JPH03233406A - Optical device - Google Patents

Optical device

Info

Publication number
JPH03233406A
JPH03233406A JP24299590A JP24299590A JPH03233406A JP H03233406 A JPH03233406 A JP H03233406A JP 24299590 A JP24299590 A JP 24299590A JP 24299590 A JP24299590 A JP 24299590A JP H03233406 A JPH03233406 A JP H03233406A
Authority
JP
Japan
Prior art keywords
film
optical element
path difference
optical
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24299590A
Other languages
Japanese (ja)
Other versions
JP3249982B2 (en
Inventor
Kazuhiko Hazama
和彦 間
Osamu Yoshimura
修 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Citizen Watch Co Ltd
Original Assignee
Kuraray Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Citizen Watch Co Ltd filed Critical Kuraray Co Ltd
Priority to JP24299590A priority Critical patent/JP3249982B2/en
Publication of JPH03233406A publication Critical patent/JPH03233406A/en
Application granted granted Critical
Publication of JP3249982B2 publication Critical patent/JP3249982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the dependency of an optical path difference on an incident angle by forming the device with a plate having an optical phase difference function with the maximum main refractive index axis in its facial direction and a film or sheet having a negative intrinsic double refraction value. CONSTITUTION:This device is formed with a plate A having an optical phase difference function with the maximum main refractive index axis in its facial direction and a film B having a negative intrinsic double refraction value. The plate A having an optical phase difference function exhibits birefringence to the incident light vertical to its face, and an anisotropically oriented film obtained by uniaxial orientation or unbalanced biaxial orientation or a liq. crystal cell is exemplified. A transparent homopolymer or copolymer of an unsaturated aromatic compd. such as a polymerizable ester resin and polystyrene or the blend or a polymer alloy consisting essentaially of the resins can be used as the material for the film B having a negative intrinsic double refraction value. Consequently, the dependency of the optical path difference on an incident angle is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学的位相差機能を有する光学素子に関し、特
に光路差の入射角依存性の小さい光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical element having an optical phase difference function, and particularly to an optical element in which the optical path difference has a small dependence on the angle of incidence.

〔従来の技術〕[Conventional technology]

従来、光学的位相差機能を有するもの(以下光学的位相
差体と略記する)として透明樹脂の異方性フィルムまた
はシート(以下「フィルムまたはシート」をフィルムと
略記する)あるいは特殊な用途に液晶セルが使われてき
た。光学的位相差体は最近の光学技術の発展に伴いその
重要性を増しており、例えば白黒液晶表示パネルにおい
て、着色の原因となる液晶固有の複屈折の補償用にポリ
カーボネート樹脂の異方性配向フィルムなどが採用され
ている。しかしながら、これら従来の光学的位相差体に
は光の入射角による光路差の変化が大きいという欠点が
あり、白黒液晶表示パネルに使用した場合、斜方向の補
償が適正に行なわれなく着色し、視野角が狭くなる問題
がある。
Conventionally, transparent resin anisotropic films or sheets (hereinafter "films or sheets" are abbreviated as "film") have been used as materials with an optical retardation function (hereinafter abbreviated as optical retardants) or liquid crystals for special purposes. cells have been used. Optical retardation materials have become increasingly important with the recent development of optical technology.For example, in black and white liquid crystal display panels, optical retardation materials are used to compensate for the inherent birefringence of liquid crystals, which causes coloration. Film etc. are used. However, these conventional optical retardation materials have the disadvantage that the optical path difference changes greatly depending on the incident angle of light, and when used in a black and white liquid crystal display panel, compensation in the oblique direction is not performed properly and coloring occurs. There is a problem with the viewing angle becoming narrower.

〔発明が解決しようとする課題〕 本発明の目的は上記従来技術の問題点の解決にあり、す
なわち光路差の入射角依存性の小さい光学素子の開発で
ある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems of the above-mentioned prior art, that is, to develop an optical element in which the dependence of the optical path difference on the angle of incidence is small.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の目的は、 (A)最大の主屈折率軸がその面方向にある光学的位相
差機能を有する板状物と、 (B)固有複屈折値が負であるフィルムとから、構成さ
れることを特徴とする光学素子、または (A)その最大の主屈折率軸がその厚み方向にある光学
的位相差機能を有する板状物と、(B)固有複屈折値が
正であるフィルムとから、構成されることを特徴とする
光学素子、により構成される。
The object of the present invention is to provide a film comprising: (A) a plate-like material having an optical retardation function in which the maximum principal refractive index axis is in the direction of its surface; and (B) a film having a negative intrinsic birefringence value. or (A) a plate-like object having an optical retardation function whose largest principal axis of refraction is in the thickness direction, and (B) a film having a positive intrinsic birefringence value. An optical element characterized by comprising:

光学的位相差機能を有する板状物とは、面に垂直な入射
光に対し複屈折性を示すものであり、例えば−軸延伸ま
たはアンバランスニ軸延伸により得られる異方性配向フ
ィルムあるいは液晶セルなどが挙げられる。特に異方性
配向フィルムは、容易に大面積の適当な光路差のものが
得られるので好ましい。
A plate-like material having an optical retardation function is one that exhibits birefringence with respect to incident light perpendicular to its surface, such as an anisotropically oriented film or liquid crystal obtained by -axial stretching or unbalanced biaxial stretching. Examples include cells. In particular, an anisotropically oriented film is preferred because it can easily provide a large area film with a suitable optical path difference.

フィルムの固有複屈折値が正の材料としては、ポリカー
ボネート樹脂、セルロースジアセテート樹脂、ポリビニ
ルアルコール樹脂、ポリフェニレンオキサイド樹脂、ポ
リエチレンテレフタレートなどのポリエステル樹脂等、
また負の材料としてはポリ(メタ)アクリル酸エステル
樹脂、ポリスチレンなどの不飽和芳香族化合物の樹脂等
いずれも透明なホモポリマー、コポリマーあるいはこれ
らを主成分とするブレンド物、ポリマーアロイ等が使用
できる。
Materials with a positive intrinsic birefringence value for the film include polycarbonate resin, cellulose diacetate resin, polyvinyl alcohol resin, polyphenylene oxide resin, polyester resin such as polyethylene terephthalate, etc.
In addition, as negative materials, poly(meth)acrylic acid ester resins, resins of unsaturated aromatic compounds such as polystyrene, transparent homopolymers, copolymers, blends containing these as main components, polymer alloys, etc. can be used. .

特に、透明性に優れたポリカーボネート樹脂、セルロー
スジアセテート樹脂、ポリビニルアルコール樹脂、メタ
クリル酸エステルを主成分とするアクリル樹脂、スチレ
ンを主成分とするスチレン系樹脂が好ましい。
Particularly preferred are polycarbonate resins with excellent transparency, cellulose diacetate resins, polyvinyl alcohol resins, acrylic resins containing methacrylic acid ester as a main component, and styrene resins containing styrene as a main component.

また、アクリル樹脂は、針先(候)性、耐湿性および硬
度に優れ、保護フィルムを兼用させられる長所がある。
Furthermore, acrylic resin has excellent needle point (climate) properties, moisture resistance, and hardness, and has the advantage that it can also be used as a protective film.

フィルム用の樹脂に必要に応じ滑剤、紫外線吸収剤など
の添加剤が添加されていてもよい。
Additives such as a lubricant and an ultraviolet absorber may be added to the resin for the film as necessary.

光学的位相差機能を有する液晶セルはセル内にラビング
により液晶を配向、例えばホモジニアス配向あるいはツ
イスト配向させたものなどが使用できる。
A liquid crystal cell having an optical retardation function can be a cell in which liquid crystal is aligned by rubbing, for example, homogeneous alignment or twisted alignment.

バランス配向延伸物とは、面に垂直な入射光に対し実質
的に複屈折性を示さないものであり、例えば透明樹脂を
バランスニ軸延伸することにより作製できる。透明樹脂
としては、前記した樹脂が使用できる。
A balanced orientation stretched product is one that does not substantially exhibit birefringence with respect to incident light perpendicular to the plane, and can be produced, for example, by balanced biaxial stretching of a transparent resin. As the transparent resin, the resins mentioned above can be used.

最大の主屈折率軸がその面方向にある光学的位相差機能
を有する板状物に対しては、固有複屈折値が負のフィル
ムである必要がある。また最大の主屈折率軸が厚み方向
にある板状物に対しては固有複屈折値が正のものである
必要がある。これに該当しない、例えば最大の主屈折率
軸が面方向にある板状物に対して固有複屈折値が正であ
るフィルムを使用した場合、入射角依存性がむしろ大き
なものとなり本発明の効果が実現できない。
For a plate-like object having an optical retardation function in which the maximum principal refractive index axis is in the plane direction, the film needs to have a negative intrinsic birefringence value. Further, for a plate-like object whose maximum principal refractive index axis is in the thickness direction, the intrinsic birefringence value needs to be positive. If this does not apply, for example, if a film with a positive intrinsic birefringence value is used for a plate-like object whose maximum principal refractive index axis is in the in-plane direction, the dependence on the angle of incidence will be rather large, and the effect of the present invention will be reduced. cannot be realized.

光学的位相差機能を有する板状物が−軸延伸物またはア
ンバランスニ軸延伸物である場合、最大の主屈折率軸の
方向は、固有n屈折値が正の樹脂においては面方向とな
り、負の樹脂においては厚み方向となる。すなわち異方
性配向フィルムとバランス配向フィルムとは、固有複屈
折値が異符号である樹脂から作製されたものである必要
がある。
When the plate-like material having an optical retardation function is a -axially stretched product or an unbalanced biaxially stretched product, the direction of the maximum principal refractive index axis is the in-plane direction for a resin with a positive intrinsic n-refraction value, For negative resins, it is the thickness direction. That is, the anisotropically oriented film and the balanced oriented film need to be made of resins whose intrinsic birefringence values have opposite signs.

またホモジニアス配向あるいはツイスト配向した液晶セ
ルにおいては、面方向となる。
Moreover, in a liquid crystal cell with homogeneous alignment or twisted alignment, it is the in-plane direction.

本発明における(B)の積層体(以下積層体と略記する
)は、光路差および光路差の入射角依存性が実質的に等
しい1対の異方性配向フィルムが双方の配向度の大きい
方向が90°±35°の角度範囲で互いに交差するよう
に重ね合わされているものであることが好ましい。この
構造により積層体は垂直な入射光に対し実質的に複屈折
性を持たないものとなる。
In the laminate (B) of the present invention (hereinafter abbreviated as laminate), a pair of anisotropically oriented films having substantially the same optical path difference and the incident angle dependence of the optical path difference are arranged in a direction in which both degrees of orientation are large. It is preferable that they are superimposed so as to intersect with each other within an angular range of 90°±35°. This structure makes the laminate substantially non-birefringent with respect to perpendicularly incident light.

積層体を構成する異方性配向フィルムは光学的位相差機
能を有する板状物として挙げたフィルムと同様な原料樹
脂から同様な方法により作製されるが、最大の主屈折率
軸がその面方向にある光学的位相差機能を有する板状物
に対しては、固有複屈折値が負の樹脂のフィルムである
必要がある。
The anisotropically oriented film constituting the laminate is produced from the same raw material resin and in the same manner as the film mentioned above as the plate-like material having an optical retardation function, but the maximum principal refractive index axis is in the plane direction. For a plate-like object having an optical retardation function, it is necessary to use a resin film with a negative intrinsic birefringence value.

また最大の主屈折率軸が厚み方向にある板状物に対して
は固有複屈折値が正のものである必要がある。これに該
当しない、例えば最大の主屈折率軸が面方向にある板状
物に対して固有複屈折値が正である異方性配向フィルム
を積層体に使用した場合、入射角依存性がむしろ大きな
ものとなり本発明の効果が実現できない。
Further, for a plate-like object whose maximum principal refractive index axis is in the thickness direction, the intrinsic birefringence value needs to be positive. If this does not apply, for example, if an anisotropic oriented film with a positive intrinsic birefringence value is used in a laminate for a plate-like object whose maximum principal refractive index axis is in the in-plane direction, the incident angle dependence will be This becomes large, and the effects of the present invention cannot be realized.

積層体を構成する1対の異方性配向フィルムの光路差お
よび光路差の入射角依存性の差異は15%にする必要が
あり、特に5%以内が好ましい。
The difference in the optical path difference and the incident angle dependence of the optical path difference between the pair of anisotropically oriented films constituting the laminate must be 15%, and preferably within 5%.

これら異方性配向フィルムはその配向度の大きい方向が
90°±35°の角度範囲で互いに交差するように重ね
合わせることが望ましい。その角度が直角から35°よ
り大きい角度となると、積層体が垂直な入射光に対し複
屈折性を持つものとなる。積層体の複屈折性は、−船釣
に光路差で30nm以内にする必要があり、特に1On
Il1以内のものが好ましい。複屈折性があると、これ
より作製される光学位相差素子の光学特性すなわち光路
差および入射角依存性が(A)との重ね合わされる方向
によって異なったものとなり光学特性が一定しない。ま
た入射角依存性の軽減も不十分なものとなる。
It is desirable that these anisotropically oriented films are stacked so that their directions with a high degree of orientation intersect with each other within an angular range of 90°±35°. When the angle is greater than 35° from the right angle, the laminate becomes birefringent with respect to perpendicularly incident light. The birefringence of the laminate must be within 30 nm for optical path difference for boat fishing, especially for 1On
Those within Il1 are preferred. If there is birefringence, the optical properties, that is, the optical path difference and incidence angle dependence of the optical retardation element produced therefrom will differ depending on the direction in which it is superimposed with (A), and the optical properties will not be constant. Further, the reduction of the dependence on the incident angle becomes insufficient.

異方性配向フィルムとして、縦と横の延伸倍率の比が0
.5〜2のアンバランスニ軸延伸物を使用した場合複屈
折性の少ない良好な積層体が容易に得られ、またこれか
ら得られた光学位相差素子の入射角依存特性が優れたも
のとなり好ましい。
As an anisotropically oriented film, the ratio of vertical and horizontal stretching ratio is 0.
.. When an unbalanced biaxially stretched product of 5 to 2 is used, a good laminate with little birefringence can be easily obtained, and the optical retardation element obtained therefrom has excellent incident angle dependent characteristics, which is preferable.

本発明の光学素子とは種々の形態で実現できる。The optical element of the present invention can be realized in various forms.

以下にこのましい形態例を第1〜10図によって説明す
る。ここで(A)は光学的位相差機能を有する板状物で
あり、(B)はバランス配向フィルムまたはその積層体
である。複数の(A)または(B)により構成される場
合、これらを(A1)、(A2)・・・、(Bl)、(
B2)・・・で示した。
Preferred embodiments will be explained below with reference to FIGS. 1 to 10. Here, (A) is a plate-like material having an optical retardation function, and (B) is a balanced orientation film or a laminate thereof. When composed of multiple (A) or (B), these are (A1), (A2)..., (Bl), (
B2)... is shown.

第1図は(A)と(B)の一対からなる最も簡単な形態
であり、第2図は両側面にハードコート膜などを有する
保護フィルムまたはシー)(C)を配したものである。
Fig. 1 shows the simplest form consisting of a pair of (A) and (B), and Fig. 2 shows one in which a protective film or film (C) having a hard coat film or the like is arranged on both sides.

第3図は(B1)のほかにさらに(B2)を配した形態
であり、例えば固有複屈折値の絶対値の大きい樹脂から
のフィルムまたはその積層体である(B1)で粗く入射
角依存性を軽減し、絶対値の小さい樹脂からのフィルム
またはその積層体である(B2)でさらに微調整をした
形態である。
Figure 3 shows a configuration in which (B2) is arranged in addition to (B1). For example, (B1) is a film made of a resin with a large absolute value of the intrinsic birefringence value or a laminate thereof, and the incident angle dependence is rough. This is a form in which (B2) is further finely adjusted, which is a film made of a resin with a small absolute value or a laminate thereof.

第4図は(A)の両側面に(B1)、(B2)を配した
形態であり、例えば(A)としてポリビニルアルコール
樹脂のフィルムである場合、(B1)、(B2) トし
て耐光性および耐湿性のよいアクリル樹脂のフィルムま
たはその積層体を使用し、吸湿による変形のないものに
することができる。
Figure 4 shows a configuration in which (B1) and (B2) are placed on both sides of (A). For example, if (A) is a polyvinyl alcohol resin film, (B1) and (B2) are light resistant. By using an acrylic resin film or a laminate thereof, which has good properties and moisture resistance, it is possible to avoid deformation due to moisture absorption.

第5図および第6図は、(AI)と(A2〉を長軸が平
行になるように配置し、光学素子の光路差が両者の和に
なるようにしたものであり、これにより数種の光路差の
異なる光学的位相差機能を有する板状物を用意すること
により、これらの組合せにより種々の光路差の光学素子
が得られる。第5図は1枚の(B)で全体の入射角依存
性を改善したものであり、第6図は(AI)と(A2)
の入射角依存性を各々(Bl)、 (B2)で改善した
ものである。(At)。
In Figures 5 and 6, (AI) and (A2) are arranged so that their long axes are parallel, and the optical path difference of the optical element is the sum of the two. By preparing plate-shaped objects having optical phase difference functions with different optical path differences, optical elements with various optical path differences can be obtained by combining these. The angle dependence has been improved, and Figure 6 shows (AI) and (A2).
The incident angle dependence of is improved by (Bl) and (B2), respectively. (At).

(A2)あるいは(Bl)、 (B2)を両端にするな
ど配置順序をかえてもよい。
The arrangement order may be changed, such as placing (A2), (Bl), and (B2) at both ends.

第7図および第8図は、白黒液晶表示パネルにおいてコ
ントラスト比の改善が図られることが知られている(A
I)と(A2)の長軸を例えば30°の角度をなすよう
に配置した構成に、(B)を組合せたものであり、第7
図は1枚の(B)で全体の入射角依存性を改善したもの
であり、第8図は(AI)と(A2)の入射角依存性を
各々(Bl)、 (B2)で改善したものである。この
場合も(Al)、 (A2)あるいは(Bl)、 (B
2)を両端にするなど配置順序をかえてもよい。
Figures 7 and 8 show that it is known that the contrast ratio can be improved in monochrome liquid crystal display panels (A
This is a combination of the configuration in which the long axes of I) and (A2) are arranged at an angle of 30°, for example, and (B), and the seventh
The figure shows the overall incident angle dependence improved with one sheet (B), and Figure 8 shows the incident angle dependence of (AI) and (A2) improved with (Bl) and (B2), respectively. It is something. In this case as well, (Al), (A2) or (Bl), (B
The arrangement order may be changed, such as placing 2) at both ends.

第9図は、偏光板の保護フィルムを(B)として使用し
たものであり、全体の構成材料が少なくなる長所がある
。保護フィルムがアクリル樹脂のバランス配向フィルム
である偏光板は耐久性、耐湿性に優れている。
In FIG. 9, a protective film for a polarizing plate is used as (B), which has the advantage of reducing the total amount of constituent materials. A polarizing plate whose protective film is a balanced oriented film made of acrylic resin has excellent durability and moisture resistance.

本発明の光学素子においては(A)と(B)は、面が平
行になるように配置され、これらは離れていても、単に
重ねられていてもよいし、貼着されていてもよく、また
本発明の効果を妨げない板状物が介在してもよい。第1
〜9図に示した好適例のほかに、(A)、(B)の数を
3以上にしたり、第2図の例以外にも保護フィルム(C
)を両端あるいは片端に配したものが可能である。
In the optical element of the present invention, (A) and (B) are arranged so that their surfaces are parallel, and they may be separated, simply overlapped, or attached to each other, Further, a plate-like object may be interposed which does not impede the effects of the present invention. 1st
In addition to the preferred examples shown in Figures 9 to 9, the number of (A) and (B) may be set to 3 or more, or the protective film (C
) can be placed at both ends or at one end.

また本発明の光学素子においては、積層体の構成要素で
ある異方性フィルムが縦と横の延伸倍率が近い二輪延伸
フィルムである場合、第10図に示すように構成要素を
離した形態をとることもできる。
In addition, in the optical element of the present invention, when the anisotropic film that is a component of the laminate is a two-wheel stretched film with similar stretching ratios in the vertical and horizontal directions, a configuration in which the components are separated as shown in FIG. You can also take it.

本発明の光学素子において(A)と(B)は種々の特性
のものが使用できるが、各1対よりなる形態においては
、(B)の45″の入射角における光路差が、(A)の
面に垂直な光路差と長軸方向に45°傾けたときの光路
差との差と近い値である組合せが入射角依存性が小さく
好ましい。
In the optical element of the present invention, (A) and (B) with various characteristics can be used, but in the form of each pair, the optical path difference at an incident angle of 45'' of (B) is A combination having a value close to the difference between the optical path difference perpendicular to the plane and the optical path difference when tilted by 45 degrees in the major axis direction is preferable because the dependence on the incident angle is small.

本発明において使用される異方性配向フィルムは、例え
ば原料樹脂を押出し底形により、フィルム状に底形した
後、樹脂のガラス転移温度より10〜40℃高い温度で
一輪延伸、あるいは異方性を持つような条件で二輪延伸
することにより得られる。
The anisotropically oriented film used in the present invention can be produced by, for example, extruding a raw material resin into a bottom shape into a film shape, and then stretching it in one wheel at a temperature 10 to 40°C higher than the glass transition temperature of the resin, or by anisotropic It is obtained by two-wheel stretching under conditions such that .

バランス配向フィルムも異方性配向フィルムと同様に、
ただ延伸倍率を縦横同倍率にして二軸延伸することによ
り得られる。バランス配向フィルムとは、面に垂直な入
射光に対し実質的に複屈折性を持たないものであるが、
−船釣に光路差で30na+、好ましくは100o+以
内のものである。バランスが劣ると、(A)との重ね合
わせる方向によって光学素子の光学特性すなわち光路差
および入射角依存性が異なったものとなり光学特性が一
定のものが得られない。
Balanced oriented film is similar to anisotropic oriented film,
However, it can be obtained by biaxial stretching at the same stretching ratio in the longitudinal and lateral directions. A balanced orientation film is one that has virtually no birefringence for incident light perpendicular to its surface.
- For boat fishing, the optical path difference is within 30 na+, preferably 100 o+. If the balance is poor, the optical characteristics of the optical element, that is, the optical path difference and incidence angle dependence, will differ depending on the direction of superimposition with (A), and it will not be possible to obtain constant optical characteristics.

なお、254μ以上をシート、これ以下をフィルムと区
別した。
It should be noted that a layer of 254 μm or more was classified as a sheet, and a layer of 254 μm or more was classified as a film.

以下に、発明の説明において用いた物性値の測定方法を
示す。
Below, methods for measuring physical property values used in the description of the invention will be shown.

・光路差測定法:偏光顕微鏡(日本光学工業■製、LA
BOPHOT−POL)を使用し、常法に従い測定した
。入射角依存性は試料台の上に試料を所定の角度に傾け
て固定し測定した。
・Optical path difference measurement method: Polarizing microscope (manufactured by Nippon Kogaku Kogyo ■, LA
BOPHOT-POL) according to a conventional method. The incident angle dependence was measured by tilting the sample at a predetermined angle and fixing it on a sample stand.

・入射角依存性の評価法:光線が光学素子に対し直角に
入射した場合を基準とし、長軸および短軸方向に入射光
線を傾けたときの光路差の変化の絶対量を百分率で算出
し、両者の平均値で評価した。入射角は傾けた角度を示
す。
・Evaluation method for incident angle dependence: Calculate the absolute amount of change in optical path difference as a percentage when the incident light ray is tilted in the long axis and short axis directions, based on the case where the light ray is incident at right angles to the optical element. , evaluated by the average value of both. The angle of incidence indicates the angle of inclination.

〔実施例〕〔Example〕

本発明を実施例により具体的に説明する。 The present invention will be specifically explained with reference to Examples.

実施例1 固有複屈折値が正であるポリカーボネート樹脂(出光石
油化学■製、A−2500)の未延伸シートを180″
Cの延伸温度で2.5倍の延伸倍率で一定幅一軸延伸し
、最大の主屈折率軸が面方向にある厚みが122μの異
方性配向フィルムを得た。また固有複屈折値が負である
アクリル樹脂(■クラレ製、パラペラ)SH)の未延伸
シートから140°Cの延伸温度で縦横2.2倍の延伸
倍率で同時二軸延伸により厚みが132μで、フィルム
面に垂直の方向からは光路差が認められないバランス配
向フィルムを得た。両者を重ね合わせたものを配向のな
い光学的に等方性のアクリル樹脂のシート(■クラレ製
、パラグラス)で挟み光学素子を作製した。第1表に示
したようにこの光学素子の光路差は304n+wで入射
角依存性は45°の入射角で3%と小さいものであった
。因みにポリカーボネート樹脂の異方性配向フィルムの
みの光路差は308止であり、光路差の入射角依存性は
大きく、24%であった。
Example 1 An unstretched sheet of polycarbonate resin (manufactured by Idemitsu Petrochemical Co., Ltd., A-2500) with a positive intrinsic birefringence value was stretched to 180"
The film was uniaxially stretched to a constant width at a stretching temperature of C and a stretching ratio of 2.5 times to obtain an anisotropically oriented film having a thickness of 122 μm and having the maximum principal refractive index axis in the in-plane direction. In addition, an unstretched sheet of acrylic resin (Parapella SH manufactured by Kuraray Co., Ltd.) with a negative intrinsic birefringence value was simultaneously biaxially stretched at a stretching temperature of 140°C and a stretching ratio of 2.2 times in length and width to a thickness of 132μ. A balanced oriented film was obtained in which no optical path difference was observed from the direction perpendicular to the film surface. An optical element was produced by stacking the two layers and sandwiching them between unoriented optically isotropic acrylic resin sheets (Paraglass, manufactured by Kuraray). As shown in Table 1, the optical path difference of this optical element was 304n+w, and the dependence on the incident angle was as small as 3% at an incident angle of 45°. Incidentally, the optical path difference of only the anisotropically oriented polycarbonate resin film was only 308, and the dependence of the optical path difference on the incident angle was large, at 24%.

実施例2 固有複屈折値が負であるMS樹脂(新日鉄化学■製、エ
スチレン MS−300)の未延伸シートを130°C
の延伸温度で2.5倍の延伸倍率で一定幅一軸延伸し、
最大の主屈折率軸が厚み方向にある厚みが75μの異方
性配向フィルムを得た。
Example 2 An unstretched sheet of MS resin (Estyrene MS-300, manufactured by Nippon Steel Chemical Co., Ltd.) with a negative intrinsic birefringence value was heated at 130°C.
Uniaxially stretched to a constant width at a stretching temperature of 2.5 times and a stretching ratio of 2.5 times,
An anisotropically oriented film having a thickness of 75 μm with the largest principal refractive index axis in the thickness direction was obtained.

実施例1に使用のポリカーボネート樹脂から185°C
の延伸温度で縦横2倍の延伸倍率で同時二軸延伸により
作製した厚みが107μで、フィルム面に垂直の方向か
らは光路差が認められないバランス配向フィルムを得た
。両者を重ね合わせ実施例1と同様にして光学素子を作
製した。第1表に示したようにこの光学素子の光路差は
一149rvで入射角依存性は45°の入射角6%と小
さいものであった。因みにMS樹脂の異方性配向フィル
ムの光路差は一147nmであり、光路差の入射角依存
性は大きく、27%であった。
185°C from the polycarbonate resin used in Example 1
A balanced oriented film with a thickness of 107 μm and no optical path difference observed in the direction perpendicular to the film surface was obtained by simultaneous biaxial stretching at a stretching temperature of 2 times in the vertical and horizontal directions. An optical element was produced in the same manner as in Example 1 by overlapping the two. As shown in Table 1, the optical path difference of this optical element was -149 rv, and the dependence on the incident angle was as small as 6% at an incident angle of 45°. Incidentally, the optical path difference of the anisotropically oriented film of MS resin was -147 nm, and the dependence of the optical path difference on the incident angle was large, 27%.

比較例1 実施例1に使用のポリカーボネート樹脂の異方性配向フ
ィルムと、実施例2に使用のポリカーボネート樹脂のバ
ランス配向フィルムから、実施例1と同様にして光学素
子を作製した。光学素子の入射角依存性は異方性配向フ
ィルム単体より入射角依存性が大きく、45°の入射角
で34%と劣ったものであった。
Comparative Example 1 An optical element was produced in the same manner as in Example 1 from the anisotropically oriented film of polycarbonate resin used in Example 1 and the balanced oriented film of polycarbonate resin used in Example 2. The incident angle dependence of the optical element was greater than that of the anisotropic oriented film alone, and was poor at 34% at an incident angle of 45°.

比較例2 実施例2に使用のMS樹脂の異方性配向フィルムと、実
施例1に使用のアクリル樹脂のバランス配向フィルムか
ら、実施例1と同様にして光学素子を作製した。光学素
子の入射角依存性は異方性配向フィルム単体より入射角
依存性が大きく、45°の入射角で69%と劣ったもの
であった。
Comparative Example 2 An optical element was produced in the same manner as in Example 1 from the anisotropically oriented film of MS resin used in Example 2 and the balanced oriented film of acrylic resin used in Example 1. The incident angle dependence of the optical element was greater than that of the anisotropic oriented film alone, and was poor at 69% at an incident angle of 45°.

実施例3 実施例1に使用のアクリル樹脂から1.IX2.2の倍
率で得られた最大の主屈折率軸が厚み方向にある異方性
配向シートと、実施例1に使用のポリカーボネート樹脂
のバランス配向フィルムから、両者を貼着して光学素子
を作製した。第1表に示したようにこの光学素子の光路
差は一144nmで入射角依存性は45°の入射角で6
%と小さいものであった。因みにアクリル樹脂の異方性
配向シートの光路差は一150ni+であり、光路差の
入射角依存性は大きく、32%であった。
Example 3 1. From the acrylic resin used in Example 1. An anisotropic oriented sheet with the maximum principal refractive index axis in the thickness direction obtained at a magnification of IX2.2 and a balanced oriented film of polycarbonate resin used in Example 1 were pasted together to form an optical element. Created. As shown in Table 1, the optical path difference of this optical element is -144 nm, and the incident angle dependence is 6 at an incident angle of 45°.
It was a small percentage. Incidentally, the optical path difference of the anisotropically oriented sheet of acrylic resin was -150 ni+, and the dependence of the optical path difference on the incident angle was large, at 32%.

実施例4 光路差が153nmで入射角依存性が45°の入射角で
56%のセルロースジアセテート樹脂の異方性配向フィ
ルムと、実施例1に使用のバランス配向フィルムとの組
合せに、さらに光路差の入射角依存性の微調整用にアク
リル樹脂(■クラレ製、バラペラ)EH)から第1表に
示した条件で得られたバランス配向フィルムを貼着し光
学素子を作製した。第1表に示したようにこの光学素子
の光路差は154nn+で入射角依存性は45″の入射
角で1%と小さいものであった。因みに、セルロースジ
アセテート樹脂の異方性配向フィルムと実施例1に使用
のバランス配向フィルムから作製した光学素子の入射角
依存性は45″の入射角で13%であった。
Example 4 In addition to the combination of an anisotropically oriented film of cellulose diacetate resin with an optical path difference of 153 nm and an incident angle dependence of 56% at an incident angle of 45° and the balanced oriented film used in Example 1, the optical path For fine adjustment of the incident angle dependence of the difference, a balanced orientation film obtained from an acrylic resin (Barapera EH, manufactured by Kuraray Co., Ltd.) under the conditions shown in Table 1 was adhered to produce an optical element. As shown in Table 1, the optical path difference of this optical element was 154 nn+, and the incident angle dependence was as small as 1% at an incident angle of 45''. The incident angle dependence of the optical element prepared from the balanced orientation film used in Example 1 was 13% at an incident angle of 45''.

実施例5 光路差が403nwで入射角依存性が45°の入射角で
29%のポリビニルアルコール樹脂の異方性配向フィル
ムに第1表に示した条件で作製したアクリル樹脂(■ク
ラレ製、バラペットEH)のバランス配向シートを両面
に貼着し光学素子を作製した。これらの光学素子の入射
角依存性は第1表に示したように45°の入射角で4%
と小さいものであった。またポリビニルアルコールm脂
からなる異方性配向フィルム単体に比べ吸湿寸法安定性
に優れていた。
Example 5 An anisotropically oriented film of 29% polyvinyl alcohol resin with an optical path difference of 403 nW and an incident angle dependence of 45° was coated with an acrylic resin (■ Kuraray Co., Ltd., Bala) prepared under the conditions shown in Table 1. An optical element was produced by pasting PET EH) balanced orientation sheets on both sides. The incidence angle dependence of these optical elements is 4% at an incidence angle of 45° as shown in Table 1.
It was small. In addition, the dimensional stability upon moisture absorption was superior to that of an anisotropically oriented film made of polyvinyl alcohol (molecular weight) alone.

実施例6 ネマチック液晶をホモジニアス配向させて作られた最大
の主屈折率軸が面方向にある液晶セルの外面に第工表に
示した特性のアクリル樹脂(■クラレ製、パラペットS
H)のバランス配向フィルムを貼着し光学素子を作製し
た。第1表に示したようにこの光学素子の光路差は29
2nmで入射角依存性は45°の入射角で3%と小さい
ものであった。因みに液晶セルの光路差は297n■で
あり、光路差の入射角依存性は12%であった。
Example 6 An acrylic resin with the characteristics shown in the construction table (Kuraray, Parapet S
An optical element was produced by pasting the balanced orientation film of H). As shown in Table 1, the optical path difference of this optical element is 29
At 2 nm, the dependence on the incident angle was as small as 3% at an incident angle of 45°. Incidentally, the optical path difference of the liquid crystal cell was 297 n■, and the dependence of the optical path difference on the incident angle was 12%.

実施例7 第1表に示した特性のポリカーボネート樹脂の異方性配
向フィルムとポリスチレン樹脂(三菱モンサント■製、
ダイヤレックス ■F−77)のバランスで配向フィル
ムを、ポリスチレン樹脂のバランス配向フィルム、光路
差が308nmのポリカーボネート樹脂の異方性配向フ
ィルム、光路差が98nsのポリカーボネート樹脂の異
方性配向フィルムの順で、かつポリカーボネート樹脂の
異方性配向フィルムの双方の長袖方向が平行をなすよう
に貼着して光学素子を作製した。光学素子の光路差は3
91nmで入射角依存性は45@の入射角で5%と小さ
いものであった。
Example 7 An anisotropically oriented film of polycarbonate resin with the characteristics shown in Table 1 and polystyrene resin (manufactured by Mitsubishi Monsanto ■,
Dialex ■F-77) balanced oriented film, polystyrene resin balanced oriented film, polycarbonate resin anisotropic oriented film with an optical path difference of 308 nm, polycarbonate resin anisotropic oriented film with an optical path difference of 98 ns, in this order. Then, an optical element was produced by attaching an anisotropically oriented polycarbonate resin film such that both long sleeve directions were parallel to each other. The optical path difference of the optical element is 3
At 91 nm, the dependence on the incident angle was as small as 5% at an incident angle of 45@.

実施例日 第1表に示した特性のポリカーボネート樹脂およびセル
ロースジアセテート樹脂の異方性配向フィルムとアクリ
ル樹脂のバランス配向フィルムを、アクリル樹脂のバラ
ンス配向フィルム、光路差が308nmのポリカーボネ
ート樹脂の異方性配向フィルム、光路差が308nmの
セルロースジアセテート樹脂の異方性配向フィルム、ア
クリル樹脂のバランス配向フィルムの順で、かつポリカ
ーボネート樹脂の異方性配向フィルムとセルロースジア
セテート樹脂の異方性配向フィルムの双方の長軸方向が
平行をなすように貼着し、光学素子を作製した。光学素
子の光路差は447naで入射角依存性は45°の入射
角で6%と小さいものであった。
Example Day An anisotropically oriented film of polycarbonate resin and cellulose diacetate resin with the characteristics shown in Table 1, a balanced oriented film of acrylic resin, a balanced oriented film of acrylic resin, and an anisotropically oriented film of polycarbonate resin with an optical path difference of 308 nm. an anisotropically oriented film of cellulose diacetate resin with an optical path difference of 308 nm, a balanced oriented film of acrylic resin, and an anisotropically oriented film of polycarbonate resin and an anisotropically oriented film of cellulose diacetate resin. were adhered so that both major axes were parallel to each other, to produce an optical element. The optical path difference of the optical element was 447 na, and the dependence on the incident angle was as small as 6% at an incident angle of 45°.

実施例9 第1表に示した特性のポリカーボネート樹脂の異方性配
向フィルムとアクリル樹脂のバランス配向フィルムを、
2.2借問時二軸延伸物のアクリル樹脂のフィルム、光
路差225nmのポリカーボネート樹脂のフィルム、2
.2借問時二軸延伸物のアクリル樹脂のフィルム、光路
差が158nmのポリカーボネート樹脂のフィルムの順
で、かつポリカーボネート樹脂のフィルムの長軸方向が
互いに26°になるように貼着し、光学素子を作製した
Example 9 An anisotropically oriented film of polycarbonate resin and a balanced oriented film of acrylic resin having the characteristics shown in Table 1 were
2.2 Biaxially stretched acrylic resin film, polycarbonate resin film with optical path difference of 225 nm, 2
.. 2. A biaxially stretched acrylic resin film and a polycarbonate resin film with an optical path difference of 158 nm were attached in this order so that the long axis directions of the polycarbonate resin films were at 26° to each other, and the optical element was assembled. Created.

偏向板、光路差が800ns+、ツイスト角が光学素子
と逆ねじりで240’である液晶セル、光路差が158
ns+であるポリカーボネート樹脂のフィルムを液晶セ
ルに向けた配置で光学素子、最後に検光板をクロスニコ
ルにして組み立て液晶表示素子を作製し、液晶表示素子
の視角性をオフ状態での暗さで評価した。アクリル樹脂
のバランス配向フィルムを除いた光学素子を使用した以
外同様に作製した液晶表示素子では視角が20°で暗さ
の変化が認められたが本発明の光学素子を使用した液晶
表示素子では30°まで暗さの変化が認められず視角特
性が改善された。
Bending plate, optical path difference is 800 ns+, liquid crystal cell with twist angle of 240' when twisted opposite to the optical element, optical path difference is 158
An optical element was placed by placing a ns+ polycarbonate resin film facing the liquid crystal cell, and finally an analyzer plate was assembled with crossed nicols to create a liquid crystal display element, and the visibility of the liquid crystal display element was evaluated by the darkness in the off state. did. In a liquid crystal display element prepared in the same manner except for using an optical element without the balanced orientation film of acrylic resin, a change in darkness was observed at a viewing angle of 20°, but in a liquid crystal display element using the optical element of the present invention, a change in darkness was observed at a viewing angle of 30°. Viewing angle characteristics were improved with no change in darkness observed up to 30°.

実施例10 固有複屈折値が負であるアクリル樹脂(■クラレ製、パ
ラペットSH)の未延伸シートから140°Cの延伸温
度で縦1.8倍、横2.2倍の延伸倍率で逐次二輪延伸
により作製したフィルムを配向度の大きい方向が互いに
直交するように2枚重ねにし、垂直の方向からは光路差
が認められない積層体を作製した。
Example 10 An unstretched sheet of acrylic resin (parapet SH, manufactured by Kuraray) with a negative intrinsic birefringence value was sequentially drawn into two wheels at a stretching temperature of 140°C and a stretching ratio of 1.8 times in length and 2.2 times in width. Two films produced by stretching were stacked so that the directions with a high degree of orientation were perpendicular to each other to produce a laminate in which no optical path difference was observed from the perpendicular direction.

積層体と実施例1におけるポリカーボネート樹脂の異方
性配向フィルムを重ね合わせたものを配向のない光学的
に等方性のアクリル樹脂のシート(■クラレ製、パラグ
ラス)で挟み光学素子を作製した。第2表に示したよう
にこの光学素子の光路差は305nmで入射角依存性は
45°の入射角で2%と小さいものであった。因みにポ
リカーボネート樹脂の異方性配向フィルムのみの光路差
は308nmであり、光路差の入射角依存性は大きく、
24%であった。
An optical element was produced by superimposing the laminate and the anisotropically oriented polycarbonate resin film in Example 1 between sheets of optically isotropic acrylic resin without orientation (Paraglass, manufactured by Kuraray). As shown in Table 2, the optical path difference of this optical element was 305 nm, and the dependence on the incident angle was as small as 2% at an incident angle of 45°. Incidentally, the optical path difference of only the anisotropically oriented polycarbonate resin film is 308 nm, and the dependence of the optical path difference on the incident angle is large.
It was 24%.

実施例11 実施例1に使用のポリカーボネート樹脂から185℃の
延伸温度で縦1.8倍、横2.2倍の延伸倍率で逐次二
輪延伸により作製したフィルムを配向度の大きい方向が
互に直交するように2枚重ねにし、垂直の方向からは光
路差が認められない積層体を作製した。
Example 11 A film was produced from the polycarbonate resin used in Example 1 by sequential two-wheel stretching at a stretching temperature of 185°C and a stretching ratio of 1.8 times in length and 2.2 times in width. A laminate was produced by stacking two layers in such a manner that no optical path difference was observed from the vertical direction.

積層体と実施例2におけるMS樹脂の異方性配向フィル
ムを重ね合わせ実施例1Oと同様にして光学素子を作製
した。第2表に示したようにこの光学素子の光路差は一
145nmで入射角依存性は45°の入射角で7%と小
さいものであった。因みにMS樹脂の異方性配向フィル
ムの光路差は147nmであり、光路差の入射角依存性
は大きく、27%であった。
The laminate and the anisotropically oriented film of the MS resin in Example 2 were laminated together to produce an optical element in the same manner as in Example 1O. As shown in Table 2, the optical path difference of this optical element was -145 nm, and the dependence on the incident angle was as small as 7% at an incident angle of 45°. Incidentally, the optical path difference of the anisotropically oriented film of MS resin was 147 nm, and the dependence of the optical path difference on the incident angle was large, 27%.

比較例3 実施例1に使用のポリカーボネート樹脂の異方性配向フ
ィルムと、実施例11に使用のポリカーボネート樹脂と
の積層体から、実施例10と同様にして光学素子を作製
した。光学素子の入射角依存性は異方性配向フィルム単
体より入射角依存性は大きく、45°の入射角で33%
と劣ったものであった。
Comparative Example 3 An optical element was produced in the same manner as in Example 10 from a laminate of the anisotropically oriented polycarbonate resin film used in Example 1 and the polycarbonate resin used in Example 11. The incident angle dependence of the optical element is greater than that of the anisotropic oriented film alone, and is 33% at an incident angle of 45°.
It was inferior.

比較例4 実施例2に使用のMS樹脂の異方性配向フィルムと、実
施例10に使用のアクリル樹脂の積層体から、実施例1
1と同様にして光学素子を作製した。光学素子の入射角
依存性は異方性配向フィルム単体より入射角依存性が大
きく、45°の入射角で78%と劣ったものであった。
Comparative Example 4 From the laminate of the anisotropically oriented film of MS resin used in Example 2 and the acrylic resin used in Example 10, Example 1 was prepared.
An optical element was produced in the same manner as in Example 1. The incident angle dependence of the optical element was greater than that of the anisotropic oriented film alone, and was poor at 78% at an incident angle of 45°.

実施例12 実施例10に使用のアクリル樹脂から1.1×2.2の
倍率で得られた最大の主屈折率軸が厚み方向にある異方
性配向シートと、実施例1に使用のポリカーボネート樹
脂との積層体から、両者を貼着して光学素子を作製した
。第2表に示したようにこの光学素子の光路差は一15
2nmで入射角依存性は45°の入射角で6%と小さい
ものであった。因みにアクリル樹脂の異方性配向シート
の光路差は一150nmであり、光路差の入射角依存性
は大きく、32%であった。
Example 12 Anisotropically oriented sheet with the maximum principal refractive index axis in the thickness direction obtained from the acrylic resin used in Example 10 at a magnification of 1.1 x 2.2 and the polycarbonate used in Example 1 An optical element was produced from a laminate with a resin by pasting the two together. As shown in Table 2, the optical path difference of this optical element is -15
At 2 nm, the dependence on the incident angle was as small as 6% at an incident angle of 45°. Incidentally, the optical path difference of the anisotropically oriented sheet of acrylic resin was -150 nm, and the dependence of the optical path difference on the incident angle was large, 32%.

実施例13 光路差が153nmで入射角依存性が45°の入射角で
56%のセルロースジアセテート樹脂の異方性配向フィ
ルムと、実施例IOに使用の積層体との組合せに、さら
に光路差の入射角依存性の微調整用にアクリル樹脂(f
iクラレ製、パラペットEH)から第2表に示した条件
で得られたフィルムより実施例10と同様にして作製し
た積層体を貼着し光学素子を作製した。第2表に示した
ようにこの光学位相差素子の光路差は149nmで入射
角依存性は45°の入射角で1%と小さいものであった
。因みに、セルロースジアセテート樹脂の異方性配向フ
ィルムと実施例10に使用の積層体から作製した光学素
子の入射角依存性は45°の入射角で12%であった。
Example 13 In addition to the combination of an anisotropically oriented film of cellulose diacetate resin with an optical path difference of 153 nm and an incident angle dependence of 56% at an incident angle of 45° and the laminate used in Example IO, an optical path difference was added. Acrylic resin (f
An optical element was prepared by pasting a laminate prepared in the same manner as in Example 10 from a film obtained from Parapet EH (manufactured by Kuraray Co., Ltd.) under the conditions shown in Table 2. As shown in Table 2, the optical path difference of this optical retardation element was 149 nm, and the dependence on the incident angle was as small as 1% at an incident angle of 45°. Incidentally, the incident angle dependence of the optical element produced from the anisotropically oriented film of cellulose diacetate resin and the laminate used in Example 10 was 12% at an incident angle of 45°.

実施例14 実施例5におけるポリビニルアルコール樹脂の異方性配
向フィルムに第2表に示した条件で作製したアクリル樹
脂(■クラレ製、パラペットEH)のシートより実施例
10と同様にして作製した積層体を両面に貼着し光学素
子を作製した。これらの光学素子の入射角依存性は第2
表に示したように45″の入射角で6%と小さいもので
あった。
Example 14 A laminate was prepared in the same manner as in Example 10 from a sheet of acrylic resin (Kuraray, Parapet EH) prepared under the conditions shown in Table 2 on the anisotropically oriented film of polyvinyl alcohol resin in Example 5. An optical element was fabricated by attaching the body to both sides. The incident angle dependence of these optical elements is the second
As shown in the table, it was as small as 6% at an incident angle of 45''.

またポリビニルアルコール樹脂からなる異方性配向フィ
ルム単体に比べ耐湿寸法安定性に優れていた。
Furthermore, it had superior moisture resistance and dimensional stability compared to a single anisotropic oriented film made of polyvinyl alcohol resin.

実施例15 実施例6における液晶セルの外面に第2表に示した特性
のアクリル樹脂(■クラレ製、パラペットSH)の積層
体を貼着し光学素子を作製した。
Example 15 A laminate of an acrylic resin (Parapet SH, manufactured by Kuraray Co., Ltd.) having the characteristics shown in Table 2 was adhered to the outer surface of the liquid crystal cell in Example 6 to produce an optical element.

第2表に示したようにこの光学素子の光路差は294n
mで入射角依存性は45°の入射角で2%と小さいもの
であった。因みに液晶セルの光路差は297旧であり、
光路差の入射角依存性は12%であった。
As shown in Table 2, the optical path difference of this optical element is 294n
m, the incident angle dependence was as small as 2% at an incident angle of 45°. By the way, the optical path difference of the liquid crystal cell is 297 years old.
The dependence of the optical path difference on the incident angle was 12%.

実施例16 実施例7において、ポリスチレン樹脂の異方性配向フィ
ルムの代わりにポリスチレン樹脂(三菱モンサント■製
、ダイヤレックス HF  77)の積層体を用いる以
外は実施例7と同様にして光学素子を作製した。光学素
子の光路差は397nmで入射角依存性は45°の入射
角で3%と小さいものであった。
Example 16 An optical element was produced in the same manner as in Example 7, except that a laminate of polystyrene resin (Dialex HF 77, manufactured by Mitsubishi Monsanto ■) was used instead of the anisotropically oriented film of polystyrene resin. did. The optical path difference of the optical element was 397 nm, and the dependence on the incident angle was as small as 3% at an incident angle of 45°.

実施例17 実施例8においてアクリル樹脂のバランス配向フィルム
の代わりにアクリル樹脂の積層体を用いる以外は実施例
8と同様にして光学素子を作製した。光学素子の光路差
は447nmで入射角依存性は45°の入射角で5%と
小さいものであった。
Example 17 An optical element was produced in the same manner as in Example 8 except that an acrylic resin laminate was used instead of the acrylic resin balanced orientation film. The optical path difference of the optical element was 447 nm, and the dependence on the incident angle was as small as 5% at an incident angle of 45°.

実施例18 第2表に示した特性のポリカーボネート樹脂の異方性配
向フィルムとアクリル樹脂の積層体を、縦1.8倍、横
2.2倍の延伸物からなるアクリル樹脂の積層体、光路
差225nmのポリカーボネート樹脂のフィルム、縦1
.7倍、横2倍の延伸物からなるアクリル樹脂の積層体
、光路差が158nmのポリカーボネート樹脂のフィル
ムの順で、かつポリカーボネート樹脂のフィルムの順で
、かつポリカーボネートの樹脂のフィルムの長軸方向が
互に26°になるように貼着し、光学素子を作製した。
Example 18 An acrylic resin laminate consisting of a laminate of an anisotropically oriented polycarbonate resin film with the characteristics shown in Table 2 and an acrylic resin stretched 1.8 times in length and 2.2 times in width, an optical path Polycarbonate resin film with a difference of 225 nm, length 1
.. An acrylic resin laminate consisting of a stretched product of 7 times and 2 times the width, a polycarbonate resin film with an optical path difference of 158 nm, and a polycarbonate resin film in this order, and the major axis direction of the polycarbonate resin film is They were attached at an angle of 26° to each other to produce an optical element.

偏向板、光路差が800nm、ツイスト角が光学素子と
逆ねじりで240°である液晶セル、光路差が158n
mであるポリカーボネート樹脂のフィルムを液晶セルに
向けた配置で光学素子、最後に検光板をクロスニコルに
して組み立て液晶表示素子を作製し、液晶表示素子の視
角性をオフ状態での暗さで評価した。アクリル樹脂の積
層体配向フィルムを除いた光学素子を使用した以外同様
に作製した液晶表示素子では視角が20°で暗さの変化
が認められたが本発明の光学位相差素子を使用した液晶
表示素子では30″まで暗さの変化が認め〔発明の効果
〕 本発明の光学素子により従来不可能であった光路差の入
射角依存性が小さい複屈折特性を持った光学素子が可能
となった。本発明物は、例えば白黒液晶デスプレイの位
相差補償用光学素子として好適に使用される。
Polarizing plate, optical path difference is 800 nm, liquid crystal cell with twist angle of 240 degrees when twisted opposite to the optical element, optical path difference is 158 nm
A polycarbonate resin film is placed facing the liquid crystal cell to form an optical element, and finally an analyzer plate is assembled in a crossed nicol configuration to produce a liquid crystal display element, and the visibility of the liquid crystal display element is evaluated by the darkness in the off state. did. In a liquid crystal display element manufactured in the same manner except for using an optical element without the acrylic resin laminate alignment film, a change in darkness was observed at a viewing angle of 20°, but a liquid crystal display using the optical retardation element of the present invention Changes in darkness were observed up to 30" in the element. [Effects of the Invention] The optical element of the present invention has made it possible to create an optical element with birefringence characteristics in which the dependence of the optical path difference on the angle of incidence is small, which was previously impossible. The product of the present invention is suitably used, for example, as an optical element for compensating a phase difference in a black-and-white liquid crystal display.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜10図は、本発明の光学素子の好ましい形態を示
したものである。
1 to 10 show preferred embodiments of the optical element of the present invention.

Claims (9)

【特許請求の範囲】[Claims] (1)(A)最大の主屈折率軸がその面方向にある光学
的位相差機能を有する板状物と、(B)固有複屈折値が
負であるフィルムまたはシートから、 構成されることを特徴とする光学素子。
(1) Consisting of (A) a plate-like material having an optical retardation function whose largest principal refractive index axis is in the direction of its surface, and (B) a film or sheet with a negative intrinsic birefringence value. An optical element characterized by:
(2)(A)最大の主屈折率軸がその厚み方向にある化
学的位相差機能を有する板状物と、 (B)固有複屈折値が正であるフィルムまたはシートと
から、 構成されることを特徴とする光学素子。
(2) Consisting of (A) a plate-like material with a chemical retardation function whose largest principal refractive index axis is in the thickness direction, and (B) a film or sheet with a positive intrinsic birefringence value. An optical element characterized by:
(3)(A)の板状物が一軸延伸物またはアンバランス
二軸延伸物である異方性配向フィルムまたはシートであ
る請求項1〜2に記載の光学素子。
(3) The optical element according to any one of claims 1 to 2, wherein the plate-like material of (A) is an anisotropically oriented film or sheet that is a uniaxially stretched product or an unbalanced biaxially stretched product.
(4)(B)のフィルムまたはシートがバランス配向延
伸物である、請求項1〜3に記載の光学素子。
(4) The optical element according to any one of claims 1 to 3, wherein the film or sheet (B) is a balanced orientation stretched product.
(5)(B)が、固有複屈折値が負である異方性配向フ
ィルムまたはシートの積層体である、請求項1、3、4
に記載の光学素子。
(5) Claims 1, 3, and 4, wherein (B) is a laminate of anisotropically oriented films or sheets having a negative intrinsic birefringence value.
The optical element described in .
(6)(B)が、固有複屈折値が正である異方性配向フ
ィルムまたはシート積層体である、請求項2、3、4記
載の光学素子。
(6) The optical element according to claim 2, wherein (B) is an anisotropic oriented film or sheet laminate having a positive intrinsic birefringence value.
(7)積層体が光路差および光路差の入射角依存性が実
質的に等しい一対のフィルムまたはシートからなり、こ
れらはその配向度の大きい方向が90°±35°の角度
範囲で互いに交差するように重ね合わされたものである
、請求項5、6記載の光学素子。
(7) The laminate consists of a pair of films or sheets in which the optical path difference and the dependence of the optical path difference on the incident angle are substantially equal, and the directions of the greater degree of orientation intersect with each other within an angular range of 90° ± 35°. 7. The optical element according to claim 5, wherein the optical element is superimposed as shown in FIG.
(8)異方性配向フィルムまたはシートがアンバランス
二軸延伸物である、請求項5〜7記載の光学素子。
(8) The optical element according to any one of claims 5 to 7, wherein the anisotropically oriented film or sheet is an unbalanced biaxially stretched product.
(9)(A)の板状物がその面内に配向されたネマチッ
ク液晶を有する液晶セルである請求項1、2記載の光学
素子。
(9) The optical element according to claim 1 or 2, wherein the plate-like object (A) is a liquid crystal cell having nematic liquid crystals aligned in its plane.
JP24299590A 1989-09-13 1990-09-12 Optical element Expired - Fee Related JP3249982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24299590A JP3249982B2 (en) 1989-09-13 1990-09-12 Optical element

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1-237725 1989-09-13
JP1-237726 1989-09-13
JP23772689 1989-09-13
JP23772589 1989-09-13
JP24299590A JP3249982B2 (en) 1989-09-13 1990-09-12 Optical element

Publications (2)

Publication Number Publication Date
JPH03233406A true JPH03233406A (en) 1991-10-17
JP3249982B2 JP3249982B2 (en) 2002-01-28

Family

ID=27332500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24299590A Expired - Fee Related JP3249982B2 (en) 1989-09-13 1990-09-12 Optical element

Country Status (1)

Country Link
JP (1) JP3249982B2 (en)

Also Published As

Publication number Publication date
JP3249982B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
CN1216303C (en) Wide-angle polarizer and liquid crystal display device
US7075604B2 (en) Optical film and display system
US7042540B2 (en) Optical film and display system
JP3526830B2 (en) Wide viewing angle polarizing plate and liquid crystal display device
JP2818983B2 (en) Method for producing birefringent film
US7388636B2 (en) Optical film and liquid crystal display
KR100313049B1 (en) Birefringence film, manufacturing method thereof, retardation film, elliptical polarizer and liquid crystal display
US6829026B2 (en) Laminated phase retarder having a cholesteric liquid crystal layer, polarizing member and liquid crystal display device
US7466382B2 (en) Optical film and image display
JP2001091745A (en) Composite phase difference plate, optical compensation polarizing plate and liquid crystal display device
KR20030007220A (en) Optical film, polarizer and display device
JPH0324502A (en) Phase difference plate
US7466381B2 (en) Optical film and image viewing display
JP2001337222A (en) Optical retardation plate
JPH09325216A (en) Wide viewing angle polarizer plate
JP2003015134A (en) Liquid crystal display device
JP2001272538A (en) Phase difference plate, optical compensating polarizing plate and liquid crystal display device
JP3203490B2 (en) Phase difference plate and liquid crystal display
JPH10142423A (en) Polarizing plate with wide visual field
JPH03233406A (en) Optical device
JPH0442202A (en) Laminate phase difference plate, elliptical polarizing plate, liquid crystal panel, and display device
JPH03103822A (en) Liquid crystal display device
JPH03109508A (en) Optical phase difference element
JPH04311902A (en) Phase difference plate and liquid crystal display
JPH1048420A (en) Wide visual field angle polarizing plate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees