JPH0324502A - Phase difference plate - Google Patents

Phase difference plate

Info

Publication number
JPH0324502A
JPH0324502A JP1159980A JP15998089A JPH0324502A JP H0324502 A JPH0324502 A JP H0324502A JP 1159980 A JP1159980 A JP 1159980A JP 15998089 A JP15998089 A JP 15998089A JP H0324502 A JPH0324502 A JP H0324502A
Authority
JP
Japan
Prior art keywords
optical path
phase difference
path difference
difference plate
retardation plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1159980A
Other languages
Japanese (ja)
Other versions
JP2809712B2 (en
Inventor
Osamu Yoshimura
修 吉村
Kazuhiko Hazama
和彦 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP1159980A priority Critical patent/JP2809712B2/en
Publication of JPH0324502A publication Critical patent/JPH0324502A/en
Application granted granted Critical
Publication of JP2809712B2 publication Critical patent/JP2809712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To reduce the angle dependency of an optical path difference by setting the main refractive index n3 of the phase difference plate in the thickness direction between the main refracting indexes n1 and n2 in direction parallel to the surfaces of the phase difference plate. CONSTITUTION:The phase difference plate is formed by placing an anisotropic sheet or film made of resin whose characteristic birefringent value is positive and an anisotropic film or sheet made of resin whose characteristic birefringent value is negative one over the other so that the directions wherein the degrees of orientation are large are substantially at right angles to each other. Then n1 < n3 < n2, where n1 and n2 are the main refractive indexes in the direction parallel to the surfaces of the phase difference plate and n3 is the main refrac tive index in the thickness direction. The angle dependency of the phase differ ence plate satisfying the relation n1<n3<n2 is improved remarkably and, spe cially, when n1-n3 = n3-n2, the incidence angle dependency of the optical path difference is specially small.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は透明性に優れた位相差板に関し、特に入射角依
存性の小さい位相差板に関する。 [従来の技術] 位相差板は、最近の光学技術の発展に伴いその重要性を
増している。例えば液晶固有の複屈折にともなう着色を
複屈折を補償する事により無色化した白黒液晶デスブレ
イにおいて補償用位相差板として用途が期待されている
.そのような位相差板として従来ポリカーボネートの異
方性フィルムまたはシートが使用されていた.しかしな
がら、ボリカーボネートの異方性フィルムまたはシート
においては、光の入射角によって光路差が大きく変化し
斜から見た場合補償が適正に行なわれなくなり着色する
ため視野角範囲が狭くなる欠点があった。
[Industrial Field of Application] The present invention relates to a retardation plate with excellent transparency, and particularly to a retardation plate with low incidence angle dependence. [Prior Art] Retardation plates have become increasingly important with the recent development of optical technology. For example, it is expected to be used as a compensating retardation plate in black and white liquid crystal displays that have been made colorless by compensating for the birefringence inherent in liquid crystals. Conventionally, anisotropic polycarbonate films or sheets have been used as such retardation plates. However, polycarbonate anisotropic films or sheets have the disadvantage that the optical path difference changes greatly depending on the incident angle of light, and when viewed from an angle, compensation is not performed properly and the viewing angle range becomes narrow. .

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明の目的は上記従来技術の問題点の解決にあり、す
なわち光路差の角度依存性の少ない位相差板の開発であ
る。 【課題を解決するための手段〕 本発明の目的は、位相差板の面に平行な主屈折率をnl
,n2、厚み方向の主屈折率をn3と表した場合、n3
がn1とn2の間の値である位相差板により達成される
. 第1図は厚みが200μ、位相差板面に垂直な方向の光
路差が600nm(nl−n2=0.003)の位相差
板を例として、n3とn1およびn2の浦の大小と光路
差の角度依存性の関係を示したものである。樹脂の平均
屈折率は1.586である。 ここで角度依存性は、光線が位相差板に対し直角に入射
した場合に対する、n2方向に入射光線を45@傾けた
ときの光路差の変化の絶対量を百分率で示した。この方
向と01方向に入射光線を傾けたとき、最も光路差の変
化が大きくなり、前者においては高光路差側に、徨者に
おいては低光路差側にほぼ同量変化する。 ポリカーボネートの異方性配向フィルムで代表される従
来の樹脂製位相差板では一軸延沖物および二軸延仲物と
も、固有複屈@値が正の場合、n1,n2≧03、負の
場合nl,n2≦n3となり、n3がn1と02の間の
値となるものはなかった。第1図には固有捏屈FT値が
正の場合を示したが、このようなものでは角度依存性の
優れたものは得られない。一方本発明のn3がn1とn
2の間の値である位相差板においては角度依存性が著し
く改善されることがわかる.特にnl−n3=n3−n
2の条件を満足させたものは光路差の入射角依存性が特
に小さく、液晶デスプレイに好適な位相差板となる。 本発明の位相差板は、具体的には例えば固有複屈折値が
正の樹脂からなる異方性フィルムまたはシートと負の樹
脂からなる異方性フィルムまたはシートが、配向度の大
きい方向が実質的に直角になるように重ね合わされたも
ので実現される。 この場合、固有複屈折値が正の材料としてはポリカーボ
ネート樹脂、セルロースジアセテート樹脂、ボリフェニ
レンオキサイド樹脂、ポリエチレンテレフタレートなど
のポリエステル樹脂、負の材料としてはポリ(メタ)ア
クリル酸エステル樹脂、ポリスチレンなどの不飽和芳香
族化合物の樹脂等の透明なホモボリマー、コボリマーあ
るいはこれらを主威分とするブレンド物、ボリマーアロ
イの位相差板が使用できる。特に、透明性に優れたボリ
カーボネート樹脂、セルロースジアセテート樹脂、メタ
クリル酸エステルを主成分とするアクリル樹脂、スチレ
ンを主成分とするスチレン系樹脂が好ましい. 異方性配向フィルムまたはシートは、例えば上記原料樹
脂を押出し成形により、フィルムあるいはシート状に成
形した後、樹脂のガラス転移温度より10〜40℃高い
温度で一軸延伸、あるいは異方性を持つような条件で二
軸延伸することにより得られる。 また重ね合わせにおいて直角方向からのずれは35°以
内にすることが好ましい. 本発明の位相差板の厚みは本質的に制限されるものでな
いが、取扱性から25μ〜5snが好ましい。 本発明の位相差板に片面または両面に保護層を積層して
もよい。 以下に、発明の説明において用いた物性値の測定方法お
よび光路差の角度依存性の評価法を示す.・光路差測定
法:偏光顕微鏡(日本光学工業(株)製、LABOPH
OT−POL)を使用し、常法に従い測定した。角度依
存性は試料台の上に試料を所定の角度に傾けて固定し瀾
定した。 ・主屈折率:R.S.Steinの方法(Journa
l of Polymer Science 24.3
83−386(1957))により求めた主屈折率間の
差と、樹脂の平均屈折率より計算した.尚、位相差板面
に平行な主屈折率は大きい方をnl,小さい方をn2と
表した。多層位相差板においては固有複屈折値が正の異
方性シートのそれと合せた。 ・角度依存性の評価:光線が位相差板に対し直角に入射
した場合を基準とし、n1方向およびn2方向に入射光
線を傾けたときの光路差の変化の絶対量を百分率で算出
し、両者の平均値で評価した。入射角は傾けた角度を示
す。 1実施例] 本発明を実施例により具体的に説明する。 実施例1 ポリカーボネート樹脂(出光石油化学(株)製、A−2
500)から180℃の延伸温度で2.2倍の延伸倍率
で一定幅一軸延伸を行ない作製した厚みが100μの異
方性フィルムとボリスチレン樹脂(三菱モンサント(株
)製、ダイヤレツクスHF−77)から120℃の延伸
温度で2.2倍の延伸倍率で一定幅一軸延伸を行ない作
製した厚みが101μの異方性フィルムを、延伸方向が
直角になるように重ね合わせ位相差板を作製した。 これの主屈折率は、n1が1 .5 8 9 8、n2
が1.5883、n3が1.5890とn3がn1とn
2の間の大きさであり、ほぼn2−n3=n3−nlの
条件を満足するものであった。これは入射角が45°で
も光路差は5%も変化せず、角度依存性が小さいもので
あった。 実施例2〜5 一軸延伸または二輪延伸により作製したボリカーボネー
ト樹脂の異方性フィルムとボリスチレン樹脂の異方性フ
ィルムを配向度の大きい方向が直角になるように重ね合
わせn3がn1とn2の間の大きさにある位相差板を作
製した. これらは第1表に示すように光路差の角度依存性が小さ
く、入射角が45°でも光路差の変化量は10%以下で
あった● 比較例1〜3 実施例1に使用したボリカーボネート樹脂から一軸延伸
または二輪延伸により異方性フィルムまたはシートを作
製した.これらは第1表に示すようにn3がnlとn2
の間になく、光路差の角度依存性が太き〈、45°の入
射角において光路差の変化量が10%以下のものは得ら
れなかった.比較例4〜5 実施例1に使用したポリスチレン樹脂から一軸l!沖ま
たは二軸延伸により異方性フィルムを作製した。これら
は第1表に示すようにn3が01と02の間になく、光
路差の角度依存性が大きかった。 実施例6〜8 実施例1〜5と同様にして作製した、ポリカーボネート
樹脂とアクリル樹脂(協和ガス化学工業(株)製、パラ
ペットSH)の異方性フィルムを配向度の大きい方向が
直角になるように重ね合わせn3がnlとn2の間の大
きさにある位相差板を作製した。 これらは第1表に示すように実施例1〜5の場合と同様
に光路差の角度依存性が小さく、特にほぼn2−n3=
n3−nlの条件を満足するものは、入射角が45°で
も光路差は5%も変化せず、角度依存性が小さいもので
あった, [発明の効果] 位相差板の面に平行な主屈折率をnl,n2、厚み方向
の主屈折率を03と表した場合、n3がn1とn2の間
の債である位相差板により従来不可能であった光路差の
角度依存性の少ない位相差板が可能となった。これは、
例えば白黒液晶デスブレイの補償用位相差板として好適
に使用される。
An object of the present invention is to solve the problems of the prior art described above, namely, to develop a retardation plate with less angular dependence of optical path difference. [Means for Solving the Problems] An object of the present invention is to change the principal refractive index parallel to the plane of the retardation plate to nl.
, n2, and when the principal refractive index in the thickness direction is expressed as n3, n3
is achieved by a retardation plate with a value between n1 and n2. Figure 1 shows, as an example, a retardation plate with a thickness of 200μ and an optical path difference of 600 nm (nl-n2=0.003) in the direction perpendicular to the retardation plate surface, and the size and optical path difference of n3, n1, and n2. This shows the angle dependence of . The average refractive index of the resin is 1.586. Here, the angular dependence is the absolute amount of change in the optical path difference when the incident light beam is tilted by 45@ in the n2 direction compared to the case where the light beam is incident on the retardation plate at right angles, expressed as a percentage. When the incident light beam is tilted in this direction and the 01 direction, the change in the optical path difference becomes the largest, and in the former case, the optical path difference changes by almost the same amount to the high optical path difference side, and in the case of the wanderer, it changes by almost the same amount to the low optical path difference side. In conventional resin retardation plates represented by anisotropically oriented polycarbonate films, for both uniaxially rolled and biaxially rolled materials, the intrinsic birefringence@value is positive, n1, n2≧03, and negative. nl, n2≦n3, and there was no case where n3 had a value between n1 and 02. Although FIG. 1 shows a case where the characteristic torsion FT value is positive, it is not possible to obtain excellent angle dependence with such a device. On the other hand, n3 of the present invention is n1 and n
It can be seen that for retardation plates with values between 2 and 2, the angle dependence is significantly improved. Especially nl-n3=n3-n
When the second condition is satisfied, the dependence of the optical path difference on the angle of incidence is particularly small, making the retardation plate suitable for liquid crystal displays. Specifically, in the retardation plate of the present invention, for example, an anisotropic film or sheet made of a resin with a positive intrinsic birefringence value and an anisotropic film or sheet made of a resin with a negative intrinsic birefringence value are arranged such that the direction of high orientation is substantially It is realized by superimposing objects at right angles to each other. In this case, materials with positive intrinsic birefringence values include polyester resins such as polycarbonate resins, cellulose diacetate resins, polyphenylene oxide resins, and polyethylene terephthalate, and materials with negative intrinsic birefringence values include poly(meth)acrylate resins and polystyrene. A retardation plate made of a transparent homopolymer or cobolimer such as a resin of an unsaturated aromatic compound, or a blend or polymer alloy containing these as the main component can be used. Particularly preferred are polycarbonate resins with excellent transparency, cellulose diacetate resins, acrylic resins containing methacrylic acid ester as a main component, and styrene resins containing styrene as a main component. Anisotropically oriented films or sheets are produced by, for example, forming the above-mentioned raw material resin into a film or sheet by extrusion molding, and then uniaxially stretching it at a temperature 10 to 40°C higher than the glass transition temperature of the resin, or by forming it into a film or sheet so as to have anisotropy. It is obtained by biaxial stretching under the following conditions. In addition, it is preferable that the deviation from the perpendicular direction be within 35° during overlapping. Although the thickness of the retardation plate of the present invention is not essentially limited, it is preferably 25μ to 5sn from the viewpoint of ease of handling. A protective layer may be laminated on one or both sides of the retardation plate of the present invention. The method for measuring physical property values and the method for evaluating the angular dependence of optical path difference used in the description of the invention are shown below.・Optical path difference measurement method: Polarizing microscope (manufactured by Nippon Kogaku Kogyo Co., Ltd., LABOPH)
OT-POL) according to a conventional method. The angle dependence was determined by fixing the sample on a sample stand at a predetermined angle.・Principal refractive index: R. S. Stein's method (Journa
l of Polymer Science 24.3
83-386 (1957)) and the average refractive index of the resin. In addition, the larger principal refractive index parallel to the phase difference plate surface is expressed as nl, and the smaller one is expressed as n2. In the multilayer retardation plate, the intrinsic birefringence value was matched to that of the positive anisotropic sheet.・Evaluation of angle dependence: Based on the case where the light beam is incident on the retardation plate at right angles, the absolute amount of change in the optical path difference when the incident light beam is tilted in the n1 direction and the n2 direction is calculated as a percentage, and both Evaluation was made using the average value. The angle of incidence indicates the angle of inclination. 1 Example] The present invention will be specifically explained with reference to Examples. Example 1 Polycarbonate resin (manufactured by Idemitsu Petrochemical Co., Ltd., A-2
500) and a polystyrene resin (manufactured by Mitsubishi Monsanto Co., Ltd., Dialex HF-77) and an anisotropic film with a thickness of 100 μ produced by uniaxial stretching at a constant width of 2.2 times at a stretching temperature of 180 ° C. An anisotropic film with a thickness of 101 μm, which was produced by uniaxially stretching a constant width at a stretching temperature of 120° C. and a stretching ratio of 2.2 times, was stacked so that the stretching direction was perpendicular to produce a retardation plate. The principal refractive index of this is that n1 is 1. 5 8 9 8, n2
is 1.5883, n3 is 1.5890 and n3 is n1 and n
The size was between 2 and approximately satisfied the condition n2-n3=n3-nl. Even when the incident angle was 45°, the optical path difference did not change by more than 5%, and the angle dependence was small. Examples 2 to 5 An anisotropic film of polycarbonate resin and an anisotropic film of polystyrene resin produced by uniaxial stretching or two-wheel stretching are superimposed so that the direction with the highest degree of orientation is at right angles, and n3 is between n1 and n2. A retardation plate with the size of was fabricated. As shown in Table 1, these had small angular dependence of the optical path difference, and even at an incident angle of 45°, the amount of change in the optical path difference was 10% or less ● Comparative Examples 1 to 3 Polycarbonate used in Example 1 Anisotropic films or sheets were produced from resin by uniaxial stretching or two-wheel stretching. As shown in Table 1, n3 is nl and n2
However, the angle dependence of the optical path difference is large (we could not obtain a change in the optical path difference of less than 10% at an incident angle of 45°). Comparative Examples 4-5 Uniaxial l! from the polystyrene resin used in Example 1! Anisotropic films were prepared by horizontal or biaxial stretching. As shown in Table 1, these had n3 not between 01 and 02, and the angle dependence of the optical path difference was large. Examples 6 to 8 Anisotropic films of polycarbonate resin and acrylic resin (Parapet SH, manufactured by Kyowa Gas Chemical Industry Co., Ltd.) prepared in the same manner as in Examples 1 to 5 were prepared so that the direction with the highest degree of orientation was at right angles. A retardation plate in which the overlap n3 has a size between nl and n2 was manufactured as shown in FIG. As shown in Table 1, the angle dependence of the optical path difference is small as in Examples 1 to 5, and in particular, approximately n2-n3=
In the case of satisfying the n3-nl condition, the optical path difference did not change by even 5% even when the incident angle was 45°, and the angle dependence was small. [Effect of the invention] When the principal refractive index is expressed as nl, n2, and the principal refractive index in the thickness direction is expressed as 03, the angle dependence of the optical path difference, which was previously impossible, is reduced due to the retardation plate where n3 is a bond between n1 and n2. A retardation plate became possible. this is,
For example, it is suitably used as a compensating retardation plate for a black and white liquid crystal display.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の位相差板と従来の位相差板の光路差
の角度依存性を示したものである。
FIG. 1 shows the angular dependence of the optical path difference between the retardation plate of the present invention and a conventional retardation plate.

Claims (1)

【特許請求の範囲】[Claims] (1)位相差板の面に平行な主屈折率をn1、n2、厚
み方向の主屈折率をn3と表した場合、n3がn1とn
2の間の値である位相差板。
(1) When the principal refractive index parallel to the plane of the retardation plate is expressed as n1, n2, and the principal refractive index in the thickness direction is expressed as n3, n3 is n1 and n
Retardation plate with a value between 2.
JP1159980A 1989-06-22 1989-06-22 Phase difference plate Expired - Fee Related JP2809712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159980A JP2809712B2 (en) 1989-06-22 1989-06-22 Phase difference plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159980A JP2809712B2 (en) 1989-06-22 1989-06-22 Phase difference plate

Publications (2)

Publication Number Publication Date
JPH0324502A true JPH0324502A (en) 1991-02-01
JP2809712B2 JP2809712B2 (en) 1998-10-15

Family

ID=15705375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159980A Expired - Fee Related JP2809712B2 (en) 1989-06-22 1989-06-22 Phase difference plate

Country Status (1)

Country Link
JP (1) JP2809712B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157911A (en) * 1990-10-24 1993-06-25 Nitto Denko Corp Birefringent film and its manufacture, phase difference plate, elliptic polarizing plate and liquid crystal display device
JPH06174918A (en) * 1992-12-02 1994-06-24 Fuji Photo Film Co Ltd Liquid crystal display device
WO1999066391A1 (en) * 1998-06-18 1999-12-23 Kaneka Corporation Transparent touch panel and liquid crystal display with transparent touch panel
JP2002156525A (en) * 2000-11-21 2002-05-31 Fuji Photo Film Co Ltd Optical retardation plate and method for manufacturing the same
US7052747B2 (en) 2002-12-19 2006-05-30 Nitto Denko Corporation Birefringent optical film, elliptically polarizing plate using the same, and liquid crystal display using the same
US7054049B2 (en) 2002-01-23 2006-05-30 Nitto Denko Corporation Optical film, laminated polarizing plate, liquid crystal display using the same, and self-light-emitting display using the same
JP2006139105A (en) * 2004-11-12 2006-06-01 Nitto Denko Corp Optical film and liquid crystal display device
US7123328B2 (en) 2002-04-18 2006-10-17 Nitto Denko Corporation Polarization plate having optical compensation function and liquid crystal display device using the same
US7128952B2 (en) 2002-05-24 2006-10-31 Nitto Denko Corporation Optical film
US7153547B2 (en) 2002-12-19 2006-12-26 Nitto Denko Corporation Birefringent optical film, elliptically polarizing plate using the same, and liquid crystal display using the same
US7223452B2 (en) 2003-05-02 2007-05-29 Nitto Denko Corporation Optical film, method for producing the same, and image display device using the same
US7428029B2 (en) 2002-07-30 2008-09-23 Nitto Denko Corporation Optical film and its manufacturing method
US7535531B2 (en) 2003-08-01 2009-05-19 Nitto Denko Corporation Birefringent optical film, laminated polarizing plate, liquid crystal display and image
EP2090420A2 (en) 2008-02-14 2009-08-19 Zeon Corporation Method for producing retardation film
EP2090908A1 (en) 2008-02-14 2009-08-19 Zeon Corporation Method for producing retardation film
US7586571B2 (en) 2003-09-01 2009-09-08 Nitto Denko Corporation Composite double refraction member
EP2103969A1 (en) 2008-03-18 2009-09-23 Zeon Corporation Retardation film
JP2012098471A (en) * 2010-11-01 2012-05-24 Kogaku Giken:Kk Phaser
US8203676B2 (en) 2007-06-01 2012-06-19 Teijin Limited Retardation film, laminated polarizing film, and liquid crystal display device
US8263684B2 (en) 2004-05-26 2012-09-11 Nippon Paint Co., Ltd. Coating composition, coating film, and method of reducing underwater friction
US8497959B2 (en) 2008-09-29 2013-07-30 Zeon Corporation Optical film and liquid crystal display
KR101582421B1 (en) * 2014-09-29 2016-01-20 주식회사 유니테크 시스템 Apparatus for swiveling chairs
JPWO2016017748A1 (en) * 2014-07-31 2017-05-18 三菱瓦斯化学株式会社 Optical film, laminated optical film including the same, and method for producing optical film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8111459B2 (en) 2006-02-28 2012-02-07 Teijin Limited Laminated polarizing film, phase retardation film, and liquid crystal display device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157911A (en) * 1990-10-24 1993-06-25 Nitto Denko Corp Birefringent film and its manufacture, phase difference plate, elliptic polarizing plate and liquid crystal display device
JPH06174918A (en) * 1992-12-02 1994-06-24 Fuji Photo Film Co Ltd Liquid crystal display device
WO1999066391A1 (en) * 1998-06-18 1999-12-23 Kaneka Corporation Transparent touch panel and liquid crystal display with transparent touch panel
US6411344B2 (en) * 1998-06-18 2002-06-25 Kaneka Corporation Transparent touch panel and liquid crystal display device equipped with transparent touch panel
JP2002156525A (en) * 2000-11-21 2002-05-31 Fuji Photo Film Co Ltd Optical retardation plate and method for manufacturing the same
US7054049B2 (en) 2002-01-23 2006-05-30 Nitto Denko Corporation Optical film, laminated polarizing plate, liquid crystal display using the same, and self-light-emitting display using the same
US7123328B2 (en) 2002-04-18 2006-10-17 Nitto Denko Corporation Polarization plate having optical compensation function and liquid crystal display device using the same
US7128952B2 (en) 2002-05-24 2006-10-31 Nitto Denko Corporation Optical film
US7428029B2 (en) 2002-07-30 2008-09-23 Nitto Denko Corporation Optical film and its manufacturing method
US7153547B2 (en) 2002-12-19 2006-12-26 Nitto Denko Corporation Birefringent optical film, elliptically polarizing plate using the same, and liquid crystal display using the same
US7052747B2 (en) 2002-12-19 2006-05-30 Nitto Denko Corporation Birefringent optical film, elliptically polarizing plate using the same, and liquid crystal display using the same
US7223452B2 (en) 2003-05-02 2007-05-29 Nitto Denko Corporation Optical film, method for producing the same, and image display device using the same
US7535531B2 (en) 2003-08-01 2009-05-19 Nitto Denko Corporation Birefringent optical film, laminated polarizing plate, liquid crystal display and image
US7586571B2 (en) 2003-09-01 2009-09-08 Nitto Denko Corporation Composite double refraction member
US8263684B2 (en) 2004-05-26 2012-09-11 Nippon Paint Co., Ltd. Coating composition, coating film, and method of reducing underwater friction
JP2006139105A (en) * 2004-11-12 2006-06-01 Nitto Denko Corp Optical film and liquid crystal display device
US8203676B2 (en) 2007-06-01 2012-06-19 Teijin Limited Retardation film, laminated polarizing film, and liquid crystal display device
EP2090420A2 (en) 2008-02-14 2009-08-19 Zeon Corporation Method for producing retardation film
EP2090908A1 (en) 2008-02-14 2009-08-19 Zeon Corporation Method for producing retardation film
US9050763B2 (en) 2008-02-14 2015-06-09 Zeon Corporation Method for producing retardation film
US9694550B2 (en) 2008-02-14 2017-07-04 Zeon Corporation Method for producing retardation film
US10261227B2 (en) 2008-02-14 2019-04-16 Zeon Corporation Method for producing retardation film
US10434733B2 (en) 2008-02-14 2019-10-08 Zeon Corporation Method for producing retardation film
EP2103969A1 (en) 2008-03-18 2009-09-23 Zeon Corporation Retardation film
US8497959B2 (en) 2008-09-29 2013-07-30 Zeon Corporation Optical film and liquid crystal display
JP2012098471A (en) * 2010-11-01 2012-05-24 Kogaku Giken:Kk Phaser
JPWO2016017748A1 (en) * 2014-07-31 2017-05-18 三菱瓦斯化学株式会社 Optical film, laminated optical film including the same, and method for producing optical film
US10649123B2 (en) 2014-07-31 2020-05-12 Mitsubishi Gas Chemical Company, Inc. Optical film, multilayer optical film including same, and method for producing optical film
KR101582421B1 (en) * 2014-09-29 2016-01-20 주식회사 유니테크 시스템 Apparatus for swiveling chairs

Also Published As

Publication number Publication date
JP2809712B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
JPH0324502A (en) Phase difference plate
US20210373382A1 (en) Liquid crystal display device and polarizing plate
TW451071B (en) Composite retarder plate, optically compensatory polarizing plate and liquid-crystal display device
US6829026B2 (en) Laminated phase retarder having a cholesteric liquid crystal layer, polarizing member and liquid crystal display device
KR101650667B1 (en) Retardation film
JP4792777B2 (en) Wide viewing angle compensation film and transmissive liquid crystal display device using the same
US20090153783A1 (en) Viewing angle controlling system, and image display device using the same
US20070196592A1 (en) Stretched Film, Process For The Production Thereof And Laminated Material
WO2001009649A1 (en) Phase difference film, phase difference film composite and liquid crystal display device using the same
US7223451B2 (en) Polycarbonate-based oriented film and retardation film
KR20160087384A (en) Method for producing retardation film
JP2002221622A (en) Polarizing film with wide viewing angle and method for manufacturing the same
JP2006293108A (en) Liquid crystal display and optical film used for the same
JP2001194668A (en) Polycarbonate laminated optical retardation film
JP2002090530A (en) Composite optical retardation plate, optical compensation polarizing plate and liquid crystal display device
JP2001272538A (en) Phase difference plate, optical compensating polarizing plate and liquid crystal display device
KR20100037033A (en) Liquid crystal display device
JP2003294942A (en) Retardation film and method for manufacturing the same
JP5446862B2 (en) Horizontal electric field switching mode type liquid crystal display device
JP3609563B2 (en) Wide-field polarizing plate
JP5463020B2 (en) Liquid crystal panel and liquid crystal display device
JPH0323405A (en) Production of phase difference plate
JP3249982B2 (en) Optical element
JP7549939B2 (en) Substrate for surface protective film, surface protective film using said substrate, and optical film with surface protective film
JP4401511B2 (en) Composite retardation plate, optical compensation polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees