JPH03233270A - Snow making method and snow making device - Google Patents

Snow making method and snow making device

Info

Publication number
JPH03233270A
JPH03233270A JP2593790A JP2593790A JPH03233270A JP H03233270 A JPH03233270 A JP H03233270A JP 2593790 A JP2593790 A JP 2593790A JP 2593790 A JP2593790 A JP 2593790A JP H03233270 A JPH03233270 A JP H03233270A
Authority
JP
Japan
Prior art keywords
water
refrigerant
insulating space
heat insulating
snow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2593790A
Other languages
Japanese (ja)
Other versions
JPH0660774B2 (en
Inventor
Minoru Nikaido
稔 二階堂
Katsuya Oota
太田 勝矢
Kazunobu Abe
和信 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2593790A priority Critical patent/JPH0660774B2/en
Publication of JPH03233270A publication Critical patent/JPH03233270A/en
Publication of JPH0660774B2 publication Critical patent/JPH0660774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C3/00Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow
    • F25C3/04Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow for sledging or ski trails; Producing artificial snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2303/00Special arrangements or features for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Special arrangements or features for producing artificial snow
    • F25C2303/048Snow making by using means for spraying water

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To enable snow to be made in a high efficient manner throughout all seasons in a small-sized scale by a method wherein water is atomized as a descending water droplets from a top part of a thermally insulated space having a square horizontal section, the liquified coolant is atomized from the four corners of a thermally insulated space and a central part of the descending water droplets and the water droplets are condensed. CONSTITUTION:Water is atomized from a water feeding device 7 at a top part of a thermally insulating space 2 having a square horizontal section of one side H so as to form the descending water droplets flow having a circular horizontal section with a shorter diameter than one side H. The liquid phase coolant got from a coolant feeding device 9 is directed from the four corners of the thermal insulating space 2 toward the central part of the thermal insulating space 2 in a conical form where a horizontal top angle is at a right angle and then the coolant is injected from the central part of the descending water droplets flow upwardly in a conical form. Since a cooling effect caused by inputting of the liquid phase coolant at a temperature less than an icing point and a latent heat absorbing effect when the liquid-phase coolant are generated, so that a temperature in the thermal insulated space 2 descends less than an icing point. With such an arrangement, the water droplets in the descending water droplets injected are condensed to make snow 6 and a required snow making operation is carried out.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は造雪方法及び装置に関し、とくに屋内人ニスキ
ー場等のレジャー施設や催し場の雪及びコンクリートの
プレクーリング用等の冷熱源としての雪を造るのに適し
た造雪方法及び装置に関する。
The present invention relates to a snow-making method and apparatus, and more particularly to a snow-making method and apparatus suitable for making snow for leisure facilities such as indoor ski resorts and event venues, and snow as a cold source for pre-cooling concrete.

【従来の技術】[Conventional technology]

人ニスキー場等のレジャー施設の開発と産業施設におけ
る冷熱源の需要増に伴い、人工雪の必要性が増大してい
る。従来の人工造雪方法としては、気温が0℃以下の屋
外自然環境下での造雪や大規模な冷凍機で冷却した大き
な建屋内での造雪が行なわれている。また、コンクリー
トのプレクーリングでは、冷凍ドラムと称される0℃以
下の円筒の表面に散水し、ドラム表面に生成した氷をナ
イフで掻き落とすことによってスライス状の氷を得、こ
れを冷熱源として使用している。 さらに特開昭63−161377号公報は、人工雪発生
室に液噴霧手段と液化ガス噴射ノズルを設け、噴射直後
の液化ガスが液噴霧手段から外れるように配置し、液噴
霧手段から噴出される液のミストを液化ガス噴射ノズル
から噴射される液化ガスに接触させて雪を生成させる人
工雪製造装置を開示している。
The need for artificial snow is increasing with the development of leisure facilities such as ski resorts and the increasing demand for cooling and heat sources in industrial facilities. Conventional methods of making artificial snow include making snow in an outdoor natural environment where the temperature is below 0° C., or making snow in a large building cooled by a large-scale refrigerator. In addition, in pre-cooling of concrete, water is sprinkled on the surface of a cylinder whose temperature is below 0℃ called a freezing drum, and the ice formed on the drum surface is scraped off with a knife to obtain sliced ice, which is used as a cold source. I am using it. Furthermore, Japanese Patent Application Laid-Open No. 63-161377 discloses that an artificial snow generating chamber is provided with a liquid spraying means and a liquefied gas injection nozzle, and the liquefied gas immediately after injection is disposed so as to be removed from the liquid spraying means. An artificial snow making device is disclosed that generates snow by bringing a liquid mist into contact with liquefied gas injected from a liquefied gas injection nozzle.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、従来の方法では種々の欠点が避けられなかった
。即ち、屋外自然環境下の造雪の場合には気温が氷点以
上の時に造雪不能であり、大きな建屋での造雪の場合に
は大空間(例えば高さ10m1幅10m1奥行30m)
と大規模冷凍機とか必要であって施設の大型化と高コス
ト化が避けられず、スライス状氷の場合にも設備の大型
化と高コスト化の傾向があった。 特開昭63−161377号公報の人工雪製造装置には
、凝結水が人工雪発生室の壁面に付着して雪生成の効率
を低下させる欠点があった。 従って、本発明の目的は四季を通じて小規模に実施でき
しかも高効率の造雪方法及び装置を提供するにある。
However, conventional methods inevitably suffer from various drawbacks. In other words, when making snow in an outdoor natural environment, it is impossible to make snow when the temperature is above freezing, and when making snow in a large building, it is necessary to make snow in a large space (for example, 10 m in height, 10 m in width, and 30 m in depth).
This requires a large-scale refrigerator, which inevitably increases the size and cost of the facility, and even in the case of sliced ice, there is a tendency for the equipment to become larger and the cost to increase. The artificial snow making apparatus disclosed in Japanese Patent Application Laid-Open No. 63-161377 has the disadvantage that condensed water adheres to the wall surface of the artificial snow generating chamber, reducing the efficiency of snow generation. Therefore, an object of the present invention is to provide a highly efficient snowmaking method and device that can be implemented on a small scale throughout the year.

【課題を解決するための手段】[Means to solve the problem]

第1図から第6図までの実施例を参照するに、本発明の
造雪方法によれば、一辺Hの正方形水平断面の断熱空間
2の頂部において、送水装置7からの水を前記一辺Hよ
り短い直径りの円形水平断面の下降水滴流10となるよ
うに噴霧し、冷媒供給装置9からの液相冷媒を前記断熱
空間2の四隅から水平頂角が直角の円錐状に前記断熱空
間2の中央へ向け及び前記下降水滴流10の中央から円
錐状に上向きに噴霧して前記下降水滴流10の水滴8を
凝結させて雪を造る。 本発明の造雪装置は、一辺Hの正方形水平断面の断熱空
間2、前記断熱空間2の上端中央部に斜下向き放射状に
設けられた複数の周囲噴霧ノズル4aと前記放射状の中
心から下向きに設けられた中心噴霧ノズル4bとを有す
る噴霧ノズル装置3、噴霧ノズル装置3に接続された送
水装置7、噴霧ノズル装置3と所定距離を隔てて対向す
る断熱空間中心線上の位置に上向きに配置された中央冷
媒ノズル5a、前記断熱空間2の四隅に配置され前記断
熱空間2の中央へ向けられた複数の周囲冷媒ノズル5b
、並びに中央冷媒ノズル5aと周囲冷媒ノズル5bとに
接続された液相冷媒送出装置9を備えてなる構成を用い
る。前記噴霧ノズル装置3は、前記一辺Hより短い直径
りの円形水平断面の下降水滴流10となるように送水装
置7からの水を噴霧する。 前記中央冷媒ノズル5aは、液相冷媒送出装置9からの
冷媒を前記下降水滴流10中へその下降に抗して上向き
に円錐状に噴出し、前記周囲冷媒ノズル5bは、水平頂
角が直角の円錐状に前記断熱空間2の中央へ向け液相冷
媒送出装置9からの冷媒を噴出する。
Referring to the embodiments shown in FIGS. 1 to 6, according to the snow-making method of the present invention, water from the water supply device 7 is transferred to the top of the heat insulating space 2 having a square horizontal cross section of one side H. The liquid phase refrigerant from the refrigerant supply device 9 is sprayed so as to form a downward droplet flow 10 in a circular horizontal cross section with a shorter diameter, and the liquid phase refrigerant from the refrigerant supply device 9 is sprayed into the insulating space 2 in a conical shape with a horizontal apex angle at right angles from the four corners of the insulating space 2. and conically upward from the center of the descending water droplet stream 10 to condense the water droplets 8 of the descending water droplet stream 10 to form snow. The snow-making device of the present invention includes a heat insulating space 2 having a square horizontal cross section with one side H, a plurality of surrounding spray nozzles 4a provided diagonally downward radially at the center of the upper end of the heat insulating space 2, and a plurality of peripheral spray nozzles 4a provided downward from the center of the radial shape. A spray nozzle device 3 having a central spray nozzle 4b, a water supply device 7 connected to the spray nozzle device 3, and a water supply device 7 arranged upward at a position on the center line of the heat insulating space facing the spray nozzle device 3 at a predetermined distance. a central refrigerant nozzle 5a; a plurality of peripheral refrigerant nozzles 5b arranged at the four corners of the insulation space 2 and directed toward the center of the insulation space 2;
, and a liquid phase refrigerant delivery device 9 connected to the central refrigerant nozzle 5a and the peripheral refrigerant nozzle 5b. The spray nozzle device 3 sprays water from the water supply device 7 so as to form a downward droplet flow 10 having a circular horizontal cross section with a diameter shorter than the one side H. The central refrigerant nozzle 5a spouts the refrigerant from the liquid phase refrigerant delivery device 9 into the descending water droplet flow 10 in an upward conical manner against its descent, and the peripheral refrigerant nozzle 5b has a horizontal apex angle at right angles. The refrigerant from the liquid phase refrigerant delivery device 9 is ejected toward the center of the heat insulating space 2 in a conical shape.

【作用】[Effect]

第1図において冷媒供給装置9の冷媒を液体窒素又は液
体空気とした例について、作用を説明する。断熱空間2
の内部と外周内側部に開口する中央冷媒ノズル5a及び
周囲冷媒ノズル5bを介して液体窒素又は液体空気から
なる液相冷媒を噴霧すると、氷点下の温度にある液相冷
媒の進入による冷却効果と液相冷媒が噴霧されて気化す
る時の潜熱吸収効果とが生ずるので、断熱空間2内の温
度が氷点下に降下する。送水装置7からの水を、こうし
て冷却された断熱空間2へその空間の上端中部に開口す
る噴霧ノズル装置3を介して噴霧すれば、噴霧された水
滴は凝結して雪6となり、所期の造雪が行なわれる。 本発明で使われる噴霧ノズル装置3は、放射状に配置さ
れた複数の斜下向き周囲噴霧ノズル4aと放射状配置の
中央の下向き中心噴霧ノズル4bとを有する。それらの
噴霧ノズル4a、 4bの形状及び配置を適当にし、噴
霧ノズル装置3から所定の距離りだけ隔たった位置では
、噴霧ノズル装置3から噴出された水滴8が、断熱空間
2の一辺Hより短い直径りの円形水平断面を持った下降
水滴流10となるようにする。このような下降水滴流1
0を形成するので、噴霧ノズル装置3からの水滴8が断
熱空間2の壁面に付着することが防止され、造雪の効率
が向上する。 好ましくは噴霧ノズル装置3に、比較的流量の少ない6
個の周囲噴霧ノズル4aと、1個の比較的流量の多い中
心噴霧ノズル4bとを設け、水滴径が200μm以下の
条件で上記の水滴8及び下降水滴流10を形成する。 中央冷媒ノズル5aから上向きに噴出される液相冷媒は
、上記下降水滴流10内の水滴8の滞空時間を長くし、
噴霧された水滴8の凝結を促進し、造雪効率をさらに向
上する。周囲冷媒ノズル5bから水平頂角が直角の円錐
状に前記断熱空間2の中央へ向けて噴出される冷媒は、
下降水滴流10の水平断面の全面にわたって広がり、全
ての水滴8に対する冷却を確保しその凝結即ち造雪の効
率向上を図る。好ましくは、周囲冷媒ノズル5bを上下
2段に設は下降水滴流lOに対する冷却をさらに確実に
する。 本発明者は、断熱空間2が例えば縦1m、横1m。 高さ2m程度の比較的狭い空間であっても上記態様で雪
6を造ることができるのを実験的に確認した。 好ましくは、送水装置7がら噴霧ノズル3へ送られる水
を予め氷点に近い低温、例えば2℃程度まで冷却してお
く。 こうして、本発明の目的である「四季を通じて小規模に
実施できしかも高効率の造雪方法及び装置の提供Jが実
現される。
The operation will be described with respect to an example in which the refrigerant in the refrigerant supply device 9 is liquid nitrogen or liquid air in FIG. 1. Heat insulation space 2
When a liquid phase refrigerant consisting of liquid nitrogen or liquid air is sprayed through the central refrigerant nozzle 5a and the peripheral refrigerant nozzle 5b that open to the inside and the inside of the outer periphery, the cooling effect due to the entry of the liquid phase refrigerant at a temperature below freezing and the liquid Since a latent heat absorption effect occurs when the phase refrigerant is sprayed and vaporized, the temperature within the heat insulating space 2 drops below freezing. When the water from the water supply device 7 is sprayed into the thus cooled heat insulating space 2 through the spray nozzle device 3 which opens at the middle of the upper end of the space, the sprayed water droplets condense into snow 6 and form the desired snow. Snow making is carried out. The spray nozzle device 3 used in the present invention has a plurality of radially arranged obliquely downward peripheral spray nozzles 4a and a downwardly directed central spray nozzle 4b in the radially arranged center. The shape and arrangement of these spray nozzles 4a and 4b are made appropriate so that at a position separated from the spray nozzle device 3 by a predetermined distance, the water droplets 8 ejected from the spray nozzle device 3 are shorter than one side H of the heat insulating space 2. The descending water droplet flow 10 has a circular horizontal cross section with a diameter of 1. Such a descending water droplet flow 1
0, the water droplets 8 from the spray nozzle device 3 are prevented from adhering to the wall surface of the heat insulating space 2, and the efficiency of snow making is improved. Preferably, the spray nozzle device 3 has a relatively low flow rate 6
Two peripheral spray nozzles 4a and one central spray nozzle 4b with a relatively large flow rate are provided, and the water droplets 8 and the descending water droplet flow 10 are formed under the condition that the water droplet diameter is 200 μm or less. The liquid phase refrigerant spouted upward from the central refrigerant nozzle 5a increases the residence time of the water droplets 8 in the descending water droplet flow 10,
Condensation of the sprayed water droplets 8 is promoted to further improve snow-making efficiency. The refrigerant spouted from the surrounding refrigerant nozzle 5b toward the center of the heat insulating space 2 in a conical shape with a horizontal apex angle of right angles is as follows:
The descending water droplet flow 10 spreads over the entire horizontal section, ensuring cooling of all the water droplets 8 and improving the efficiency of their condensation, ie, snow making. Preferably, the ambient refrigerant nozzles 5b are provided in upper and lower stages to further ensure cooling of the descending water droplet flow lO. The inventor has determined that the heat insulating space 2 is, for example, 1 m long and 1 m wide. It has been experimentally confirmed that snow 6 can be made in the above manner even in a relatively narrow space of about 2 m in height. Preferably, the water sent from the water supply device 7 to the spray nozzle 3 is cooled in advance to a low temperature close to the freezing point, for example, to about 2°C. In this way, the object of the present invention, ``Providing a highly efficient snowmaking method and apparatus that can be implemented on a small scale throughout the four seasons,'' is achieved.

【実施例】【Example】

本発明の一実施例に用いた機器の接続を第1図に示し、
その配置の概要を第2図の斜視図に示す。 断熱空間2は断熱容器1の内部に形成され、その頂部に
取付けられた噴霧ノズル装置3は給水管19を介して送
水装置7に結合され、造雪原料である水の供給を受ける
。断熱容器1の中央部及び四隅に配置された中央及び周
囲冷媒ノズル5a、 5bは冷媒送給装置9に冷媒供給
管31を介して接続され、液相冷媒の供給を受ける。 図示例の断熱容器1は、内側寸法が縦11m1横11m
1高さ2.2mの木製直方体で、その周壁に設けた厚さ
100mmの断熱材により容器1の内部に断熱空間2を
形成する。断熱容器1の天井壁を介して断熱空間2の上
端中央部まで送水管19を導き、その断熱空間側先端に
水を噴霧するための噴霧ノズル装置3を取付ける。断熱
容器1の側壁部を介して断熱空間2の外周内側隅部及び
中央部まで冷媒供給管31を導き、断熱空間2の中央部
及び外周内側隅部における冷媒供給管31の端末に冷媒
噴霧用の冷媒ノズル5a、 5bを取付ける。 断熱容器1の天井隅部には排気管11を設け、噴霧後に
気化した冷媒の排出を図る。さらに、側壁の適当な部位
に造雪状況を見るための観察窓13を設け、下部には雪
6を取り出すための扉14を取り付ける。断熱空間2内
の温度を監視するため温度計25を適宜設置する。 送水装置7はこの場合、水槽15、ポンプ17、送水管
19、流量計21.圧力計23、及び温度計25からな
る。給水管19には開閉弁32を設け、矢印Aで示され
るように断熱容器1へ向け送水する。ポンプ17の吐出
圧と噴霧ノズル3の構造を適当に選定し、粒径100μ
m前後の水滴を断熱空間2内全域に均等にしかも直接に
側壁に当らないように噴霧する。 また、開閉弁33付の送水管により、矢印Bで示される
ように水を循環し、水槽15内の水を予冷する際にその
凍結を防止する。 第1図及び第2図の冷媒送給装置9は高圧冷媒容器27
に収容した液相冷媒を用いる。冷媒は液体窒素又は液体
空気以外にも、例えば液化炭酸ガス等を使うことが可能
であり、断熱空間2に噴霧後に気体となるものが好まし
い。冷媒送給装置9はさらに圧力計23、電磁弁29、
冷媒供給管31、流量計(図示せず)を有する。図示例
の電磁弁29は、断熱空間2内の温度計25の出力によ
り制御される。 冷媒供給管31と電磁弁29又は手動弁34とにより、
液相冷媒を矢印Cで示され方向に適当な流量で送出し、
断熱容器1の断熱空間2内温度を氷点下に保つ。高圧冷
媒容器27の低温液相冷媒を、冷却用弁35付の配管を
介して水槽15へ送り水槽内の水を予冷してもよい。 本発明者らは、図示構造の造雪装置を試作し、断熱空間
2内の温度を一20℃程度に冷却した後、水槽15内の
水をポンプ17で加圧し水用の噴霧ノズル装置3を介し
て約2リツトル/分の速度で噴霧すると共に、冷媒供給
量を電磁弁29によって調整することにより断熱空間2
内を氷点下の温度に保った。 こうして得られた雪6の雪片は粒径が100μm前後、
密度が0.3 g/cm3程度であり、天然雪に近い人
工雪を造ることができた。造雪速度は、約120kg/
hであり、供給された水の殆ど全てを雪とすることがで
きた。断熱容器1の容積、即ち断熱空間2の容積の増大
及び/又は断熱容器1の数の増加により造雪速度を高め
得ることは等業者には明らかである。
The connections of the equipment used in one embodiment of the present invention are shown in FIG.
An outline of the arrangement is shown in the perspective view of FIG. A heat insulating space 2 is formed inside the heat insulating container 1, and a spray nozzle device 3 attached to the top thereof is connected to a water supply device 7 via a water supply pipe 19 to receive water, which is a raw material for making snow. Center and peripheral refrigerant nozzles 5a and 5b arranged at the center and four corners of the heat insulating container 1 are connected to the refrigerant supply device 9 via a refrigerant supply pipe 31, and are supplied with liquid phase refrigerant. The insulated container 1 in the illustrated example has inner dimensions of 11 m long and 11 m wide.
The container 1 is a wooden rectangular parallelepiped with a height of 2.2 m, and a heat insulating space 2 is formed inside the container 1 by a heat insulating material with a thickness of 100 mm provided on its peripheral wall. A water pipe 19 is guided through the ceiling wall of the heat insulating container 1 to the center of the upper end of the heat insulating space 2, and a spray nozzle device 3 for spraying water is attached to the tip on the side of the heat insulating space. The refrigerant supply pipe 31 is guided through the side wall of the heat insulating container 1 to the inner corner of the outer periphery and the center of the heat insulating space 2, and the ends of the refrigerant supply pipe 31 at the center and inner corner of the outer periphery of the heat insulating space 2 are used for refrigerant spraying. Install the refrigerant nozzles 5a and 5b. An exhaust pipe 11 is provided at the corner of the ceiling of the heat insulating container 1 to discharge the refrigerant vaporized after being sprayed. Further, an observation window 13 for observing the snow-making situation is provided at a suitable part of the side wall, and a door 14 for taking out the snow 6 is attached to the lower part. A thermometer 25 is appropriately installed to monitor the temperature within the heat insulating space 2. In this case, the water supply device 7 includes a water tank 15, a pump 17, a water pipe 19, a flow meter 21. It consists of a pressure gauge 23 and a thermometer 25. The water supply pipe 19 is provided with an on-off valve 32 to supply water to the heat-insulating container 1 as shown by arrow A. By appropriately selecting the discharge pressure of the pump 17 and the structure of the spray nozzle 3, the particle size is 100μ.
Water droplets of about m size are sprayed evenly over the entire area inside the heat insulating space 2 so as not to directly hit the side walls. In addition, water is circulated as shown by arrow B by a water pipe equipped with an on-off valve 33 to prevent the water from freezing when pre-cooling the water in the water tank 15. The refrigerant supply device 9 in FIGS. 1 and 2 is a high-pressure refrigerant container 27.
A liquid-phase refrigerant contained in a container is used. In addition to liquid nitrogen or liquid air, for example, liquefied carbon dioxide can be used as the refrigerant, and it is preferable that the refrigerant becomes a gas after being sprayed into the heat insulating space 2. The refrigerant supply device 9 further includes a pressure gauge 23, a solenoid valve 29,
It has a refrigerant supply pipe 31 and a flow meter (not shown). The illustrated solenoid valve 29 is controlled by the output of the thermometer 25 within the heat insulating space 2 . By the refrigerant supply pipe 31 and the solenoid valve 29 or the manual valve 34,
Sending out the liquid phase refrigerant in the direction indicated by arrow C at an appropriate flow rate,
The temperature inside the insulation space 2 of the insulation container 1 is maintained below freezing. The low-temperature liquid phase refrigerant in the high-pressure refrigerant container 27 may be sent to the water tank 15 via a pipe equipped with a cooling valve 35 to pre-cool the water in the water tank. The present inventors prototyped a snowmaking device having the structure shown in the figure, and after cooling the temperature inside the heat insulating space 2 to about -20°C, the water in the water tank 15 was pressurized by the pump 17 and the water spray nozzle device 3 The refrigerant is sprayed at a rate of about 2 liters/minute through the insulating space 2 by adjusting the amount of refrigerant supplied by the solenoid valve 29.
The temperature inside was kept below freezing. The snowflakes of Snow 6 obtained in this way have a particle size of around 100 μm,
With a density of about 0.3 g/cm3, it was possible to create artificial snow that was close to natural snow. Snow making speed is approximately 120kg/
h, and almost all of the supplied water could be converted into snow. It is clear to those skilled in the art that the snow-making speed can be increased by increasing the volume of the heat-insulating containers 1, that is, the volume of the heat-insulating space 2, and/or increasing the number of heat-insulating containers 1.

【発明の効果】【Effect of the invention】

以上詳細に説明したように本発明の造雪方法及び装置は
、液相冷媒を噴霧し気化させることにより氷点以下に冷
却した正方形断面の断熱空間の頂部から、断熱空間の壁
面に接触しない円形断面の下降水滴流として水を噴霧し
凝結させて雪とするので、次の効果を奏する。 (イ)断熱空間の壁面への水の付着が防止され、造雪効
率が向上する。 (ロ)下降水滴流に対向して冷媒を噴出し水滴の下降速
度を押え、水滴の滞留時間即ち冷却時間を長くするので
造雪効率を一層高めることかできる。 (ハ)大規模な建屋や冷凍機を用いずに造雪することが
できる。 (ニ)移動が容易な造雪装置を提供できる。
As explained in detail above, the snow-making method and apparatus of the present invention is capable of starting from the top of a square cross-section heat insulating space cooled below the freezing point by spraying and vaporizing a liquid phase refrigerant. Since water is sprayed as falling droplets and condensed to form snow, it has the following effects. (b) Water is prevented from adhering to the walls of the insulation space, improving snowmaking efficiency. (b) Since the refrigerant is ejected against the downward flow of water droplets to suppress the descending speed of the water droplets and lengthen the residence time of the water droplets, that is, the cooling time, the snow-making efficiency can be further enhanced. (c) Snow can be made without using a large-scale building or refrigerator. (d) A snow-making device that is easy to move can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す説明図、第2図は一実施例
の配置を示す説明図、第3図は噴霧ノズル装置の説明図
、第4図及び第5図は下降水滴流の説明図、第6図は断
熱空間の断面図である。 1・・・断熱容器、 2・・・断熱空間、 3噴霧ノズ
ル装置、 4a・・・周囲噴霧ノズル、 4b・・・中
心噴霧ノズル、 5a・・・中央冷媒ノズル、 5b・
・・周囲冷媒ノズル、 6・・・雪、 7・・送水装置
、 8・・水滴、9・・・冷媒送給装置、 IO・・・
下降水滴流、 11・・・排気管、 13・・・観察窓
、 14・・・扉、 15・・・水槽、17・・・ポン
プ、 19・・・給水管、 21・・・流量計、23・
・・圧力計、 25・・温度計、 27・・・高圧冷媒
容器、29・・・電磁弁、31・・・冷媒供給管、32
.33.34・・・開閉弁、 35・・・冷却用弁。
Fig. 1 is an explanatory diagram showing the configuration of the present invention, Fig. 2 is an explanatory diagram showing the arrangement of one embodiment, Fig. 3 is an explanatory diagram of a spray nozzle device, and Figs. 4 and 5 are illustrations of a descending water droplet flow. The explanatory diagram, FIG. 6, is a sectional view of the heat insulating space. DESCRIPTION OF SYMBOLS 1... Heat insulation container, 2... Heat insulation space, 3 Spray nozzle device, 4a... Surrounding spray nozzle, 4b... Center spray nozzle, 5a... Central refrigerant nozzle, 5b.
... Surrounding refrigerant nozzle, 6. Snow, 7. Water supply device, 8. Water droplets, 9. Refrigerant supply device, IO...
Descending water droplet flow, 11... Exhaust pipe, 13... Observation window, 14... Door, 15... Water tank, 17... Pump, 19... Water supply pipe, 21... Flow meter, 23・
... Pressure gauge, 25 ... Thermometer, 27 ... High pressure refrigerant container, 29 ... Solenoid valve, 31 ... Refrigerant supply pipe, 32
.. 33.34...Opening/closing valve, 35...Cooling valve.

Claims (2)

【特許請求の範囲】[Claims] (1)一辺Hの正方形水平断面の断熱空間の頂部から水
を、前記一辺Hより短い直径Dの円形水平断面の下降水
滴流となるように噴霧し、液化冷媒を前記断熱空間の四
隅から水平頂角が直角の円錐状に前記断熱空間の中央へ
向け及び前記下降水滴流の中央から円錐状に上向きに噴
霧して前記下降水滴流の水滴を凝結させてなる造雪方法
(1) Water is sprayed from the top of the heat insulating space with a square horizontal cross section of one side H so as to form a droplet flow down the circular horizontal cross section with a diameter D shorter than the side H, and liquefied refrigerant is sprayed horizontally from the four corners of the heat insulating space. A snow-making method comprising spraying water in a conical shape with a right-angled apex toward the center of the heat insulating space and conically upward from the center of the descending water droplet flow to condense water droplets in the descending water droplet flow.
(2)一辺Hの正方形水平断面の断熱空間、前記断熱空
間の上端中央部に斜下向き放射状に設けられた複数の周
囲噴霧ノズルと前記放射状の中心から下向きに設けられ
た中心噴霧ノズルとを有する噴霧ノズル装置、噴霧ノズ
ル装置に接続された送水装置、前記噴霧ノズル装置と所
定距離を隔てて対向する前記断熱空間中心線上の位置に
上向きに配置された中央冷媒ノズル、前記断熱空間の四
隅に配置され前記断熱空間の中央へ向けられた複数の周
囲冷媒ノズル、並びに前記中央冷媒ノズルと周囲冷媒ノ
ズルとに接続された液相冷媒送出装置を備え、前記噴霧
ノズル装置から直径Dが前記一辺Hより短い円形水平断
面の下降水滴流状に水を噴霧し、前記中央冷媒ノズルか
ら円錐状液相冷媒噴流を上向きに噴出すると共に周囲冷
媒ノズルから水平頂角が直角の円錐状に前記断熱空間中
央へ向け液相冷媒を噴出してなる造雪装置。
(2) A heat insulating space with a square horizontal cross section of one side H, including a plurality of peripheral spray nozzles provided diagonally downward radially at the center of the upper end of the heat insulating space, and a center spray nozzle provided downward from the center of the radial shape. a spray nozzle device, a water supply device connected to the spray nozzle device, a central refrigerant nozzle arranged upward on the center line of the heat insulating space facing the spray nozzle device at a predetermined distance, and arranged at four corners of the heat insulating space. a plurality of peripheral refrigerant nozzles directed toward the center of the adiabatic space, and a liquid phase refrigerant delivery device connected to the central refrigerant nozzle and the peripheral refrigerant nozzle; Water is sprayed in the form of a falling droplet stream with a short circular horizontal cross section, and a conical liquid phase refrigerant jet is ejected upward from the central refrigerant nozzle, and at the same time, from the peripheral refrigerant nozzles, the horizontal apex angle is at right angles and the water is sprayed into the center of the insulation space. A snow-making device that spouts liquid-phase refrigerant.
JP2593790A 1990-02-07 1990-02-07 Snowmaking method and device Expired - Lifetime JPH0660774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2593790A JPH0660774B2 (en) 1990-02-07 1990-02-07 Snowmaking method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2593790A JPH0660774B2 (en) 1990-02-07 1990-02-07 Snowmaking method and device

Publications (2)

Publication Number Publication Date
JPH03233270A true JPH03233270A (en) 1991-10-17
JPH0660774B2 JPH0660774B2 (en) 1994-08-10

Family

ID=12179683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2593790A Expired - Lifetime JPH0660774B2 (en) 1990-02-07 1990-02-07 Snowmaking method and device

Country Status (1)

Country Link
JP (1) JPH0660774B2 (en)

Also Published As

Publication number Publication date
JPH0660774B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US3257815A (en) Method and apparatus for the largescale production of snow fields for sports use
EP0225081B1 (en) Method and apparatus for producing microfine frozen particles
US4748817A (en) Method and apparatus for producing microfine frozen particles
JPH1172278A (en) Apparatus for producing fine powder snow particle from liquid carbon dioxide
US4894077A (en) Method of accumulating and restituting cold and device for implementing such method
JPS62502908A (en) Artificial snow making method and device
EP2972018B1 (en) Nucleator for generating ice crystals for seeding water droplets in snow-making systems
US20040035947A1 (en) Water-only method and apparatus for making snow
US6405541B1 (en) Method and device for the production of slush from liquefied gas
US5207068A (en) Cooling liquids
JP2003517411A5 (en)
JPH03233270A (en) Snow making method and snow making device
JPH09313051A (en) Generation of artificial rain and equipment therefor
JPH03251668A (en) Artificial method for producing snow and equipment therefor
JP2005003346A (en) Ice making method and device
JP2603817Y2 (en) White smoke generator
JP2008133983A (en) Ultra low temperature gas generator
KR940003540Y1 (en) Rapid cooling apparatus
Chen et al. Heat and mass transfer in making artificial snow
EP2601462B1 (en) Method of production of artificial snow and apparatus for carrying out this method
JPH09210526A (en) Apparatus and method for making artificial snow
JPH0634245A (en) Artificial snow making device
JPH0427474B2 (en)
SU1206579A1 (en) Method of obtaining artificial snow
RU2077683C1 (en) Process of production of flow of ice granules