JPH03233269A - Coolant concentration sensor for compressor - Google Patents
Coolant concentration sensor for compressorInfo
- Publication number
- JPH03233269A JPH03233269A JP2850190A JP2850190A JPH03233269A JP H03233269 A JPH03233269 A JP H03233269A JP 2850190 A JP2850190 A JP 2850190A JP 2850190 A JP2850190 A JP 2850190A JP H03233269 A JPH03233269 A JP H03233269A
- Authority
- JP
- Japan
- Prior art keywords
- thermocouple
- refrigerant
- oil
- compressor
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002826 coolant Substances 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 7
- 239000003507 refrigerant Substances 0.000 claims description 72
- 239000000203 mixture Substances 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 18
- 229910052802 copper Inorganic materials 0.000 abstract description 18
- 239000010949 copper Substances 0.000 abstract description 18
- 229910001006 Constantan Inorganic materials 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 9
- 239000004020 conductor Substances 0.000 abstract description 4
- 238000009429 electrical wiring Methods 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 49
- 230000005856 abnormality Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000007769 metal material Substances 0.000 description 4
- 229910001179 chromel Inorganic materials 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910000809 Alumel Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000010721 machine oil Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000010726 refrigerant oil Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的1
(産業上の利用分野)
本発明は、圧縮機の潤滑油中に含まれる冷媒濃度(冷媒
・油の混合比)の検出の他に、圧縮機の油温をも検出可
能な冷媒濃度検出器に関する。DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention 1 (Field of Industrial Application) The present invention is useful for detecting the concentration of refrigerant (mixing ratio of refrigerant and oil) contained in the lubricating oil of a compressor. This invention relates to a refrigerant concentration detector that can also detect oil temperature.
(従来の技術)
従来、圧a81の冷凍機油中に含まれる冷媒の濃度(冷
媒・油の混合比)を測定する冷媒濃度測定器としては、
実開昭60−123574号に開示されたものがある。(Prior Art) Conventionally, as a refrigerant concentration measuring device for measuring the concentration of refrigerant (mixing ratio of refrigerant and oil) contained in refrigerating machine oil with a pressure of a81,
There is one disclosed in Utility Model Application Publication No. 123574/1983.
第6図はその概要を示すもので、冷凍機のゲージングa
内の油溜す中に、二枚の対向電極板よりなるセンサCと
、これを覆う電磁シールド用の金網dとを配設し、絶縁
材eを貫通する配線fで測定器gと接続し、センサCに
高周波電圧をかけて電極板間の静電容量を測定する。Figure 6 shows the outline of the gauging a of the refrigerator.
A sensor C consisting of two opposing electrode plates and a wire mesh d for electromagnetic shielding are placed in an oil reservoir inside the sensor C, and are connected to a measuring instrument g by a wire f passing through an insulating material e. , a high frequency voltage is applied to sensor C to measure the capacitance between the electrode plates.
測定原理は、冷凍機油中の冷媒濃度とその比誘電率との
間には、第7図に示すごとく、高温時(100℃)には
低濃度(約35%)まで、低温時(20℃)には高濃度
(95%)まで、はぼ比例関係をもつこと、更には、冷
凍機の油温と油中の冷媒温度との間には、第8図の斜線
の範囲内において比例関係が成立することを基礎とする
ものである。The measurement principle is that, as shown in Figure 7, there is a difference between the refrigerant concentration in the refrigerant oil and its relative dielectric constant. ) has an almost proportional relationship up to a high concentration (95%), and furthermore, there is a proportional relationship between the refrigerator oil temperature and the refrigerant temperature in the oil within the shaded range in Figure 8. It is based on the fact that the following holds true.
そして、冷凍機の場合、その油溜りにおける冷媒濃度が
、油温100℃で10〜15%、 50℃でも30〜4
0%を超えることはまずないということに着目したもの
である。In the case of a refrigerator, the refrigerant concentration in the oil reservoir is 10-15% at an oil temperature of 100°C, and 30-4% even at 50°C.
The focus is on the fact that it rarely exceeds 0%.
かかる前提の下では、冷凍機の使用温度範囲内において
、冷媒濃度と比誘電率との間に比例関係が成立すること
から、油溜中の油と冷媒との混合液の静電容量を測定す
ることによって、冷凍機油中の冷媒濃度を検知し得る。Under this assumption, since there is a proportional relationship between the refrigerant concentration and the dielectric constant within the operating temperature range of the refrigerator, it is possible to measure the capacitance of the mixture of oil and refrigerant in the oil reservoir. By doing so, the refrigerant concentration in the refrigerating machine oil can be detected.
この冷媒濃度測定器によれば、冷媒濃度を電気的に容易
に検出することができ、冷凍機の異常予測、故障防止な
どに利用できる利点がある。According to this refrigerant concentration measuring device, the refrigerant concentration can be easily detected electrically, which has the advantage of being useful for predicting abnormalities in refrigerators, preventing failures, and the like.
(発明が解決しようとする課題)
しかしながら、圧縮機内の冷媒・油の混合比を静電容量
の変化から精密に測定したい場合には、圧縮機内の油温
をも同時に測定し、これにより混合比センサの温度補償
をすることが望まれる。使用する油が、温度変化による
比誘電率への影響の小さいものであっても、冷媒、例え
ばR−22のように、冷媒の方が温度変化による影響が
大なる場合があるからである。(Problem to be solved by the invention) However, when it is desired to precisely measure the mixture ratio of refrigerant and oil in the compressor from changes in capacitance, the oil temperature in the compressor is also measured at the same time, and the mixture ratio is It is desirable to provide temperature compensation for the sensor. This is because even if the oil used has a small effect on the relative permittivity due to temperature changes, the effect of temperature changes may be greater on refrigerants such as R-22.
そこで、第2図に示すように、圧縮機のケース1内に、
冷媒・油の混合比センサ10の他に温度センサたる熱電
対16を分離独立に設けることか考えられるが、混合比
センサ10と熱電対16とをそれぞれ単独に設けるので
は、圧縮機ケース1からのセンサ出力端子数が4端子と
なる。Therefore, as shown in Fig. 2, inside the case 1 of the compressor,
In addition to the refrigerant/oil mixture ratio sensor 10, it is conceivable to provide a thermocouple 16 as a temperature sensor separately and independently. The number of sensor output terminals is 4.
本発明は、上記事情を考慮してなされたもので、圧縮機
の潤滑油中に含まれる冷媒濃度と共に油温をも検出でき
、しかも圧縮機ケースからのセンサ出力端子数が3#i
子で済む圧縮機の冷媒濃度検出器を提供することにある
。The present invention was made in consideration of the above circumstances, and is capable of detecting the oil temperature as well as the refrigerant concentration contained in the lubricating oil of the compressor, and the number of sensor output terminals from the compressor case is 3#i.
An object of the present invention is to provide a refrigerant concentration detector for a compressor that requires only a small child.
[発明の構成コ
(課題を解決するための手段)
本発明による圧Wi機の冷媒濃度検出器は、熱電対を構
成し得る2種金属のうちの片方と同じ材料から成る二枚
の!極板を対向させて静電容量型の冷媒・油混合比セン
サを構成し、該センサの片方の電極板の表面に、上記熱
電対の他方と同じ材料から成る導電線の一端を溶接し、
上記二枚の電極板の片側端及び導電線の他端を電気的に
それぞれ独立に圧111機ケース外に引き出した構成の
ものである。[Structure of the Invention (Means for Solving the Problems) The refrigerant concentration detector for a pressure Wire machine according to the present invention consists of two sheets made of the same material as one of the two types of metals that can constitute the thermocouple. A capacitance type refrigerant/oil mixture ratio sensor is constructed by arranging electrode plates facing each other, and one end of a conductive wire made of the same material as the other of the thermocouple is welded to the surface of one electrode plate of the sensor,
One end of the two electrode plates and the other end of the conductive wire are electrically drawn out from the case of the pressure 111 machine independently.
(作用)
例えば、銅・コンスタンタンから成る熱電対を考え、且
つその一方の金属と同じ材料である銅を用いて電極板を
構成したとすると、その相対向する2枚の銅板により静
電容量型の冷媒・油混合比センサが構成され、それぞれ
電気的に圧縮機ケース外に引き出される。(Function) For example, if we consider a thermocouple made of copper and constantan, and if we construct the electrode plate using copper, which is the same material as one of the thermocouples, then the two opposing copper plates will form a capacitive type. The refrigerant/oil mixture ratio sensor is configured, and each is electrically drawn out of the compressor case.
一方、熱電対は、上記混合比センサを構成する2枚の銅
板の片方と、この片方の銅板の表面に一端を溶接した導
電線、つまりコンスタンタン線とで構成され、該コンス
タンタン線の他端も電気的に圧縮機ケース外に引き出さ
れる。On the other hand, a thermocouple is composed of one of the two copper plates that make up the mixing ratio sensor, and a conductive wire, that is, a constantan wire, whose one end is welded to the surface of the one copper plate, and the other end of the constantan wire is also welded to the surface of the copper plate. Electrically pulled out of the compressor case.
片方の電極板を混合比センサと熱電対とで共用し一体化
しているため、冷媒・油混合比センサと熱電対とを分離
した場合に比べ、構造の簡素化。Since one electrode plate is shared by the mixture ratio sensor and thermocouple and is integrated, the structure is simpler than when the refrigerant/oil mixture ratio sensor and thermocouple are separated.
小形化を図ることができる。また、電気的な引き出し線
の数が3本のみで済むため、ケース外への引き出しが容
易であり、センサ支持構造、電気的な回路周りの配線も
容易となって、コストの低減を図ることができる。Miniaturization can be achieved. In addition, since only three electrical lead wires are required, it is easy to draw them out of the case, and the wiring around the sensor support structure and electrical circuits is also easy, reducing costs. I can do it.
また、圧縮機の潤滑油中に含まれる冷媒濃度だけでなく
、その時の油温をも検出できるので、冷媒・油混合比セ
ンサの特性をその油温に応じて補正して正確な冷媒・油
混合比を求めるのに適する。In addition, it is possible to detect not only the refrigerant concentration contained in the lubricating oil of the compressor, but also the oil temperature at that time, so the characteristics of the refrigerant/oil mixture ratio sensor can be corrected according to the oil temperature to accurately determine the refrigerant/oil temperature. Suitable for determining the mixing ratio.
(実施例) 以下、本発明を図示の実施例に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on illustrated embodiments.
第1図において、9は冷媒濃度検出器であり、圧a機の
潤滑油中に含まれる冷媒濃度(冷媒・油の混合比)を検
出する静電容量型の冷媒・油混合比センサ(以下単に混
合比センサと称する)10と、これに一部一体化した熱
電対16とから成り、冷凍機用圧縮機ケース1の底部に
おける油溜24中に、適当な支持手段により配置される
。In Fig. 1, reference numeral 9 denotes a refrigerant concentration detector, which is a capacitance type refrigerant/oil mixture ratio sensor (hereinafter referred to as It consists of a mixing ratio sensor (simply referred to as a mixing ratio sensor) 10 and a thermocouple 16 partially integrated therewith, and is arranged in an oil sump 24 at the bottom of the refrigerator compressor case 1 by suitable supporting means.
混合比センサ10は、金属板から成る電極板11.12
を、絶縁性のスペーサ13.13で平行に支持したもの
から成り、全体は長方形の中空枠体として形づくられて
いる。を極板11.12を構成する金属材料は、熱電対
を構成する2種の金属のうちの片方と同じ材料の中から
選ばれる。The mixture ratio sensor 10 includes electrode plates 11 and 12 made of metal plates.
are supported in parallel by insulating spacers 13, 13, and the whole is shaped as a rectangular hollow frame. The metal material constituting the electrode plates 11 and 12 is selected from the same materials as one of the two metals constituting the thermocouple.
例えは、銅・コンスタンタンの熱電対であれば銅が、ク
ロメル・アルメルの熱電対であればクロメルが使用され
る。For example, copper is used for a copper/constantan thermocouple, and chromel is used for a chromel/alumel thermocouple.
本実施例では@極板11,12は銅板から成り、両銅板
には、その一端に、通常の電気的導線から成るリード線
14.14が接続されている。In this embodiment, the plates 11 and 12 are made of copper plates, and both copper plates are connected at one end with lead wires 14, 14 made of ordinary electrical conductors.
圧縮機ケース1の側壁に気密に設けられた絶縁材30に
は、計3本の出力端子27,28.29が貫通しており
、上記電極板11.12からのリード線14.14は、
これら3つの出力端子27゜28.29のうちの2本(
27,28)に接続されている。A total of three output terminals 27, 28, 29 pass through the insulating material 30 airtightly provided on the side wall of the compressor case 1, and the lead wires 14, 14 from the electrode plate 11, 12 are
Two of these three output terminals 27°28.29 (
27, 28).
一方、上記電極板11.12を構成する2枚の銅板のう
ちの片方(電極板11)には、その銅板の中間部の表面
に、該銅板と共に熱電対を構成すべき金属材料から成る
導電線15が溶接される。On the other hand, one of the two copper plates (electrode plate 11) constituting the electrode plates 11 and 12 has a conductive conductor made of a metal material that is to form a thermocouple together with the copper plate on the surface of the intermediate part of the copper plate. Wire 15 is welded.
本実施例の場合、電極板11が銅板であるため導電線1
5はコンスタンタン線から成り、その一端が電極板11
の中間部に溶接される。コンスタン線の他端は上記3本
の出力端子27〜29゛のうちの残りの一本2つに接続
される。かくして、銅から成る電極板11と、コンスタ
ンタンから成る導電線15とで、熱電対16が構成され
る。In the case of this embodiment, since the electrode plate 11 is a copper plate, the conductive wire 1
5 consists of a constantan wire, one end of which is connected to the electrode plate 11.
is welded to the middle part of the The other end of the constant wire is connected to the remaining one or two of the three output terminals 27-29'. In this way, the thermocouple 16 is constituted by the electrode plate 11 made of copper and the conductive wire 15 made of constantan.
上記構成の冷媒濃度検出器9は、静電容量型の混合比セ
ンサ10と熱電対16とを一体としたものであり、電極
板11が静電容量を測定するための電極として働くと共
に、熱電対16の片側の金属導体としても働くという長
所を有する。このため、圧縮機ケース1外に電気的に引
き出すための出力端子も、3本(27〜29)で済むこ
とになる。第2図は、比較のため、混合比センサ10と
熱電対16とをそれぞれ独立に設けた場合を示したもの
で、第1図の場合に比べ、熱電対16の電気的引き出し
用の出力端子29aが1本余分に必要となっている。The refrigerant concentration detector 9 having the above configuration integrates a capacitance type mixing ratio sensor 10 and a thermocouple 16, and the electrode plate 11 functions as an electrode for measuring capacitance and also serves as a thermocouple. It has the advantage that it also acts as a metal conductor on one side of the pair 16. Therefore, only three output terminals (27 to 29) are required for electrically drawing out the compressor case 1. For comparison, FIG. 2 shows a case where the mixture ratio sensor 10 and thermocouple 16 are provided independently, and compared to the case of FIG. One extra 29a is required.
上記実施例では、熱電対16の片方の金属をコンスタン
タンとし、もう片方の金属は、静電容量型の混合比セン
サ10を構成している電極板11としての銅板に溶接し
て、T熱電対を構成した。しかし、かかる組合せに限定
されるものではない0例えば、電極板11.12の金属
材料をクロメルとし、熱電対16をアルメルとすれば、
電極板11と熱電対16間でA熱電対が構成できる。In the above embodiment, one metal of the thermocouple 16 is constantan, and the other metal is welded to a copper plate as the electrode plate 11 constituting the capacitance type mixture ratio sensor 10. was configured. However, the combination is not limited to such a combination. For example, if the metal materials of the electrode plates 11 and 12 are chromel and the thermocouple 16 is alumel,
Thermocouple A can be configured between the electrode plate 11 and the thermocouple 16.
勿論、上記電極板11.12と熱電対16の金属材料が
逆となっても同じ熱電対が構成される。Of course, even if the metal materials of the electrode plates 11, 12 and the thermocouple 16 are reversed, the same thermocouple will be constructed.
上記の冷媒濃度検出器9の使用に際しては、電極板11
.12で構成された静電容量型の混合比センサ10の出
力と、t′!fA板11及び導電線15で構成されな熱
電対16の出力とが、マイコンを含む制御ユニット、例
えば空気調和機の室外ユニットにおける外部マイコン部
に入力される。When using the above refrigerant concentration detector 9, the electrode plate 11
.. The output of the capacitance type mixing ratio sensor 10 composed of 12 and t'! The fA plate 11 and the output of the thermocouple 16 constituted by a conductive wire 15 are input to a control unit including a microcomputer, for example, an external microcomputer section in an outdoor unit of an air conditioner.
そして、制御ユニットは、例えば電極板11゜12間の
静電容量を発振回路の構成要素として使用し、熱電対1
6の出力を測定ブリッジ回路の構成要素として使用して
、油中の冷媒濃度及び油温度を計測し、その測定値に基
づいた補正計算、例えば第7図及び第8図の特性に応じ
た補正計算を行い、正確な冷媒・油の混合比を算出する
。Then, the control unit uses, for example, the capacitance between the electrode plates 11 and 12 as a component of an oscillation circuit, and the thermocouple 1
The output of 6 is used as a component of the measurement bridge circuit to measure the refrigerant concentration in the oil and the oil temperature, and correction calculations are performed based on the measured values, such as correction according to the characteristics shown in Figs. 7 and 8. Perform calculations and calculate the accurate refrigerant/oil mixture ratio.
次に、上記冷媒濃度検出器9の具体的な使用例を説明す
る。Next, a specific usage example of the refrigerant concentration detector 9 will be explained.
第3図は、ヒートポンプ式空気調和装置の冷凍サイクル
を示したもので、圧縮機1a、室内熱交換器2.膨張弁
6.室外熱交換器4.四方弁5を順次冷媒配管で接続し
て成る。圧縮m 1 aは、制御ユニット7からの指令
を受けたインバータ装置8により回転数が制御される。FIG. 3 shows the refrigeration cycle of a heat pump type air conditioner, which includes a compressor 1a, an indoor heat exchanger 2. Expansion valve6. Outdoor heat exchanger4. It is constructed by sequentially connecting four-way valves 5 with refrigerant piping. The rotation speed of the compression m 1 a is controlled by an inverter device 8 that receives a command from a control unit 7 .
第4図に示すように、圧11R1a内には上述の冷媒濃
度検出器9が設けられるが、ここでは油中の冷媒濃度を
正確に測定できるように、圧縮機1aの底部に設けであ
る。圧縮f11 aはモータ20と圧ia機要素25と
から成り、シャフト23を回転させて、モータ部20の
下部に設けた圧縮機要素25を動作させて冷媒を圧縮す
るものである。この冷媒を圧縮する際、摺動部分が金属
接触するので、油溜24の潤滑油を吸込口26から吸い
込んで、摺動部分に油を供給して潤滑特性を高めるよう
にしている。As shown in FIG. 4, the above-mentioned refrigerant concentration detector 9 is provided in the pressure 11R1a, but here it is provided at the bottom of the compressor 1a so that the refrigerant concentration in the oil can be accurately measured. The compressor f11a consists of a motor 20 and a compressor element 25, and rotates a shaft 23 to operate the compressor element 25 provided at the lower part of the motor section 20 to compress the refrigerant. When compressing this refrigerant, the sliding parts come into metal contact, so lubricating oil from the oil reservoir 24 is sucked in through the suction port 26 to supply oil to the sliding parts to improve lubrication characteristics.
制御ユニ・yドアは、冷媒濃度検出器9からの入力信−
号に基づいて、インバータ装置8.室内フアン3.膨張
弁6.室外ファン4aを制御する構成となっている。即
ち、制御ユニット7は、混合比センサ10の出力である
電極11.12間の静電容量の値から油中の冷媒濃度を
測定し、更にこの測定値を熱電対16の出力より検出さ
れる油温度に応じて補正し、油中の冷媒濃度を求める。The control unit Y door receives an input signal from the refrigerant concentration detector 9.
Inverter device 8. Indoor fan 3. Expansion valve6. It is configured to control the outdoor fan 4a. That is, the control unit 7 measures the refrigerant concentration in the oil from the capacitance value between the electrodes 11 and 12, which is the output of the mixture ratio sensor 10, and further detects this measured value from the output of the thermocouple 16. Correct according to the oil temperature and find the refrigerant concentration in the oil.
そして、求めた冷媒濃度に応じてインバータ装置8室内
ファン3.膨張弁6.室外ファン4aを制御する。Then, depending on the determined refrigerant concentration, the inverter device 8 indoor fan 3. Expansion valve6. Controls the outdoor fan 4a.
次に、上記空気調和装置の動作を、第5図のフローチャ
ートを用いて説明する。Next, the operation of the air conditioner will be explained using the flowchart shown in FIG.
先ず、暖房運転時の始動時の動作を説明すると、ステッ
プ101で電源が入り、リモコン(図示せず)等による
冷・暖切換スイッチにより、暖房運転開始指令を制御ユ
ニット7が受けると、ステップ102へ進んで制御ユニ
ット7は四方弁5を暖房サイクルの側に切換えてステッ
プ103へ進み、圧縮機1aに設けられた冷媒濃度検出
器9の出力より、圧縮機内の油中の冷媒量がロック、カ
ジリを発生し得る異常状態にあるかを判断する。First, to explain the operation at the time of starting heating operation, the power is turned on in step 101, and when the control unit 7 receives a heating operation start command from the cooling/warming switch by a remote control (not shown), etc., step 102 The control unit 7 then switches the four-way valve 5 to the heating cycle side and proceeds to step 103, where the amount of refrigerant in the oil in the compressor is locked based on the output of the refrigerant concentration detector 9 provided in the compressor 1a. Determine whether there is an abnormal condition that could cause galling.
もしここで、異常かないと判断すると゛、ステップ10
6へ進んで通常の始動運転が行われ、ステップ107へ
進む、一方、異常があると判断するとステップ104へ
進んで、通常の始動運転時より圧縮機1aの負荷を軽減
させるなめ、圧avlの始動回転数を低下させ、ステッ
プ105へ進んで膨張弁6の絞り量を大きくしてステッ
プ107へ進む。If it is determined that there is no abnormality here, step 10
6, a normal starting operation is performed, and then the process proceeds to step 107. On the other hand, if it is determined that there is an abnormality, the process proceeds to step 104, where the pressure avl is increased to reduce the load on the compressor 1a compared to the normal starting operation. The starting rotational speed is lowered, the process proceeds to step 105, the throttle amount of the expansion valve 6 is increased, and the process proceeds to step 107.
ステップ107では制御ユニット7が始動運転を終了し
たかどうかを判断してステップ108に進む。In step 107, the control unit 7 determines whether the starting operation has been completed, and the process proceeds to step 108.
次に、始動運転終了後の運転動作について説明する。Next, the operation operation after the start-up operation is completed will be explained.
ステップ108で始動運転終了後の運転中、制御ユニッ
ト7は冷媒濃度検出器9の出力より、圧縮機la内の油
中の冷媒量がロック、カジリを発生し得る異常状態にあ
るかを判断する。In step 108, during operation after the start-up operation is completed, the control unit 7 determines from the output of the refrigerant concentration detector 9 whether the amount of refrigerant in the oil in the compressor la is in an abnormal state that may cause locking or galling. .
ここで、異常がないと判断すると、ステップ112へ進
んで、通常通りの暖房運転を行い、圧Ifiillaを
インバータ装置8で制御して、冷凍サイクル中の冷媒を
循環させ、先ず、圧縮@ 1 aから吐出された圧縮さ
れた高温高圧の冷媒ガスは室内熱交換器2で室内の空気
に熱を与えて液化する。Here, if it is determined that there is no abnormality, the process proceeds to step 112, where normal heating operation is performed, the pressure Ifiilla is controlled by the inverter device 8, the refrigerant in the refrigeration cycle is circulated, and first, compression @ 1 a is performed. The compressed high-temperature, high-pressure refrigerant gas discharged from the indoor heat exchanger 2 gives heat to indoor air and liquefies it.
液化した冷媒は、膨張弁6を通して室外熱交換器4に送
られる前に蒸発しやすい状態まで圧力が下げられ、温度
が下がる。Before the liquefied refrigerant is sent to the outdoor heat exchanger 4 through the expansion valve 6, its pressure is lowered to a state where it easily evaporates, and its temperature is lowered.
そうして、膨張弁6を通過した液冷媒は室外熱交換器4
に送られて、周囲の空気の熱を奪って気化する。室外熱
交換器4で気化した冷媒ガスは、圧m1lllaに吸い
込まれる。圧縮W1 aに吸い込まれた冷媒ガスは、シ
リンダ内で圧縮され、圧力を高め温度も上げられて吐出
される。Then, the liquid refrigerant that has passed through the expansion valve 6 is transferred to the outdoor heat exchanger 4.
is sent to the surrounding air, where it absorbs heat from the surrounding air and evaporates. The refrigerant gas vaporized in the outdoor heat exchanger 4 is sucked into the pressure m1lla. The refrigerant gas sucked into the compressor W1a is compressed within the cylinder, and is discharged after increasing its pressure and temperature.
このような動作を繰り返させて暖房運転を行わせ、ステ
ップ112へ進んで制御ユニット7が運転終了したかど
うか判断して、運転終了と判断すると電源を切り、運転
を終了させ、運転終了でないと判断するとステップ10
8へ戻る。This operation is repeated to perform heating operation, and the process proceeds to step 112, where the control unit 7 determines whether or not the operation has ended.If the control unit 7 determines that the operation has ended, the power is turned off and the operation is ended. Judging step 10
Return to 8.
一方、ステップ108で異常があると判断するとステッ
プ109へ進んで、圧縮1!l 1 aの負荷を軽減さ
せるため、圧縮機の回転数を低下させ、ステップ110
へ進んで膨張弁6の絞り量を大きくし、ステップ111
へ進んで室内熱交換器2に設けられた室内ファン3の送
風量を増加させて、室内熱交換器2内の冷媒の温度を低
下させて吐出圧力を低下させ、ステップ108へ戻って
圧縮機内の油中に異常がある間、ステップ109.ステ
ップ110を繰り返す。On the other hand, if it is determined in step 108 that there is an abnormality, the process proceeds to step 109, and the compression 1! In order to reduce the load on l 1 a, the rotation speed of the compressor is lowered, and step 110
Proceed to step 111 to increase the throttle amount of the expansion valve 6.
Step 108 increases the amount of air blown by the indoor fan 3 installed in the indoor heat exchanger 2, lowers the temperature of the refrigerant in the indoor heat exchanger 2, and lowers the discharge pressure. While there is an abnormality in the oil of step 109. Repeat step 110.
かかる構成によれば、圧m機の油中に冷媒濃度検出器9
を設けて圧縮機内の潤滑油内への冷媒混入量を直接検知
して制御することにより、冷媒サイクル装置の信頼性を
高めることができる。According to this configuration, the refrigerant concentration detector 9 is installed in the oil of the pressurizer.
The reliability of the refrigerant cycle device can be improved by directly detecting and controlling the amount of refrigerant mixed into the lubricating oil in the compressor.
[発明の効果コ
以上のように、本発明は、2枚の電極の片方を冷媒・油
混合比センサと熱電対とで共用し一体化しているなめ、
冷媒・油混合比センサと熱電対とを分離した場合に比べ
、構造の簡素化、小形化を図ることができる。また、電
気的な引き出し線の数が4本から3本に減少するなめ、
ケース外への引き出しが容易であり、センサ支持構造、
電気的な回路周りの配線も容易となって、コストの低減
を図ることができる。[Effects of the Invention] As described above, the present invention has two electrodes, one of which is shared and integrated with the refrigerant/oil mixture ratio sensor and the thermocouple.
Compared to the case where the refrigerant/oil mixture ratio sensor and the thermocouple are separated, the structure can be simplified and downsized. Also, since the number of electrical lead wires is reduced from four to three,
Easy to pull out of the case, sensor support structure,
Wiring around the electrical circuit becomes easier, and costs can be reduced.
また、圧縮機の潤滑油中に含まれる冷媒濃度だけでなく
、その時の油温をも検出できるので、冷媒・油混合比セ
ンサの特性をその油温に応じて補正して正確な冷媒・油
混合比を求めるのに適する。In addition, it is possible to detect not only the refrigerant concentration contained in the lubricating oil of the compressor, but also the oil temperature at that time, so the characteristics of the refrigerant/oil mixture ratio sensor can be corrected according to the oil temperature to accurately determine the refrigerant/oil temperature. Suitable for determining the mixing ratio.
第1図は本発明の一実施例における冷媒濃度検出器の構
成図、第2図は冷媒・油混合比センサと熱電対とを分離
して設けた場合の構成図、第3図〜第5図は本発明の冷
媒濃度検出器の空気関和機への応用例を示したもので、
第3図はその空気調和機の概略図、第4図は圧!a機内
の冷媒濃度検出器の位置を示した部分断面図、第5図は
その制御ユニットの動作を示したフローチャート、第6
図は従来の冷媒濃度測定器の概略図、第7図は油中の冷
媒濃度と比誘電率との関係を示す図、第8図は油温と油
中の冷媒濃度との間で直線性がある領域を示す図である
。
図中、1は圧縮機のケース、9は冷媒濃度検出器、10
は冷媒・油混合比センサ、11.12は電極板、13は
スペーサ、14はリード線、15は熱電対を構成する導
電線、16は熱電対、24は油溜、27,28.29は
出方端子を示す。Fig. 1 is a block diagram of a refrigerant concentration detector according to an embodiment of the present invention, Fig. 2 is a block diagram of a case where a refrigerant/oil mixture ratio sensor and a thermocouple are provided separately, and Figs. 3 to 5 The figure shows an example of application of the refrigerant concentration detector of the present invention to an air conditioner.
Figure 3 is a schematic diagram of the air conditioner, and Figure 4 is the pressure! a A partial sectional view showing the position of the refrigerant concentration detector inside the machine; Fig. 5 is a flowchart showing the operation of the control unit; Fig. 6
The figure is a schematic diagram of a conventional refrigerant concentration measuring device, Figure 7 is a diagram showing the relationship between the refrigerant concentration in oil and the dielectric constant, and Figure 8 is a diagram showing the relationship between oil temperature and refrigerant concentration in oil. FIG. In the figure, 1 is the compressor case, 9 is the refrigerant concentration detector, and 10 is the compressor case.
11.12 is a refrigerant/oil mixture ratio sensor, 11.12 is an electrode plate, 13 is a spacer, 14 is a lead wire, 15 is a conductive wire that constitutes a thermocouple, 16 is a thermocouple, 24 is an oil sump, 27, 28, and 29 are Shows the output terminal.
Claims (1)
料から成る二枚の電極板を対向させて静電容量型の冷媒
・油混合比センサを構成し、該センサの片方の電極板の
表面に、上記熱電対の他方と同じ材料から成る導電線の
一端を溶接し、上記二枚の電極板の片側端及び導電線の
他端を電気的にそれぞれ独立に圧縮機ケース外に引き出
したことを特徴とする圧縮機の冷媒濃度検出器。1. Construct a capacitance type refrigerant/oil mixture ratio sensor by arranging two electrode plates made of the same material as one of the two metals that can constitute the thermocouple, and one electrode of the sensor. One end of a conductive wire made of the same material as the other thermocouple is welded to the surface of the plate, and one end of the two electrode plates and the other end of the conductive wire are electrically connected to the outside of the compressor case independently. A refrigerant concentration detector for a compressor, which is characterized by being pulled out.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2850190A JPH03233269A (en) | 1990-02-09 | 1990-02-09 | Coolant concentration sensor for compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2850190A JPH03233269A (en) | 1990-02-09 | 1990-02-09 | Coolant concentration sensor for compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03233269A true JPH03233269A (en) | 1991-10-17 |
Family
ID=12250423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2850190A Pending JPH03233269A (en) | 1990-02-09 | 1990-02-09 | Coolant concentration sensor for compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03233269A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003021611A (en) * | 2001-07-06 | 2003-01-24 | Nippon Soken Inc | Oil content ratio measuring device and freezer using it |
JP2016090303A (en) * | 2014-10-31 | 2016-05-23 | 株式会社鷺宮製作所 | Liquid detection unit, compressor and air conditioner |
JP2016090304A (en) * | 2014-10-31 | 2016-05-23 | 株式会社鷺宮製作所 | Liquid detector, compressor and air conditioner |
JP2016090301A (en) * | 2014-10-31 | 2016-05-23 | 株式会社鷺宮製作所 | Liquid detector, compressor, and air conditioner |
JP2016090299A (en) * | 2014-10-31 | 2016-05-23 | 株式会社鷺宮製作所 | Liquid detector, compressor, and air conditioner |
WO2019239549A1 (en) * | 2018-06-14 | 2019-12-19 | 三菱電機株式会社 | Device management system |
WO2022209429A1 (en) * | 2021-03-31 | 2022-10-06 | ダイキン工業株式会社 | Oil concentration detection system |
-
1990
- 1990-02-09 JP JP2850190A patent/JPH03233269A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003021611A (en) * | 2001-07-06 | 2003-01-24 | Nippon Soken Inc | Oil content ratio measuring device and freezer using it |
JP4578729B2 (en) * | 2001-07-06 | 2010-11-10 | 株式会社日本自動車部品総合研究所 | Oil fraction measuring apparatus and refrigeration apparatus using the same |
JP2016090303A (en) * | 2014-10-31 | 2016-05-23 | 株式会社鷺宮製作所 | Liquid detection unit, compressor and air conditioner |
JP2016090304A (en) * | 2014-10-31 | 2016-05-23 | 株式会社鷺宮製作所 | Liquid detector, compressor and air conditioner |
JP2016090301A (en) * | 2014-10-31 | 2016-05-23 | 株式会社鷺宮製作所 | Liquid detector, compressor, and air conditioner |
JP2016090299A (en) * | 2014-10-31 | 2016-05-23 | 株式会社鷺宮製作所 | Liquid detector, compressor, and air conditioner |
WO2019239549A1 (en) * | 2018-06-14 | 2019-12-19 | 三菱電機株式会社 | Device management system |
JPWO2019239549A1 (en) * | 2018-06-14 | 2021-04-01 | 三菱電機株式会社 | Equipment management system |
US11473800B2 (en) | 2018-06-14 | 2022-10-18 | Mitsubishi Electric Corporation | Device management system |
WO2022209429A1 (en) * | 2021-03-31 | 2022-10-06 | ダイキン工業株式会社 | Oil concentration detection system |
JP2022156740A (en) * | 2021-03-31 | 2022-10-14 | ダイキン工業株式会社 | Oil concentration detection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4878355A (en) | Method and apparatus for improving cooling of a compressor element in an air conditioning system | |
US9823632B2 (en) | Compressor data module | |
US6142741A (en) | Hermetic electric compressor with improved temperature responsive motor control | |
US11378316B2 (en) | Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit | |
US7878006B2 (en) | Compressor diagnostic and protection system and method | |
JP2997487B2 (en) | Refrigeration apparatus and method for indicating amount of refrigerant in refrigeration apparatus | |
US20090071175A1 (en) | Refrigeration monitoring system and method | |
JPH03233269A (en) | Coolant concentration sensor for compressor | |
AU2014367568A1 (en) | Oil detection device, compressor having the same and method of controlling the compressor | |
JPH03145583A (en) | Liquefaction detecting method for compressor | |
CN112665302A (en) | Refrigerator overturning beam condensation-preventing heating control method and control device and refrigerator | |
JP3166731B2 (en) | Air conditioner | |
JPH07103583A (en) | Air-conditioning equipment | |
JP3275669B2 (en) | Multi-room air conditioning system | |
JPH07253250A (en) | Control device for refrigerating cycle | |
JPH03233268A (en) | Coolant-oil mixing ratio sensor for compressor | |
JP6202274B2 (en) | Air conditioner | |
JP2005315550A (en) | Refrigerant flow control device | |
JP3406688B2 (en) | Refrigeration cycle device | |
JPH055562A (en) | Air conditioner | |
JPH02217754A (en) | Refrigeration cycle device | |
AU2015207920B2 (en) | Compressor Data Module | |
KR100208223B1 (en) | Compressor control method of inverter airconditioner | |
JPH09264590A (en) | Air conditioner | |
KR100237930B1 (en) | Control method of compressor for inverter type air conditioner |