture
RU2064700C1 (en) Thermistor manufacturing process
KR100213343B1 (en) Resistance material and resistance paste and resistor comprising the material
US3629156A (en) Electrical resistors comprising rhombohedral platinum cobalt oxides
JP2817151B2 (en) Method of manufacturing resistor and method of manufacturing thermal head
JPH02276202A (en) Resistor element