JPH03233860A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH03233860A
JPH03233860A JP2029887A JP2988790A JPH03233860A JP H03233860 A JPH03233860 A JP H03233860A JP 2029887 A JP2029887 A JP 2029887A JP 2988790 A JP2988790 A JP 2988790A JP H03233860 A JPH03233860 A JP H03233860A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
aromatic
aromatic hydrocarbon
pas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2029887A
Other languages
Japanese (ja)
Other versions
JP2574730B2 (en
Inventor
Hajime Kinoshita
肇 木下
Masatoshi Komori
正敏 小森
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2029887A priority Critical patent/JP2574730B2/en
Publication of JPH03233860A publication Critical patent/JPH03233860A/en
Application granted granted Critical
Publication of JP2574730B2 publication Critical patent/JP2574730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make possible charge and discharge of an organic electrolyte battery over a long period by using lithium as negative electrode active material, and using as a negative electrode a heat treated specific aromatic condensed polymer consisting of carbon, hydrogen and oxygen. CONSTITUTION:An organic electrolyte battery is provided with a positive electrode 1, a negative electrode 2 and an electrolyte 4 and a heat treated aromatic condensed polymer consisting of carbon, hydrogen and oxygen is used as the negative electrode 2. The aromatic condensed polymer is selected from among (a) a condensate of an aromatic hydrocarbon compound having phenol hydroxyl group, (b) a condensate of an aromatic hydrocarbon compound having phenol hydroxyl group, an aromatic hydrocarbon compound not having phenol hydroxyl group and aldehyde, and (c) furan resin. A molding or heat treated molding containing a thermosetting resin and an insoluble and infusible base substance containing a polyacene skeleton structure in which the ratio of hydrogen atom to carbon atom is 0.50 to 0.05 after heat treatment is used, which carries lithium therein by more than 3mol percentage. The long-range cycle characteristic of the battery is thereby bettered.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は有all解’1tii池に係り、更に詳細には
、負極として、ポリアセン系骨格構造を有する不溶不融
性基体と熱硬化性樹脂とを含有する成形体又は該成形体
の熱処理物に、リチウムを担持させたものを使用した有
機電解質電池に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to all solutions, and more specifically, an insoluble and infusible substrate having a polyacene skeleton structure and a thermosetting resin are used as a negative electrode. The present invention relates to an organic electrolyte battery using a molded body containing lithium or a heat-treated product of the molded body that supports lithium.

(従来の技術) 近年、S電性高分子、遷移金属酸化物あるいは活性炭を
正極とした電池が提案されている。これらの電池の負極
としてリチウムを用いた場合には、高い電圧を有し、容
量及びエネルギー密度が大きいエネルギー源用二次電池
が得られる。しかしながらこのような負極にリチウムを
用いた電池の実用化に際しては、デンドライト発生に伴
う充放電サイクル寿命の低下という問題があった。デン
ドライトは充電の際にリチウム負極表面に発生する樹枝
状あるいはこけ状のリチウム結晶である。該デンドライ
トは充放電の繰返しに伴い戒長し遂には両極が短絡しサ
イクル寿命がつきてしまう、従って該デンドライトの発
生を抑制することが該電池の実用化に際しては重要とな
る。
(Prior Art) In recent years, batteries using S-conductive polymers, transition metal oxides, or activated carbon as positive electrodes have been proposed. When lithium is used as the negative electrode of these batteries, secondary batteries for energy sources with high voltage, capacity, and energy density can be obtained. However, when such a battery using lithium as a negative electrode is put into practical use, there is a problem in that the charge/discharge cycle life is reduced due to the generation of dendrites. Dendrites are dendritic or moss-like lithium crystals that form on the surface of a lithium negative electrode during charging. The dendrites lengthen with repeated charging and discharging, and eventually both poles are short-circuited, resulting in the end of the cycle life. Therefore, it is important to suppress the generation of dendrites when putting the battery into practical use.

近時、グラファイト等の炭素材、ポリアセチレン、ポリ
パラフェニレン等の導電性高分子にリチウムを担持させ
たリチウム電池の研究が進められている。しかしながら
、デンドライトの発生は著しく少ないもののリチウムの
出し入れに対して、構造の変化が大きく、サイクル特性
が低下するという問題があった。
Recently, research has been progressing on lithium batteries in which lithium is supported on carbon materials such as graphite, and conductive polymers such as polyacetylene and polyparaphenylene. However, although the generation of dendrites is extremely small, there is a problem in that the structure changes significantly when lithium is added or removed, resulting in a decrease in cycle characteristics.

また、一般に電池用電極は粉末等の形状にある活物質を
例えばポリ四フッ化エチレンバインダーポリエチレン、
ポリプロピレン等の熱可塑性樹脂バインダー等と混練、
加圧成形したものが、生産性2寸法安定性の観点から、
好ましく用いられる。
In general, battery electrodes use active materials in powder form, such as polytetrafluoroethylene binder polyethylene,
Kneading with thermoplastic resin binder such as polypropylene,
Pressure molded products are
Preferably used.

しかしながら粉末状等の上記不溶不融性基体を上記方法
で成形した成形体にリチウムを担持させた場合、!極の
ゆるみが著しく、電池特性、特に急速放電特性5サイク
ル特性に問題が残されていた。
However, when lithium is supported on a molded article obtained by molding the above-mentioned insoluble and infusible substrate in powder form by the above-mentioned method! The electrodes were significantly loosened, and problems remained with the battery characteristics, especially the rapid discharge characteristics and 5-cycle characteristics.

(発明が解決しようとする問題点) 本発明者等は上記問題点に鑑み鋭意研究を続けた結果本
発明を完成したものである0本発明の目的は長期に亘っ
て充電、放電が可能な二次電池を提供するにある。
(Problems to be Solved by the Invention) The present inventors have completed the present invention as a result of diligent research in view of the above-mentioned problems.The purpose of the present invention is to enable charging and discharging over a long period of time. To provide secondary batteries.

本発明の他の目的は急速放電特性の良い二次電池を提供
するにある。
Another object of the present invention is to provide a secondary battery with good rapid discharge characteristics.

本発明のさらに他の目的は製造が容易な二次電池を提供
するにある。
Still another object of the present invention is to provide a secondary battery that is easy to manufacture.

(問題点を解決するための手段) 本発明の上記の目的は、正極、負極、並びにリチウム塩
を非プロトン性有機溶媒に溶解した溶液を含む電解液を
備えた有機電解質電池において、負極活物質をリチウム
とし、負極として炭素、水素および酸素から戒る芳香族
系縮合ポリマーの熱処理物であって、該芳香族系縮合ポ
リマーは(a)フェノール性水酸基を有する芳香族炭化
水素化合物とアルデヒドの縮合物、(b)  フェノー
ル性水酸基を有する芳香族炭化水素化合物、フェノール
性水酸基を有さない芳香族炭化水素化合物およびアルデ
ヒドの縮合物及び(c)フラン樹脂から選ばれ、そして
4熱処理物の水素原子/炭素原子の原子比が0.50〜
0.05で’h ?)ポリアセン系骨格構造を含有する
不溶不融性基体を熱硬化性に°脂とを含有する成形体又
は該成形体の熱処理物に、リチウムをモル百分率で3%
以上担持させたものを用いることを特徴とする有I11
電解質電池によって達成される。
(Means for Solving the Problems) The above object of the present invention is to provide a negative electrode active material in an organic electrolyte battery equipped with a positive electrode, a negative electrode, and an electrolytic solution containing a solution of a lithium salt dissolved in an aprotic organic solvent. A heat-treated product of an aromatic condensation polymer in which lithium is used as a negative electrode and carbon, hydrogen, and oxygen are used as a negative electrode, the aromatic condensation polymer is a condensation product of (a) an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. (b) an aromatic hydrocarbon compound having a phenolic hydroxyl group, a condensate of an aromatic hydrocarbon compound having no phenolic hydroxyl group and an aldehyde, and (c) a furan resin; /The atomic ratio of carbon atoms is 0.50~
'h? with 0.05? ) Adding 3% lithium (mole percentage) to a molded article containing thermosetting resin or a heat-treated product of the molded article, in which an insoluble and infusible substrate containing a polyacene skeleton structure is thermosetted.
I11 characterized in that the above supported material is used.
Achieved by electrolyte batteries.

本発明におけるポリアセン系骨格構造を含有する不溶不
融性基体〈以下、PASと記す)は本願の出願人の出願
にかかる特開昭59−3806号公報に記載されている
芳香族系縮合ポリマーを特定の条件で熱処理することに
より得られる。
The insoluble and infusible substrate containing a polyacene skeleton structure (hereinafter referred to as PAS) in the present invention is an aromatic condensation polymer described in JP-A-59-3806 filed by the applicant of the present application. Obtained by heat treatment under specific conditions.

また600mt/g以上のBET法による比表面積を有
するPASは本願の出願人の出願にかかる特開昭60−
170163号公報に記載されている方法により得られ
る。
In addition, PAS having a specific surface area of 600 mt/g or more by the BET method is
It is obtained by the method described in Japanese Patent No. 170163.

具体的には高い比表面積を必要としない場合、本発明に
用いる芳香族系縮合ポリマーとしては、(a)フェノー
ル・ホルムアルデヒド樹脂の如き、フェノール性水酸基
を有する芳香族系炭化水素化合物とアルデヒド類の縮合
物、(b)キシレン変性フェノール、ホルムアルデヒド
樹脂(フェノールの一部をキシレンで置換したもの)の
如き、フェノール性水酸基を有する芳香族系炭化水素化
合物、フェノール性水酸基を有さない芳香族系炭化水素
化合物およびアルデヒドの縮合物及び(c)フラン樹脂
が好適なものとして挙げられる。
Specifically, when a high specific surface area is not required, the aromatic condensation polymer used in the present invention is (a) a combination of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, such as a phenol-formaldehyde resin. condensates, (b) aromatic hydrocarbon compounds with phenolic hydroxyl groups, such as xylene-modified phenol, formaldehyde resin (phenol partially replaced with xylene), aromatic hydrocarbon compounds without phenolic hydroxyl groups; Preferred examples include condensates of hydrogen compounds and aldehydes, and (c) furan resins.

該芳香族系縮合ポリマーを、非酸化性雰囲気〈真空状態
も含む)中で、400℃〜1000℃の温度、好ましく
は600℃〜800℃の適当な温度まで徐々に加熱し水
素原子/炭素原子の原子比(以下H/Cと記す)が0.
50−0.05 、好ましくは0.35〜0.10の熱
処理物とするとPASが得られる。600m”/g以上
のBET法による比表面積を有するPASの場合、前記
した芳香族系縮合ポリマーに塩化亜鉛、リン酸ナトリウ
ム等の無機塩を混合する。混入する量は、無やj塩の種
類及び目的とする電極の形状、性能によって異なるが、
重量比で10/1〜1/7が好ましい。
The aromatic condensation polymer is gradually heated to an appropriate temperature of 400°C to 1000°C, preferably 600°C to 800°C in a non-oxidizing atmosphere (including a vacuum state) to form hydrogen atoms/carbon atoms. The atomic ratio (hereinafter referred to as H/C) is 0.
50-0.05, preferably 0.35 to 0.10, PAS can be obtained. In the case of PAS having a specific surface area determined by the BET method of 600 m"/g or more, an inorganic salt such as zinc chloride or sodium phosphate is mixed with the above-mentioned aromatic condensation polymer. It varies depending on the shape and performance of the target electrode, but
The weight ratio is preferably 10/1 to 1/7.

このようにして得られた無機塩と芳香族系縮合ポリマー
の混合物はポリマーの組成、無機塩の種類等によって異
なるが通常50−180℃の温度で、2〜90分間加熱
することにより硬化、かくして得られた硬化体を、次い
で非酸化性雰囲気中で350〜800℃の温度、好まし
くは400t〜750℃の温度まで加熱し、得られた熟
処理体を水あるいは希塩酸等で十分洗浄することによっ
て、熱処理体中に含まれている無機塩を除去する。
The mixture of inorganic salt and aromatic condensation polymer thus obtained is usually cured by heating at a temperature of 50-180°C for 2-90 minutes, although it varies depending on the composition of the polymer, the type of inorganic salt, etc. The obtained cured product is then heated in a non-oxidizing atmosphere to a temperature of 350 to 800°C, preferably 400t to 750°C, and the obtained cured product is thoroughly washed with water or dilute hydrochloric acid. , to remove inorganic salts contained in the heat-treated body.

その後、これを乾燥すると、H/C=0.50〜0.0
5好ましくは0.35〜0.10(7)600m” /
g以上の比表面積を有するPASが得られる。
After that, when this is dried, H/C=0.50~0.0
5 preferably 0.35 to 0.10 (7) 600 m” /
PAS having a specific surface area of more than g is obtained.

本発明に用いるPASはX41回折(CuKcX線)に
おいてメインピークの位置が2θで24°以下に生し、
且つ2θで41@〜46℃の間にブロードなピークを示
すものが好適である。
The PAS used in the present invention has a main peak position of 2θ of 24° or less in X41 diffraction (CuKc X-ray),
In addition, those showing a broad peak at 2θ between 41 and 46° C. are preferable.

また本発明において、PASが赤外吸収;(ベクトルか
ら求められる下記式で表わされる吸光度比(D) o=Dt雫oo−g啼40/Dis壷・〜目4・式中、
D z*oo〜2,4゜は赤外吸収スペクトルにおける
2900〜2940カイザーの範囲の最大吸収ピークか
ら求められる吸光度、DIS66〜.4゜は赤外吸収ス
ペクトルにおける1560〜1640カイザーの範囲の
最大吸収ピークから求められる吸光度である、が0.5
以下、特に0.3以下のものが好適である。
In addition, in the present invention, PAS absorbs infrared; (absorbance ratio (D) expressed by the following formula obtained from the vector;
Dz*oo~2,4° is the absorbance determined from the maximum absorption peak in the range of 2900 to 2940 Kaiser in the infrared absorption spectrum, DIS66~. 4° is the absorbance determined from the maximum absorption peak in the range of 1560 to 1640 Kaiser in the infrared absorption spectrum, is 0.5
Below, those of 0.3 or less are particularly suitable.

(なお上記吸光度比(D)の算出方法の詳述は、特開昭
59−3806号公報実施例1に記載されている。) PASは芳香族系多環構造が適度に発達し、かつ、平面
ポリアセン系骨格構造の平均距離が比較的大きいことが
示唆され、リチウムを安定に担持することができる。
(Details of the method for calculating the above absorbance ratio (D) are described in Example 1 of JP-A-59-3806.) PAS has a suitably developed aromatic polycyclic structure, and It is suggested that the average distance of the planar polyacene skeleton structure is relatively large, and lithium can be stably supported.

上記平均距離が小さい場合、すなわち黒鉛結晶に近づく
に従い、リチウムを担持したとき、あるいはリチウムを
出し入れしたとき(充放電時)に基体構造に変化を生じ
易くなり、サイクル特性が劣化する。
When the above-mentioned average distance is small, that is, as it approaches the graphite crystal, changes are more likely to occur in the substrate structure when lithium is supported or when lithium is put in and taken out (during charging and discharging), and the cycle characteristics deteriorate.

また芳香族多環構造が発達していない場合、リチウムを
安定に担持させることができず、この様なPASにリチ
ウムを担持させた負極を用いて製造した電池は自己放電
が大きくなる。
Furthermore, if the aromatic polycyclic structure is not developed, lithium cannot be stably supported, and a battery manufactured using a negative electrode in which lithium is supported on such PAS will have a large self-discharge.

本発明におけるPASは成形しやすい様、粉体短繊維状
等の形状に製造又は適当な形状で製造し、粉体、短繊維
状等の形状に加工されたPASを用いる。
The PAS used in the present invention is manufactured in the shape of powder, short fibers, etc., or manufactured in an appropriate shape, and processed into the shape of powder, short fibers, etc., so that it can be easily molded.

本発明においてリチウムを担持させるPASと熱硬化性
樹脂を少なくとも含む成形体は大きく分けて次の2つの
方法で製造することができる。
In the present invention, a molded article containing at least PAS supporting lithium and a thermosetting resin can be produced by the following two methods.

第1の方法は粉末状、短taIl状等の混合しゃすい形
態のPASと熱硬化性樹脂の初期縮合物とを、必要なら
ばメタノール、トルエン、水等の溶媒を加えて混練後、
50℃〜200tの加熱下硬化と同時に加圧成形する方
法であり、第2の方法は先に上記形態にあるPASを、
例えばポリ四フフ化エチレン、ポリエチレン、ポリプロ
ピレン等の電池用電極に一般的に用いられるバインダー
と混合あるいは必要に応して混練、成形し、続いて該成
形体に熱硬化性樹脂の初期縮合物溶液を含浸後、加熱等
により乾燥、硬化を行う方法である。
The first method is to knead PAS in a mixed form such as powder or short tal and an initial condensate of a thermosetting resin, adding a solvent such as methanol, toluene, or water if necessary, and then
This is a method of curing under heating at 50°C to 200 tons and pressure molding at the same time.The second method is to first prepare PAS in the above form,
For example, it is mixed with a binder commonly used for battery electrodes such as polytetrafluoroethylene, polyethylene, polypropylene, etc., or kneaded and molded as necessary, and then the molded body is added to an initial condensate solution of a thermosetting resin. This is a method in which after impregnation, drying and curing are performed by heating or the like.

本発明における熱硬化性樹脂としてはPAS粉体等を強
固に接着し電極のゆるみを抑止し得るもの、例えばフェ
ノール樹脂、メラミン樹脂、フラン樹脂等が挙げられる
。かくして得られた成形体は場合により、不活性雰囲気
中(真空を含む)熱処理して用いることもできる。
Examples of the thermosetting resin in the present invention include those that can firmly adhere PAS powder and the like and prevent loosening of the electrode, such as phenol resin, melamine resin, furan resin, and the like. The molded product thus obtained may be used after being heat-treated in an inert atmosphere (including vacuum), depending on the case.

例えば熱硬化性樹脂としてフェノール樹脂を用いた場合
、リチウムと反応し易い水酸基、カルボニル基等が大量
に存在し、リチウムを担持させる時に余分なリチウムを
必要とする為、加熱処理によりあらかじめこれらの官能
基を減少させておくことが有利である。加熱温度は15
0℃以上、好ましくは250℃〜500℃であり、高温
になるにつれ、電極強度が低下し本発明本来の効果が得
にくくなる。
For example, when phenolic resin is used as a thermosetting resin, there are large amounts of hydroxyl groups, carbonyl groups, etc. that easily react with lithium, and extra lithium is required to support lithium, so heat treatment removes these functional groups in advance. It is advantageous to keep the groups depleted. The heating temperature is 15
The temperature is 0°C or higher, preferably 250°C to 500°C, and as the temperature increases, the electrode strength decreases and it becomes difficult to obtain the original effects of the present invention.

上記成形体中の熱硬化性樹脂の割合はPASの形状、P
ASの比表面積、他種のバインダー量。
The proportion of thermosetting resin in the molded body is determined by the shape of PAS, P
Specific surface area of AS, amount of other binders.

担持させるリチウム量等により決定されるが、好ましく
はt種牛を占める割合が重量比で1%以上70%以下、
さらに好ましくは5%以上50%以下である。90%未
満の場合、!極のゆるみを抑止する効果が小さく、70
%を越えると当然のことながらPAS量が少なくなり、
十分なリチウムを担持することができず、電池容量が低
下する。
It is determined by the amount of lithium carried, etc., but preferably the proportion of lithium in the T-type cow is 1% or more and 70% or less by weight,
More preferably, it is 5% or more and 50% or less. If it is less than 90%,! The effect of suppressing the loosening of the pole is small, 70
%, the amount of PAS will naturally decrease,
Sufficient lithium cannot be supported, resulting in a decrease in battery capacity.

本発明の有機電解質に適用される負極は、上述の方法で
得られるPASと熱硬化性樹脂とを含有する成形体又は
!!戒形体の熱処理物にリチウムを担持せしめたもので
ある。
The negative electrode applied to the organic electrolyte of the present invention is a molded article containing PAS obtained by the above method and a thermosetting resin or! ! Lithium is supported on the heat-treated product.

リチウムの担持の方法としては、電解法、気相法、液相
法、イオン注入決算公知の方法から適宜選択して行えば
よい0例えば電解法でリチウムを担持する場合は、リチ
ウムイオンを含む電解液中に、PAS$形体を作用電極
として浸漬し、同一電解液中の対極との間で、電流を流
すか、又は電圧を印加する。
The method for supporting lithium may be appropriately selected from among known methods such as electrolytic method, gas phase method, liquid phase method, and ion implantation method.For example, when supporting lithium by electrolytic method, electrolytic method containing lithium ions A PAS$ shape is immersed in the solution as a working electrode, and a current is passed or a voltage is applied between it and a counter electrode in the same electrolyte.

また上記成形体に適量のリチウム箔を直接接触させる方
法によ゛っても担持されることができる。
It can also be supported by a method in which an appropriate amount of lithium foil is brought into direct contact with the molded body.

気相法を用いる場合には、例えばリチウムの真気に、P
AS戊形体を晒す、また液相法を用いる場合は例えばリ
チウムイオンを含む錯体と不溶不融性基体とを反応せし
める。この反応に用いる錯体としては、例えばアルカリ
金属のナフタレン錯体、アルコキシドなどが挙げられる
が、これらに限定されるものではない。
When using the gas phase method, for example, P is added to the atmosphere of lithium.
The AS rod is exposed, or when a liquid phase method is used, a complex containing, for example, lithium ions is reacted with an insoluble and infusible substrate. Examples of the complex used in this reaction include, but are not limited to, alkali metal naphthalene complexes and alkoxides.

上記方法によってPASに担持せしめるリチウムの量は
モル百分率(PASの炭素原子1個に対するリチウムの
数の百分率)で表わして3%以上、好ましくはIO%以
上である。リチウムの量はPASの比表面積によっても
異なり、リチウムを担持せしめたPAS威形体の電位が
Li/Li”に対して1. O〜0■になる様にリチウ
ムを担持させるのが望ましい、リチウムの量が少ない場
合、本発明の電池の容量が低下し、多い場合には過剰の
リチウムがPAS成形体表面に析出し、好ましくない。
The amount of lithium supported on PAS by the above method is 3% or more, preferably IO% or more, expressed as a molar percentage (percentage of lithium to one carbon atom of PAS). The amount of lithium varies depending on the specific surface area of PAS, and it is desirable to support lithium so that the potential of the PAS shape body supporting lithium is 1.0~0■ with respect to Li/Li. If the amount is small, the capacity of the battery of the present invention will be reduced, and if the amount is large, excessive lithium will precipitate on the surface of the PAS molded body, which is not preferable.

そして上記PAS粉体等を従来知られている方法で底形
したPASFi、形体にリチウムを担持させる場合、電
極のゆるみが大きく、板状あるいはフィルム状のPAS
をリチウム担持体として用いる場合に比べ電池の内部抵
抗が増大し、急速放電が困難となり、さらには十分なサ
イクル特性が得られなかった。
When lithium is supported on a PASFi shape formed by forming the bottom of the above-mentioned PAS powder etc. using a conventionally known method, the looseness of the electrode is large, and the plate-like or film-like PAS
The internal resistance of the battery increased compared to the case where lithium was used as a lithium carrier, making rapid discharge difficult, and furthermore, sufficient cycle characteristics could not be obtained.

特に高い比較例表面積のPASを用いる場合、担持する
リチウム量が多くなることから従来の方法では電極がゆ
るみやすく、本発明の効果が顕微に表れる。すなわち6
00m’/g以上のBET法による比表面積を持つPA
Sは基体中でのLjの拡散速度が速いことから電池内部
抵抗を小さくできることが確認されていたものの、成形
法に問題があり、実用できなかったわけであるが、本発
明の方法を用いることにより、高性能電池が得られる。
In particular, when PAS with a high comparative surface area is used, the electrode tends to loosen in the conventional method due to the large amount of lithium supported, and the effects of the present invention are minutely manifested. That is 6
PA with specific surface area measured by BET method of 00m'/g or more
Although it has been confirmed that S can reduce the internal resistance of a battery due to the fast diffusion rate of Lj in the substrate, there were problems with the molding method and it could not be put into practical use. However, by using the method of the present invention, , a high-performance battery can be obtained.

さらに本発明において主バインダーとして熱硬化性樹脂
を用いるためリチウム系電池を劣化させる主原因の水分
を例えば300℃以上の高温下で短時間に除くことも可
能であることから実用的な成形法である。
Furthermore, since the present invention uses a thermosetting resin as the main binder, it is possible to remove moisture, which is the main cause of deterioration of lithium batteries, in a short time at high temperatures of, for example, 300°C or higher, making it a practical molding method. be.

本発明に用いる電解液を構成する溶媒としては非プロト
ン性有111熔媒が用いられる。非プロトン性有機溶媒
としては、例えばエチレンカーボネイト、プロピレンカ
ーボネイト、T−ブチロラクトン、ジメチルホルムアミ
ド、ジメチルアセドア泉ド、ジメチルスルホキシド、ア
セトニトリル、ジメトキシエタン、テトラヒドロフラン
、ジオキソラン、塩化メチレン、スルホラン又はこれら
非プロトン性有機溶媒の二種以上の混合液のいずれを使
用しても良い。
As the solvent constituting the electrolytic solution used in the present invention, an aprotic 111 solvent is used. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, T-butyrolactone, dimethylformamide, dimethyl acedoide, dimethyl sulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane, or these aprotic organic solvents. Any mixture of two or more solvents may be used.

また、上記の混合又は単一の溶媒に溶解させる電解質は
、リチウムイオンを生成しうる電解質のいずれでも良い
、このような電解質は、例えばLil   LiC10
a、LiAsP*、LiBFa 、又はLjHFzであ
る。
Further, the electrolyte dissolved in the above mixed or single solvent may be any electrolyte capable of producing lithium ions, such as, for example, Lil LiC10.
a, LiAsP*, LiBFa, or LjHFz.

上記の電解質及び溶媒は十分に脱水された状態で混合さ
れ、電解液とするのであるが、電解液中の前0電M質の
濃度は電解液による内部抵抗を小さくするため少なくと
も0.1モル/1以上とするのが望ましく、通常0.2
〜1.5モル/1とするのがより好ましい。
The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolytic solution, and the concentration of pre-0 electrolyte in the electrolytic solution is at least 0.1 mol in order to reduce the internal resistance caused by the electrolytic solution. /1 or more is desirable, usually 0.2
It is more preferable to set it to 1.5 mol/1.

本発明の有機電解質電池の正極としては、例えば後述す
る電気化学的にドーピング及びアンド−ピングできる導
電性高分子体、金属酸化物、金属硫化物、活性炭などを
用いることができる。
As the positive electrode of the organic electrolyte battery of the present invention, for example, conductive polymers, metal oxides, metal sulfides, activated carbon, etc. which can be electrochemically doped and undoped, which will be described later, can be used.

電気化学的にドーピング及びアンド−ピングできる導電
性高分子としては、ポリアセチレン、ポリチオフェン、
ポリアニリン及び芳香族系縮合ポリマーの熱処理物であ
るポリアセン系有機半導体等がある。1i極材として用
いる場合、安定性、及び底型性が実用上極めて重要であ
り、この観点から、ポリアセン系有機半導体及びアニリ
ン類の重合物が特に好ましい。
Conductive polymers that can be electrochemically doped and undoped include polyacetylene, polythiophene,
Examples include polyacene organic semiconductors, which are heat-treated products of polyaniline and aromatic condensation polymers. When used as a 1i electrode material, stability and bottom shape are extremely important from a practical standpoint, and from this point of view, polymers of polyacene organic semiconductors and anilines are particularly preferred.

正極として好ましく用いうる金属の酸化物は、リチウム
イオンをインターカレーシラン又はデインターカレーシ
ラン(本発明においてはドーピング又はアンド−ピング
と呼ぶ)により可逆的に出入れできる、例えはバナジウ
ム、クロム、マンガン、モリブデン、ビスマスのごとき
遷移金属の酸化物である。
Metal oxides that can be preferably used as positive electrodes include vanadium, chromium, and manganese, which can reversibly introduce and remove lithium ions by intercalating silane or deintercalating silane (referred to as doping or and-doping in the present invention). , molybdenum, and bismuth.

例えばVzOs、  VhO+s、  Cr5L、  
Mn0t+  MOO3゜CutVtOt等を一種以上
用いる。これら遷移金属酸化物の構造は、結晶質状態で
あっても、あるいは加熱処理等により非晶質状態とした
ものでもよい。
For example, VzOs, VhO+s, Cr5L,
One or more types of Mn0t+ MOO3°CutVtOt, etc. are used. The structure of these transition metal oxides may be in a crystalline state or may be made into an amorphous state by heat treatment or the like.

正極として好ましく用いうる金属硫化物の例としてはT
e5t、 Mo5g+ F′IoSsが挙げられる。こ
れらの金属硫化物の構造は、結晶質状態であっても非晶
質状態であっても良い。
An example of a metal sulfide that can be preferably used as a positive electrode is T.
e5t, Mo5g+F'IoSs. The structure of these metal sulfides may be in a crystalline state or an amorphous state.

上記正極の中で最も好ましいのは、ポリアセン系有機半
導体である(特開昭60−170163号公報)、該半
導体は特に安定性に優れており、該半導体を正極に用い
ることに4.0■の電圧を有する高電圧の電池を作成す
ることも可能であり、また繰り返し充放電による劣化も
ほとんどなく、サイクル特性に優れる電池が作成可能と
なる。
Among the positive electrodes mentioned above, the most preferred is a polyacene organic semiconductor (Japanese Patent Application Laid-open No. 170163/1983). This semiconductor has particularly excellent stability, and the use of this semiconductor as a positive electrode is 4.0 It is also possible to create a high-voltage battery having a voltage of

電池外部に電流を取り出すための集電体としてはドーピ
ング剤及び電解液に対し耐蝕性の導電物質、例えば炭素
、0近、ニンケル、ステンレス等を用いることが出来る
As a current collector for extracting a current to the outside of the battery, a conductive material that is resistant to corrosion by the doping agent and the electrolytic solution, such as carbon, nickel, stainless steel, etc., can be used.

次に図により本発明の実施態様の一例を説明する。第1
図は本発明に係る電池の基本構成図である。第1図にお
いて、(1) は正極であり、(2)は負極である。 
 (3)、 (3’)は集電体であり、各電極及び外部
端子(7)、 (7’)に電圧降下を生じないように接
続されている。(4)は電解液であり、ドーピングされ
うるイオンを生成しうる前述の化合物が非プロトン性有
機溶媒に溶解されている。!解液は通常液状であるが漏
液を防止するためゲル状又は固体状にして用いることも
できる。(5)は正負両極の接触を阻止する事及び電解
液を保持する事を目的として配置されたセパレーターで
ある。
Next, an example of an embodiment of the present invention will be explained with reference to the drawings. 1st
The figure is a basic configuration diagram of a battery according to the present invention. In FIG. 1, (1) is the positive electrode, and (2) is the negative electrode.
(3) and (3') are current collectors, which are connected to each electrode and external terminals (7) and (7') so as not to cause a voltage drop. (4) is an electrolytic solution in which the above-mentioned compound that can generate ions that can be doped is dissolved in an aprotic organic solvent. ! The solution is usually in liquid form, but it can also be used in gel or solid form to prevent leakage. (5) is a separator placed for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolyte.

該セパレーターは、電解液或は電極活物質に対し、該セ
パレータは電解液或はドーピング剤やアルカリ金属等の
電極活物質に対し耐久性のある連通気孔を有する電子伝
導性のない多孔体であり、通常ガラス繊維、ポリエチレ
ン或はポリプロピレン等からなる布、不織布或は多孔体
が用いられる。
The separator is a porous body with no electronic conductivity and has continuous pores that are durable to the electrolytic solution or electrode active material such as a doping agent or an alkali metal. Generally, cloth, nonwoven fabric, or porous material made of glass fiber, polyethylene, polypropylene, or the like is used.

セパレータの厚さは電池の内部抵抗を小さくするため清
い方が好ましいが、電解液の保持量、流通性、強度等を
勘案して決定される。正負極及びセパレータは電池ケー
ス(6)内に実用上問題が生じないように固定される。
The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but it is determined by taking into account the amount of electrolyte retained, flowability, strength, etc. The positive and negative electrodes and the separator are fixed in the battery case (6) so as not to cause any practical problems.

電極の形状、大きさ等は目的とする電池の形状、性能に
より適宜決められる。
The shape, size, etc. of the electrodes are appropriately determined depending on the shape and performance of the intended battery.

(発明の効果) 本発明の有機電解質電池は、リチウムを担持させたポリ
アセン系骨格構造を含有した不溶不融性基体を熱硬化性
樹脂で接着したものを負極として用いることにより、急
速放電特性、長期サイクル特性に優れた二次電池である
(Effects of the Invention) The organic electrolyte battery of the present invention has rapid discharge characteristics, by using as a negative electrode an insoluble and infusible substrate containing a polyacene skeleton structure carrying lithium and bonded with a thermosetting resin. This is a secondary battery with excellent long-term cycle characteristics.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例 (1)PASの製造方1 ノボランク型フェノール樹脂シリコニフト電気炉に入れ
、窒素雰囲気下650℃(PASll)、800℃(P
ASI−2)まで10℃/時間の昇温速度にて熱処理し
、ディスクミルで粉砕することによりPAS粉末を得た
Example (1) Method for producing PAS 1 Novolank type phenolic resin silicone was placed in an electric furnace and heated at 650°C (PASll) and 800°C (PASll) under a nitrogen atmosphere.
ASI-2) was heat-treated at a heating rate of 10° C./hour, and pulverized with a disk mill to obtain PAS powder.

(2)PASの製造法2 水溶性レゾール(約60%濃度)、塩化亜鉛及び水を重
量比で10:25:4の割合で混合した水溶液をフィル
ムアプリケーターでガラス板上にFIi、膜した8次に
成膜した水溶液上にガラス板を被せ水分が蒸発しない様
にした後、約100℃の温度で1時間加熱して硬化させ
た。
(2) PAS manufacturing method 2 An aqueous solution prepared by mixing a water-soluble resol (approximately 60% concentration), zinc chloride, and water in a weight ratio of 10:25:4 was coated on a glass plate using a film applicator. Next, a glass plate was placed over the formed aqueous solution to prevent moisture from evaporating, and then heated at a temperature of about 100° C. for 1 hour to cure it.

該フェノール樹脂フィルムをシリコニット電気炉中に入
れ窒素気流下で10℃/時間の速度で昇温して550℃
(PAS2−1)、750t (PAS2−2)まで熱
処理を行った。
The phenolic resin film was placed in a siliconite electric furnace and heated to 550°C at a rate of 10°C/hour under a nitrogen stream.
(PAS2-1), heat treatment was performed up to 750t (PAS2-2).

次に該熱処理物を希塩酸で洗った後、水洗し、その後乾
燥することにより高比表面積のPASフィルムを得た。
Next, the heat-treated product was washed with dilute hydrochloric acid, then water, and then dried to obtain a PAS film with a high specific surface area.

このPASフィルムをディスクミルで粉砕することによ
りPAS粉体を得た。
PAS powder was obtained by pulverizing this PAS film with a disk mill.

(PASの製造法3・・・正極) 水溶性レゾール(約60%濃度)、塩化亜鉛及び水を重
量比で10:25:4の割合で混合した水溶液をフィル
ムアプリケーターでガラス板上に成膜した0次に成膜し
た水溶液上にガラスを被せ水分が蒸発しない様にした後
、約100℃の温度I時間加熱して硬化させた。
(PAS manufacturing method 3...positive electrode) A film is formed on a glass plate using a film applicator with an aqueous solution containing water-soluble resol (approximately 60% concentration), zinc chloride, and water mixed in a weight ratio of 10:25:4. After covering the aqueous solution formed in the 0th order with glass to prevent moisture from evaporating, the film was heated at a temperature of about 100° C. for I hours to harden it.

該フェノール樹脂フィルムをシリコニット電気炉中に入
れ窒素気流下で40℃/時間の速度で昇温しで、500
℃まで熱処理を行った。次に該熱処理物を希塩酸で洗っ
た後、水洗し、その後乾燥することによって不溶不融性
基体を得た。
The phenolic resin film was placed in a siliconite electric furnace and heated at a rate of 40°C/hour under a nitrogen stream to 500°C.
Heat treatment was performed to ℃. Next, the heat-treated product was washed with dilute hydrochloric acid, then water, and then dried to obtain an insoluble and infusible substrate.

該不溶不融性基体をディスクミルで粉砕した粉末100
部、アセチレンブラック15部、四フフ化エチレン粉末
lO部を充分に混練後、ローラーを用いて約500μの
フィルムに成形した。
Powder 100 obtained by pulverizing the insoluble and infusible substrate with a disk mill
15 parts of acetylene black and 10 parts of tetrafluoroethylene powder were thoroughly kneaded and then formed into a film of about 500 μm using a roller.

(PAS3) (負極の製造法1) P A S  1−1.PASI−2それぞれの粉体1
00部に対して、レゾール型フェノール樹脂初!+1縮
音物のメタノール溶液(約65%濃度)40部を十分に
混合し、該混合物を150t:の加熱下50kg/am
”で15分間加圧することにより約500μmのフィル
ムに成形した。
(PAS3) (Negative electrode manufacturing method 1) PAS 1-1. PASI-2 each powder 1
00 parts, the first resol type phenolic resin! 40 parts of a methanol solution (approximately 65% concentration) of the +1 condensate was thoroughly mixed, and the mixture was heated at 150 tons at 50 kg/am.
'' for 15 minutes to form a film of about 500 μm.

t9i威形成金作用極とし、リチウム金属を対極及び参
tllit極とし、十分に脱水したプロピレンカーボネ
ートにLiCj! O,を熔解させた1モル/1の溶液
を電解液とし、電気化学セルを組んだ、リチウムに対し
、0.2vの電圧を12時間印加することにより、不溶
不融性基体にリチウムを担持させた。
A t9i gold working electrode is used, lithium metal is used as a counter electrode and a tllit electrode, and sufficiently dehydrated propylene carbonate is used as LiCj! An electrochemical cell was assembled using a 1 mol/1 solution of O, as an electrolyte, and a voltage of 0.2 V was applied to lithium for 12 hours to support lithium on an insoluble and infusible substrate. I let it happen.

担持させたリチウム量はPASの炭素原子1個に対する
リチウムの数の百分率で表わす、PASI−■成形体に
は37%、PASI−2成形体には31%のリチウムが
担持された(それぞれ負極ぬl 、 旭2) 。
The amount of lithium supported is expressed as a percentage of the number of lithium per carbon atom of PAS, and 37% and 31% of lithium were supported on the PASI-■ molded body and 31% on the PASI-2 molded body, respectively. l, Asahi 2).

(負極の製造法2) PAS2−1.PAS2−2それぞれの粉体100部に
対して、ポリ四フフ化エチレンパウダー10部を十分に
混合、混練後、ローラーを用いて約500μのフィルム
に成形した。Vtいてレゾール型フェノール樹脂初FJ
Ii合物のメタノール溶液(10%、20%、30%、
45%濃度)に成形体を浸け、フェノール樹脂を含浸し
た。該含浸フィルムを100t’−昼夜乾燥後250’
Cの温度で4時間、窒素雰囲気下熱処理した。
(Negative electrode manufacturing method 2) PAS2-1. After thoroughly mixing and kneading 10 parts of polytetrafluoroethylene powder with 100 parts of each PAS2-2 powder, the mixture was formed into a film of about 500 μm using a roller. Vt resol type phenolic resin first FJ
Methanol solution of compound Ii (10%, 20%, 30%,
45% concentration) to impregnate the molded body with phenolic resin. The impregnated film was dried for 100 t'-250' day and night.
Heat treatment was performed at a temperature of C for 4 hours under a nitrogen atmosphere.

該成形体に300μの口金属箔(リチウム担持量約80
%〉を圧着し、1 m o l / I  LiCl0
aプロピレンカーボネート溶液中に48時間放置したと
ころ、Li金gh箔は完全になくなり、すべてのLiが
PAS戒形体形体持させることができた。
A metal foil of 300 μm (lithium loading amount: approximately 80
%〉 and 1 mol/I LiCl0
When it was left in a propylene carbonate solution for 48 hours, the Li gold gh foil completely disappeared, and all the Li was able to maintain the PAS shape.

該成形体中のフェノール樹脂含率はフェノール樹脂含浸
前と含浸乾燥硬化後の重量より算出した。
The phenol resin content in the molded article was calculated from the weight before impregnation with the phenol resin and after the impregnation, drying and hardening.

(II池の作成) 正極にPAS 3を正極とし、負極N11i〜4と組合
せて第1図のように電池を組んだ。
(Creation of II Pond) A battery was assembled as shown in FIG. 1 by using PAS 3 as a positive electrode and combining it with negative electrodes N11i to 4.

集電体としてはステンレス金網を用い、セパレーターと
してはガラス繊維からなるフェルトを用いた。また電解
液としては1モル/ l LiCl0nプロピレンカー
ボネート溶液を用い電池を組んだ。
A stainless wire mesh was used as the current collector, and felt made of glass fiber was used as the separator. A battery was assembled using a 1 mol/l LiCl0n propylene carbonate solution as the electrolyte.

(サイクル特性の測定) 上記電池に外部it源より4.OVの電圧を約1時間印
加し、充電を行ない、次いで1mA/cm”の電流密度
で2.OVまで放電し、初期容量を求めた。更にこの充
放電サイクルを重ね、初期容量の80%となる回数を測
定した。
(Measurement of cycle characteristics) 4. A voltage of OV was applied for about 1 hour to perform charging, and then discharged to 2.OV at a current density of 1 mA/cm'' to determine the initial capacity.Furthermore, this charge/discharge cycle was repeated, and the initial capacity reached 80% of the initial capacity. The number of times this happened was measured.

(急速放電特性の測定) 充電方法はサイクル特性の測定と同様にして、5mA/
cm”の電流密度で2.OVになるまで放電し、1mA
/cm”放電時の容量と比較した。
(Measurement of rapid discharge characteristics) The charging method was the same as the measurement of cycle characteristics.
Discharge to 2.OV at a current density of 1mA
/cm" compared with the capacity at the time of discharge.

結果は(5mA/cm”時の容量)/(1mA/cm”
時の容it)で示した。
The result is (capacity at 5mA/cm")/(1mA/cm")
It is shown in the figure of time.

第1表にPASの物性、第2表に負極の製造法2により
得られる負極の物性、第3表に本発明のテスト結果をま
とめて示す。
Table 1 shows the physical properties of PAS, Table 2 shows the physical properties of the negative electrode obtained by negative electrode manufacturing method 2, and Table 3 shows the test results of the present invention.

第1表 第3表 比較例I PASI−1,PASI−2,PAS2−1゜PAS2
−2のそれぞれの粉体に対して10部(重量あたり)の
ポリ四フフ化エチレン(P T F E)パウダーを混
合、混練した後、500μにフィルムにロール底形した
。フェノール樹脂を含浸させずに負極の製造法2にある
方法でリチウムを担持させた。ただしPASI−1,P
ASI−2については150μ(約40%のリチウム担
持量)のリチウム箔を用いた。
Table 1 Table 3 Comparative Example I PASI-1, PASI-2, PAS2-1゜PAS2
10 parts (per weight) of polytetrafluoroethylene (PTFE) powder was mixed and kneaded with respect to each of the powders in Example 2-2, and then rolled into a film having a thickness of 500 μm. Lithium was supported by the method described in negative electrode manufacturing method 2 without impregnating it with phenol resin. However, PASI-1,P
For ASI-2, 150μ (approximately 40% lithium loading) lithium foil was used.

実施例と同様の方法で電池を組み、サイクル特性、2速
放電特性を測定した。
A battery was assembled in the same manner as in the example, and cycle characteristics and two-speed discharge characteristics were measured.

結果を第4表にまとめて示す。The results are summarized in Table 4.

第4表Table 4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電池の基本構成図であり、(1)
は正極、(2)負極、(3) 、 (3’)は集電体、
(4)は電解液、(5)はセパレーター、(6〉 電池
ケース、(7) 、 (7’)は外部端子を表わす。 第 1 図
FIG. 1 is a basic configuration diagram of a battery according to the present invention, (1)
is a positive electrode, (2) is a negative electrode, (3) and (3') are current collectors,
(4) represents the electrolyte, (5) the separator, (6> battery case, and (7) and (7') the external terminals. Fig. 1

Claims (1)

【特許請求の範囲】[Claims] (1)正極、負極、並びにリチウム塩を非プロトン性有
機溶媒に溶解した溶液を含む電解液を備えた有機電解質
電池において、負極活物質をリチウムとし、負極として
炭素、水素および酸素から成る芳香族系縮合ポリマーの
熱処理物であって、該芳香族系縮合ポリマーは(a)フ
ェノール性水酸基を有する芳香族炭化水素化合物とアル
デヒドの縮合物、(b)フェノール性水酸基を有する芳
香族炭化水素化合物、フェノール性水酸基を有さない芳
香族炭化水素化合物およびアルデヒドの縮合物及び(c
)フラン樹脂から選ばれ、そして該熱処理物の水素原子
/炭素原子の原子比が0.50〜0.05であるポリア
セン系骨格構造を含有する不溶不融性基体と熱硬化性樹
脂とを含有する成形体又は該成形体の熱処理物に、リチ
ウムをモル百分率で3%以上担持させたものを用いるこ
とを特徴とする有機電解質電池。
(1) In an organic electrolyte battery equipped with a positive electrode, a negative electrode, and an electrolytic solution containing a solution of a lithium salt dissolved in an aprotic organic solvent, the negative electrode active material is lithium, and the negative electrode is an aromatic compound consisting of carbon, hydrogen, and oxygen. A heat-treated product of an aromatic condensation polymer, the aromatic condensation polymer comprises (a) a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, (b) an aromatic hydrocarbon compound having a phenolic hydroxyl group, Aromatic hydrocarbon compounds having no phenolic hydroxyl groups and condensates of aldehydes and (c
) An insoluble and infusible substrate containing a polyacene skeleton structure selected from furan resins and having an atomic ratio of hydrogen atoms/carbon atoms of the heat-treated product of 0.50 to 0.05, and a thermosetting resin. An organic electrolyte battery characterized by using a molded article or a heat-treated product of the molded article that supports lithium in a molar percentage of 3% or more.
JP2029887A 1990-02-08 1990-02-08 Organic electrolyte battery Expired - Fee Related JP2574730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029887A JP2574730B2 (en) 1990-02-08 1990-02-08 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029887A JP2574730B2 (en) 1990-02-08 1990-02-08 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH03233860A true JPH03233860A (en) 1991-10-17
JP2574730B2 JP2574730B2 (en) 1997-01-22

Family

ID=12288484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029887A Expired - Fee Related JP2574730B2 (en) 1990-02-08 1990-02-08 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2574730B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325972A (en) * 1992-05-15 1993-12-10 Kanebo Ltd Organic electrolyte battery
JPH06203833A (en) * 1992-12-30 1994-07-22 Kanebo Ltd Organic electrolyte battery
WO2012020815A1 (en) 2010-08-11 2012-02-16 株式会社Kri Predoping method for lithium, method for producing electrodes, and electric power storage device using these methods
US9548165B2 (en) 2012-05-09 2017-01-17 Shin-Etsu Chemical Co., Ltd. Predoping method for lithium, lithium-predoped electrode, and electricity storage device
EP3483950A1 (en) 2017-11-10 2019-05-15 Sumitomo Rubber Industries, Ltd. Method of manufacturing lithium ion battery device and lithium ion battery device
KR20210022237A (en) 2019-08-19 2021-03-03 대주전자재료 주식회사 Secondary battery and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325972A (en) * 1992-05-15 1993-12-10 Kanebo Ltd Organic electrolyte battery
JPH06203833A (en) * 1992-12-30 1994-07-22 Kanebo Ltd Organic electrolyte battery
WO2012020815A1 (en) 2010-08-11 2012-02-16 株式会社Kri Predoping method for lithium, method for producing electrodes, and electric power storage device using these methods
US9147876B2 (en) 2010-08-11 2015-09-29 Kri, Inc. Method for lithium predoping, method for producing electrodes, and electric energy storage device using these methods
US9548165B2 (en) 2012-05-09 2017-01-17 Shin-Etsu Chemical Co., Ltd. Predoping method for lithium, lithium-predoped electrode, and electricity storage device
KR20200020982A (en) 2012-05-09 2020-02-26 신에쓰 가가꾸 고교 가부시끼가이샤 Predoping method for lithium, lithium­predoped electrode, and electricity storage device
KR20210024217A (en) 2012-05-09 2021-03-04 신에쓰 가가꾸 고교 가부시끼가이샤 Predoping method for lithium, lithium­predoped electrode, and electricity storage device
EP3483950A1 (en) 2017-11-10 2019-05-15 Sumitomo Rubber Industries, Ltd. Method of manufacturing lithium ion battery device and lithium ion battery device
KR20210022237A (en) 2019-08-19 2021-03-03 대주전자재료 주식회사 Secondary battery and preparation method thereof

Also Published As

Publication number Publication date
JP2574730B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
JP2574730B2 (en) Organic electrolyte battery
JP2968097B2 (en) Organic electrolyte battery
JP3403856B2 (en) Organic electrolyte battery
JP2632427B2 (en) Organic electrolyte battery
JP2574731B2 (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JPH08162163A (en) Organic electrolytic battery
JP2646461B2 (en) Organic electrolyte battery
JPH08162159A (en) Organic elctrolytic battery
JP2619842B2 (en) Organic electrolyte battery
JP2912517B2 (en) Organic electrolyte battery
JPH0864251A (en) Organic electrolyte battery
JP2646462B2 (en) Organic electrolyte battery
JP2601784B2 (en) Organic electrolyte battery
JP2869354B2 (en) Organic electrolyte battery
JPH05159807A (en) Manufacture of organic electrolyte battery
JP2869355B2 (en) Organic electrolyte battery
JP3403894B2 (en) Organic electrolyte battery
JPH05325972A (en) Organic electrolyte battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2781725B2 (en) Organic electrolyte battery
JP2588404B2 (en) Organic electrolyte battery
JP2869191B2 (en) Organic electrolyte battery
JPS63301465A (en) Organic electrolyte battery with composite matter of aniline as positive electrode
JP2920069B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees