JPH0323313B2 - - Google Patents

Info

Publication number
JPH0323313B2
JPH0323313B2 JP57084896A JP8489682A JPH0323313B2 JP H0323313 B2 JPH0323313 B2 JP H0323313B2 JP 57084896 A JP57084896 A JP 57084896A JP 8489682 A JP8489682 A JP 8489682A JP H0323313 B2 JPH0323313 B2 JP H0323313B2
Authority
JP
Japan
Prior art keywords
drive system
side drive
displacement
speed command
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57084896A
Other languages
Japanese (ja)
Other versions
JPS58202784A (en
Inventor
Kozo Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP8489682A priority Critical patent/JPS58202784A/en
Publication of JPS58202784A publication Critical patent/JPS58202784A/en
Publication of JPH0323313B2 publication Critical patent/JPH0323313B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)

Description

【発明の詳細な説明】 本発明は複数の被制御部材を連動制御する連動
制御装置に関し、複数の作業部材を有する油圧シ
ヨベル、油圧クレーン、マニピユーレータなどに
好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an interlocking control device for interlockingly controlling a plurality of controlled members, and is suitable for hydraulic excavators, hydraulic cranes, manipulators, etc. that have a plurality of working members.

複数のアクチユエータにより複数の作業部材を
それぞれ駆動し、所望の動作をさせる機械、例え
ば油圧シヨベル、油圧クレーン、マニピユレータ
などにおいて、主動側駆動系の動きに対して一つ
又は複数の従動側駆動系を一定の関係で駆動する
必要がある場合がある。例えば、第1図に示され
る油圧シヨベル1において、バケツト2の刃先点
を目標軌跡Aに従つて直線的に動かす必要がある
が、このため、バケツト取付点Pを直線状に動か
すべく、アーム3の駆動系(主動側)であるアー
ムシリンダ4の動きを検出して、ブーム5の駆動
系(従動側)であるブームシリンダ6の動くべき
量を求め、それに従つてブーム5を駆動すること
が、従来特公昭50−858号公報などで提案されて
いる。アームシリンダ4の変位yaに対して、第2
図に示されるような所定の関数に従うブームシリ
ンダ6の変位ybが予め定められ、ブームシリンダ
6に変位ybを与えるための指示信号が演算装置
により演算される。このようなシステムをブロツ
ク図で示せば、第3図のようになる。7は指示入
力装置、xax〓aはその変位指示信号及び速度指示信
号、8は主動側駆動系、ya,y〓aはその変位及び速
度、9は演算装置、xb,x〓bは演算された変位指示
信号及び速度指示信号、10は従動側駆動系、
yb,y〓bはその変位及び速度である。変位指示信号
xa,xbと速度指示信号x〓a,x〓bは、少なくともいず
れか一方が駆動系8,10に与えられればよい場
合が多い。
In machines that drive multiple actuators to perform desired operations, such as hydraulic excavators, hydraulic cranes, manipulators, etc., one or more driven drive systems are activated in response to the movement of the main drive system. There are cases where it is necessary to drive in a certain relationship. For example, in the hydraulic excavator 1 shown in FIG. 1, it is necessary to move the cutting edge point of the bucket belt 2 linearly according to the target trajectory A. Therefore, in order to move the bucket belt attachment point P linearly, the arm 3 The movement of the arm cylinder 4, which is the drive system (primary side) of the boom 5, is detected, and the amount by which the boom cylinder 6, which is the drive system (driven side) of the boom 5, should be moved is determined, and the boom 5 can be driven accordingly. , has been proposed in Japanese Patent Publication No. 50-858. For the displacement y a of the arm cylinder 4, the second
A displacement yb of the boom cylinder 6 according to a predetermined function as shown in the figure is determined in advance, and an instruction signal for applying the displacement yb to the boom cylinder 6 is calculated by a calculation device. A block diagram of such a system is shown in FIG. 7 is an instruction input device ; b is the calculated displacement instruction signal and speed instruction signal, 10 is the driven side drive system,
y b , y〓 b are its displacement and velocity. Displacement instruction signal
In many cases, it is sufficient that at least one of x a , x b and speed instruction signals x〓 a , x〓 b is given to the drive systems 8 and 10 .

このような構成の連動制御装置では、主動側駆
動系8及び従動側駆動系10に含まれるアクチユ
エータのうざれか一つ以上がその可動範囲の行程
端もしくは作業部材の作業範囲制限条件によつて
定まる行程限界(これらを総称して本発明におい
ては行程限界と呼ぶ)に達した場合に、そのアク
チユエータをを停止させると同時に、動作してい
る他のアクチユエータも停止させることが望まし
い。そうでないと、行程限界において、操作者が
意図したものとは異なつた動作を作業機本体が行
うことになるからである。
In the interlocking control device having such a configuration, wear of one or more of the actuators included in the driving side drive system 8 and the driven side drive system 10 is caused by the end of the stroke of the movable range or the working range limiting condition of the working member. When a predetermined stroke limit (these are collectively referred to as a stroke limit in the present invention) is reached, it is desirable to stop that actuator and at the same time stop other operating actuators. Otherwise, at the stroke limit, the work machine body will perform an operation different from that intended by the operator.

複数のアクチユエータのいずれか一つ以上が行
程限界に達した場合に、動作している他のアクチ
ユエータのすべてを停止させる考え方は、マスタ
ースレーブ制御装置の分野で特公昭54−37406号
公報により示されている。これは、各行程限界の
上限値よりわずかにδだけ大きな値及び下限値よ
りわずかにδだけ小さい値と、各アクチユエータ
への変位信号とを比較して、いずれかの限界値を
越えた時に全アクチユエータの動作を停止させる
ものである。各行程限界よりわずかに越えた限界
値と比較する理由は、そうしないと行程限界から
始動する場合に停止がかかつてしまうからであ
る。
The idea of stopping all other operating actuators when one or more of a plurality of actuators reaches its stroke limit was disclosed in Japanese Patent Publication No. 54-37406 in the field of master-slave control devices. ing. This is done by comparing the displacement signal to each actuator with a value slightly δ larger than the upper limit value of each stroke limit and a value slightly δ smaller than the lower limit value, and when either limit value is exceeded, the total This is to stop the operation of the actuator. The reason for comparing the limit values slightly beyond each stroke limit is that otherwise the stop would be delayed when starting from the stroke limit.

このような考え方を連動制御装置に適用する
と、次のような問題点が生じる。
When such a concept is applied to an interlock control device, the following problems arise.

(1) 行程限界に達して、停止モードになつた場合
連動制御モードから個別操作モードに強制的に
切り換わると共に、演算装置9がリセツトされ
るものとなるので、初期値を入力しなければ、
再び連動制御に入ることができず、行程限界に
達してから次の連動制御に入るまでの操作に手
間がかかる。
(1) When the stroke limit is reached and the mode changes to stop mode, the interlock control mode will be forcibly switched to the individual operation mode, and the arithmetic unit 9 will be reset, so if you do not input the initial value,
It is not possible to enter interlock control again, and it takes time and effort to perform the operation after reaching the stroke limit until entering the next interlock control.

(2) 前述のように演算装置9の限界値が実際の行
程限界よりδだけずれることになるので、演算
装置9と従動側被制御部材とがδだけずれを持
つている状態で全体を停止させ、演算装置9を
リセツトしないで、次の動作を続けるとする
と、段々にδのずれが集積して行き、しまいに
は演算装置9と従動側被制御部材とが同じ動き
をしなくなるおそれがある。
(2) As mentioned above, the limit value of the calculation device 9 will deviate from the actual stroke limit by δ, so the entire system will be stopped with a deviation of δ between the calculation device 9 and the driven-side controlled member. If the following operation is continued without resetting the arithmetic device 9, the deviation in δ will gradually accumulate, and there is a risk that the arithmetic device 9 and the driven-side controlled member will not move in the same way. be.

本発明の目的は、上述した問題点を解決し、行
程限界よりδだけ越えた値を限界値にしなくて
も、行程限界での始動時に停止がかかることがな
く、行程限界に達した時の操作を容易にすること
ができ、演算装置と従動側被制御部材との間のず
れの集積を生じない連動制御装置を提供すること
である。
An object of the present invention is to solve the above-mentioned problems, and to prevent the engine from stopping when starting at the stroke limit without setting the limit value to a value exceeding the stroke limit by δ, and to prevent the engine from stopping when the stroke limit is reached. It is an object of the present invention to provide an interlock control device that can be easily operated and that does not cause accumulation of misalignment between an arithmetic device and a driven-side controlled member.

この目的を達成するために、本発明は、主動側
駆動系及び従動側駆動系の変位を検出する変位検
出手段と、指示入力装置及び演算装置の指示信号
から主動側駆動系及び従動側駆動系への速度指令
を検出する速度指令検出手段と、変位検出手段に
よる変位及び速度指令検出手段による速度指令を
入力として、主動側駆動系と従動側駆動系のいず
れかが行程限界に達し、且つその行程限界を越え
る方向に速度指令がなつている場合を判別する論
理演算装置と、論理演算装置の判別により、主動
側駆動系と従動側駆動系の少なくとも予め定めら
れた一方を停止させる系統制御手段を設けたこと
を特徴とする。
In order to achieve this object, the present invention includes a displacement detection means for detecting the displacement of the driving side drive system and the driven side drive system, and a displacement detection means for detecting the displacement of the driving side drive system and the driven side drive system. A speed command detection means detects a speed command to the motor, and inputs the displacement from the displacement detection means and the speed command from the speed command detection means. a logical operation device that determines when a speed command is in a direction exceeding a stroke limit; and a system control means that stops at least one of the driving side drive system and the driven side drive system based on the determination of the logical operation device. It is characterized by having the following.

以下、本発明を図示実施例に基づいて詳細に説
明する。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第4図は本発明の一実施例を示す。第3図と同
様な部分は同一符号にて示す。本実施例では、制
御対象物の所望の動作、例えば油圧シヨベルのア
ームの先端を直線的に動かす動作、を表す指示入
力装置7及び演算装置9の出力信号として、変位
指示信号xa,xbが用いられる。
FIG. 4 shows an embodiment of the present invention. Components similar to those in FIG. 3 are designated by the same reference numerals. In this embodiment, displacement instruction signals x a , x b are used as output signals of the instruction input device 7 and the calculation device 9 that represent the desired motion of the controlled object, for example, the motion of linearly moving the tip of the arm of a hydraulic excavator . is used.

変位検出手段11a,11bは、主動側駆動系
8及び従動側駆動系10に含まれ、被制御部材
(例えばアームとブーム)を駆動する二つのアク
チユエータの変位ya,ybを検出するもので、ポテ
ンシヨメータ、エンコーダなど一般的な変位セン
サなどが用いられる。速度指令検出手段12a,
12bは、指示入力装置7及び演算装置9が出力
する変位指示信号xa,xbから速度指令値x〓a,x〓b
検出するもので、変位指示信号xa,xbが電気信号
であれば、微分回路が用いられ、演算装置9が制
御対象物と相似なミニチユアモデルであれば、各
アクチユエータの動きに相当するモデルの速度を
検出するか、該モデルの変位を検出し、それを微
分して速度を求める形の装置が用いられる。指示
入力装置7及び演算装置9が電気的演算回路で構
成されている場合には、速度指令値x〓a,x〓bに相当
する電気信号がこれらの装置7及び9から取り出
せる場合が多く、また、駆動系8,10に変位指
示信号xa,xbと共に、もしくはその代りに、速度
指令値x〓a,x〓bを速度指示信号として与える場合が
あり、これらの場合には、速度指令検出手段12
a,12bとして特別な装置を設ける必要はな
く、単に速度指令値x〓a,x〓bを導く配線があればよ
い。
The displacement detection means 11a and 11b are included in the driving side drive system 8 and the driven side drive system 10, and detect displacements y a and y b of two actuators that drive controlled members (for example, an arm and a boom). General displacement sensors such as , potentiometers, encoders, etc. are used. Speed command detection means 12a,
12b detects speed command values x〓 a , x〓 b from displacement command signals x a , x b outputted by the command input device 7 and the calculation device 9, and the displacement command signals x a , x b are electrical signals . If so, a differential circuit is used, and if the arithmetic unit 9 is a miniature model similar to the controlled object, it detects the velocity of the model corresponding to the movement of each actuator or detects the displacement of the model, A device is used to differentiate this and find the velocity. When the instruction input device 7 and the arithmetic device 9 are composed of electrical arithmetic circuits, electrical signals corresponding to the speed command values x〓 a , x〓 b can often be extracted from these devices 7 and 9. In addition, speed command values x〓 a , x〓 b may be given as speed command signals to the drive systems 8 and 10 together with or instead of displacement command signals x a , x b , and in these cases, the speed Command detection means 12
There is no need to provide special devices for a and 12b, and it is sufficient to simply have wiring for guiding the speed command values x〓 a and x〓 b .

論理演算装置13は、速度指令値x〓a,x〓b及び変
位ya,ybを入力として、連動するアクチユエータ
のいずれか一つ以上が行程限界に達し、且つその
行程限界を越える方向に速度指令値x〓a又はx〓bがな
つている場合を判別し、そのように判別した時に
出力信号Sの論理レベルを1にして、系統制御手
段14a,14bをしや断し、主動側駆動系8及
び従動側駆動系10を停止させることである。
The logical operation device 13 inputs the speed command values x〓 a , x〓 b and the displacements y a , y b and determines whether one or more of the interlocking actuators will reach the stroke limit and will move beyond the stroke limit. It is determined whether the speed command value x〓 a or x〓 b is equal to This is to stop the drive system 8 and the driven drive system 10.

指示入力装置7が主動側駆動系8に対して変位
指示信号xaを出力すると、主動側駆動系8に含ま
れるアクチユエータは変位指示信号xa指示に応じ
て変位し、主動側被制御部材を制御する。このア
クチユエータの変位yaに応じて演算装置9は従動
側駆動系10に含まれるアクチユエータの変位yb
を演算し、変位指示信号xbを従動側駆動系10に
対して出力し、従動側駆動系10のアクチユエー
タを変位させる。これらのアクチユエータの変位
ya,ybのいずれかが行程限界に達しても、そのア
クチユエータに対する速度指令値x〓a又はx〓bが零又
は行程限界内へ戻ることを示す値であれば、論理
演算装置13は出力信号Sの論理レベルを0に保
ち、系統制御手段14a,14bをしや断せず
に、変位指示信号xa,xbの通りに駆動系8,10
を動作させておく。行程限界に達し、且つ行程限
界外への移動を速度指令値x〓a,x〓bが示す場合の
み、変位指示信号xa,xbに関係なく、主動側駆動
系8と従動側駆動系10を共に停止させる。
When the instruction input device 7 outputs a displacement instruction signal x a to the active side drive system 8, the actuator included in the active side drive system 8 is displaced in accordance with the displacement instruction signal x a , causing the active side controlled member to move. Control. According to the displacement y a of the actuator, the calculation device 9 calculates the displacement y b of the actuator included in the driven drive system 10.
is calculated, a displacement instruction signal x b is output to the driven drive system 10, and the actuator of the driven drive system 10 is displaced. displacement of these actuators
Even if either y a or y b reaches the stroke limit, if the speed command value x〓 a or x〓 b for the actuator is zero or a value indicating that it will return to within the stroke limit, the logical operation unit 13 By keeping the logic level of the output signal S at 0 and without interrupting the system control means 14a and 14b, the drive systems 8 and 10 are activated according to the displacement instruction signals x a and x b .
keep it running. Only when the stroke limit is reached and the speed command values x〓 a , x〓 b indicate movement outside the stroke limit, the driving side drive system 8 and the driven side drive system 10 are stopped together.

論理演算装置13の一例を第5図に示す。判別
回路21a,21bは速度指令値x〓a,x〓bが正の時
に1,0又は負の時に0の論理信号Sa1,Sb1を発
するものである。即ち、 Sa1=1(x〓a>0) 0(x〓a0) Sb1=1(x〓b>0) 0(x〓b≦0) 判別回路22a,22bは逆に次の形の論理信号
Sa2,Sb2を発するものである。
An example of the logic operation device 13 is shown in FIG. The discrimination circuits 21a and 21b are designed to generate logic signals S a1 and S b1 which are 1 and 0 when the speed command values x〓 a and x〓 b are positive, or 0 when they are negative. That is, S a1 = 1 (x〓 a > 0) 0 (x〓 a 0) S b1 = 1 (x〓 b > 0) 0 (x〓 b ≦0) On the contrary, the discriminator circuits 22a and 22b have the following form. logic signal of
It emits S a2 and S b2 .

Sa2=0(x〓a≧0) 1(x〓a<0) Sb2=0(x〓b≧0) (x〓b<0) また、判別回路23a,23bはアクチユエー
タの変位ya,ybが行程限界の上限値yanax,ybnax
以上の時に1、満の時に0の論理信号、Sa3,Sb3
を発するものである。即ち、 Sa3=1(ya≧yyanax) 0(ya<yanax) Sb3=1(yb≧ybnax) 0(yb<ybnx 判別回路24a,24bは変位ya,ybの行程限界
の下限値yanio,ybnio以下の時に1、それより大き
い時に0の論理信号Sa4,Sb4を発するものであ
る。即ち、 Sa4=0(ya>yanio) 1(ya≦yanio) Sb4=0(yb>ybnio) 1(yb≦ybnio) 論理信号Sa1〜Sa4、Sb1〜Sb4はアンドゲート2
5〜28に入力し、下記の演算が行われる。
S a2 =0 (x〓 a ≧0) 1 (x〓 a <0) S b2 =0 (x〓 b ≧0) (x〓 b <0) In addition, the discrimination circuits 23a and 23b determine the displacement y a of the actuator. , y b is the upper limit of the stroke limit y anax , y bnax
Logic signal that is 1 when it is above and 0 when it is full, S a3 , S b3
It is something that emits. That is, S a3 = 1 (y a ≧y yanax ) 0 (y a < y anax ) S b3 = 1 (y b ≧ y bnax ) 0 (y b < y bnx discriminator circuits 24a and 24b calculate displacement y a , y It emits logic signals S a4 and S b4 which are 1 when the lower limit values y anio , y bnio of the stroke limit of b or less, and 0 when larger than the lower limit values y anio , y bnio .That is, S a4 = 0 (y a > y anio ) 1 (y a ≦y anio ) S b4 = 0 (y b > y bnio ) 1 (y b ≦y bnio ) Logic signals S a1 to S a4 and S b1 to S b4 are AND gates 2
5 to 28, and the following calculations are performed.

Sa5=Sa1・Sa3 Sa6=Sa2・Sa4 Sb5=Sb1・Sb3 (・は論理積を示す) Sb6=Sb2・Sb4 論理信号Sa5,Sa6,Sb5,Sb6はオアゲート29
に入力し、下記の演算が行われる。
S a5 = S a1・S a3 S a6 = S a2・S a4 S b5 = S b1・S b3 (・indicates logical product) S b6 = S b2・S b4 Logical signal S a5 , S a6 , S b5 ,S b6 is or gate 29
is input, and the following calculations are performed.

S=Sa5+Sa6+Sb5+Sb6(+は論理和を示す) こうした構成になつているため、変位yaが行程
限界の上限値yanaXに達し、且つ速度指令値x〓a
正の時に、論理信号Sa5が1となり、したがつて
出力信号Sの論理レベルが1となつて、系統制御
手段14a,14bがしや断され、主動側駆動系
8及び従動側駆動系10が停止される。同様に、
ya≦yanioで、且つx〓a>0の時、ya≧ybnaXで、且
つx〓b>0の時、又はyb≦ybnioで、且つx〓b<0の時
に、出力信号Sが1となり、全駆動系8及び10
が停止される。
S=S a5 +S a6 +S b5 +S b6 (+ indicates logical sum) Because of this configuration, the displacement y a reaches the upper limit value y anaX of the stroke limit, and the speed command value x〓 a is positive. At this time, the logic signal S a5 becomes 1, and therefore the logic level of the output signal S becomes 1, and the system control means 14a, 14b are suddenly cut off, and the driving side drive system 8 and the driven side drive system 10 are stopped. be done. Similarly,
Output when y a ≦y anio and x〓 a > 0, y a ≧y bnaX and x〓 b > 0, or y b ≦y bnio and x〓 b < 0. The signal S becomes 1, and all drive systems 8 and 10
will be stopped.

論理演算装置13は、第5図のものに限定され
るものではなく、これと同等もしくは多少劣つて
も類似の機能を果すものであればよい。電気的な
比較器やリレーなどによつても、またマイクロコ
ンピユータなどのソフトウエアなどによつても容
易に実現可能である。
The logical operation device 13 is not limited to the one shown in FIG. 5, but may be any device that performs a similar function even if it is equivalent to, or somewhat inferior to, the one shown in FIG. It can be easily realized by using electrical comparators, relays, etc., or by using software such as a microcomputer.

なお、変位検出手段11a,11bは駆動系
8,10の速度y〓a,y〓bを検出し、それを積分し
て変位を検出するものでもよい。
Note that the displacement detection means 11a, 11b may detect the speeds y〓a , y〓b of the drive systems 8, 10 and integrate them to detect the displacement.

通常の指示入力装置7としては、手動式の油圧
方向切換弁が用いられることが多い。この場合、
変位指示信号xaや速度指令値x〓aは明確な形で示さ
れ得ない。しかし、速度指令値x〓aを検出する代り
に、その油圧方向切換弁の操作位置が中立位置
が、圧油供給方向がどちら側かを検出することに
よつて、指令された速度が零か否か、行程限界を
越える方向か戻る方向かを判別することができる
ので、速度指令検出手段12aはこのような形の
検出手段を含むものである。
As the normal instruction input device 7, a manual hydraulic directional switching valve is often used. in this case,
The displacement instruction signal x a and the speed instruction value x〓 a cannot be clearly indicated. However, instead of detecting the speed command value The speed command detecting means 12a includes such a type of detecting means because it is possible to determine whether the direction is to exceed the stroke limit or to go back.

図示実施例では、主動側駆動系8及び従動側駆
動系10を共に停止させるようにしているが、こ
れに限定されるものではない。主動側駆動系8と
従動側駆動系10との間に遅れがない場合には、
系統制御手段14bを省くことができる。また、
操作者が主動側被制御部材の動きを目視しながら
操作できる場合には、系統制御手段14aを省く
ことができる。
In the illustrated embodiment, both the active drive system 8 and the driven drive system 10 are stopped, but the invention is not limited to this. If there is no delay between the driving side drive system 8 and the driven side drive system 10,
The system control means 14b can be omitted. Also,
If the operator can operate while visually observing the movement of the active-side controlled member, the system control means 14a can be omitted.

本発明において、主動側駆動系、従動側駆動系
の変位や速度指令とは、主動側被制御部材、従動
側被制御部材の変位や速度指令を含むものであ
る。即ち、変位検出手段、速度指令検出手段は、
被制御部材の変位、速度指令を検出するものをも
含む。
In the present invention, the displacement and speed commands of the driving side drive system and the driven side drive system include the displacement and speed commands of the driving side controlled member and the driven side controlled member. That is, the displacement detection means and the speed command detection means are
It also includes those that detect displacement and speed commands of controlled members.

以上説明したように、本発明によれば、主動側
駆動系と従動側駆動系のいずれかが行程限界に達
し、且つその行程限界を越える方向に速度指令が
なつている場合に、主動側駆動系と従動側駆動系
の少なくとも予め定められた一方を停止させるよ
うにしたから、従来のように行程限界よりδだけ
越えた値を論理演算装置の限界値にしなくても、
行程限界での始動時に停止がかかることがない。
また、行程限界で速度指令が零又は行程限界内へ
の移動を示す場合には、停止がかかることなく、
直ちに次の連動制御に移ることができ、操作を容
易にすることができる。更に、演算装置と従動側
被制御部材との間で行程限界での変位のずれを生
ないので、ずれの集積により演算装置と従動側被
制御部材とが同じ動きをしくなるおそれをなくす
ことができる。
As explained above, according to the present invention, when either the driving side drive system or the driven side drive system reaches the stroke limit and the speed command is in a direction exceeding the stroke limit, the driving side drive system Since at least one of the drive system and the driven drive system is stopped in advance, there is no need to set the value exceeding the stroke limit by δ as the limit value of the logical operation device, as in the conventional case.
There is no need to stop when starting at the stroke limit.
In addition, if the speed command is zero at the stroke limit or indicates movement within the stroke limit, there will be no stopping and
It is possible to immediately move on to the next interlocking control, making the operation easier. Furthermore, since there is no deviation in displacement at the stroke limit between the arithmetic device and the driven-side controlled member, there is no possibility that the arithmetic device and the driven-side controlled member will move incorrectly due to accumulation of deviations. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の油圧シヨベルを示す正面図、第
2図はバケツトに直線連動を行わせる場合のアー
ムシリンダの変位とブームシリンダの変位の関係
を示す図、第3図は従来の連動制御装置を示すブ
ロツク図、第4図は本発明の一実施例を示すブロ
ツク図、第5図は本発明の一実施例に係る論理演
算装置の一例を示す回路図である。 7…指示入力装置、8…主動側駆動系、9…演
算装置、10…従動側駆動系、11a,11b…
変位検出手段、12a,12b…速度指令検出手
段、13…論理演算装置、14a,14b…系統
制御手段、xa,xb…変位指示信号、x〓a,x〓b…速度
指令値、ya,yb…変位。
Figure 1 is a front view of a conventional hydraulic excavator, Figure 2 is a diagram showing the relationship between the displacement of the arm cylinder and the displacement of the boom cylinder when the bucket is linked in a straight line, and Figure 3 is a diagram of the conventional interlocking control device. FIG. 4 is a block diagram showing an embodiment of the present invention, and FIG. 5 is a circuit diagram showing an example of a logic operation device according to an embodiment of the present invention. 7... Instruction input device, 8... Main drive side drive system, 9... Arithmetic device, 10... Drive side drive system, 11a, 11b...
Displacement detection means, 12a, 12b...Speed command detection means, 13...Logic operation device, 14a, 14b...System control means, x a , x b ...Displacement instruction signal, x〓a , x〓b ...Speed command value, y a , y b ...displacement.

Claims (1)

【特許請求の範囲】[Claims] 1 指示信号を出力する指示入力装置と、指示入
力装置の指示信号により主動側を制御する主動側
駆動系と、主動側駆動系の変位と速度の少なくと
も一方を検出し、それに応じて従動側駆動系に対
する指示信号を演算する演算装置と、演算装置の
指示信号にもとづき従動側を制御する従動側駆動
系とを備えた連動制御装置において、主動側駆動
系及び従動側駆動系の変位を検出する変位検出手
段と、指示入力装置及び演算装置の指示信号から
主動側駆動系及び従動側駆動系への速度指令を検
出する速度指令検出手段と、変位検出手段による
変位及び速度指令検出手段による速度指令を入力
として、主動側駆動系と従動側駆動系のいずれか
が行程限界に達し、且つその行程限界を越える方
向に速度指令がなつている場合を判別する論理演
算装置と、論理演算装置の判別により、主動側駆
動系と従動側駆動系の少なくとも予め定められた
一方を停止させる系統制御手段とを設けたことを
特徴とする連動制御装置。
1. An instruction input device that outputs an instruction signal, a driving side drive system that controls the driving side based on the instruction signal of the instruction input device, and a driving side drive system that detects at least one of the displacement and speed of the driving side drive system and controls the driven side drive accordingly. In an interlocking control device that includes an arithmetic device that calculates instruction signals for the system and a driven drive system that controls the driven side based on the instruction signals of the arithmetic device, displacement of the main drive side drive system and the driven side drive system is detected. Displacement detection means; Speed command detection means for detecting speed commands to the driving side drive system and the driven side drive system from instruction signals from the instruction input device and the arithmetic unit; Displacement by the displacement detection means and speed command by the speed command detection means. A logical arithmetic device that uses input as input to determine when either the driving side drive system or the driven side drive system has reached the stroke limit and the speed command is in the direction of exceeding the stroke limit; An interlock control device characterized by comprising system control means for stopping at least a predetermined one of the driving side drive system and the driven side drive system.
JP8489682A 1982-05-21 1982-05-21 Interlock controller Granted JPS58202784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8489682A JPS58202784A (en) 1982-05-21 1982-05-21 Interlock controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8489682A JPS58202784A (en) 1982-05-21 1982-05-21 Interlock controller

Publications (2)

Publication Number Publication Date
JPS58202784A JPS58202784A (en) 1983-11-26
JPH0323313B2 true JPH0323313B2 (en) 1991-03-28

Family

ID=13843499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8489682A Granted JPS58202784A (en) 1982-05-21 1982-05-21 Interlock controller

Country Status (1)

Country Link
JP (1) JPS58202784A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244471A (en) * 1985-04-23 1986-10-30 株式会社 アマダ Master/slave type robot
JPS61244472A (en) * 1985-04-23 1986-10-30 株式会社 アマダ Master/slave type robot

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100770A (en) * 1974-01-14 1975-08-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100770A (en) * 1974-01-14 1975-08-09

Also Published As

Publication number Publication date
JPS58202784A (en) 1983-11-26

Similar Documents

Publication Publication Date Title
JP3215502B2 (en) Work machine operation range limiting device
KR970707351A (en) AREA LIMITING EXCAVATION CONTROL SYSTEM FOR CONSTRUCTION MACHINES
WO2018056289A1 (en) Construction machinery
EP0844338A2 (en) Hydraulic motor control system
JPH08333768A (en) Limited area excavation control device for construction machine
JP3235838B2 (en) Drive control device for hydraulic machine
JPH0719207A (en) Driving controller of hydraulic machinery
JP2802134B2 (en) Hydraulic excavator work equipment control device
JPH0366683B2 (en)
JPH0323313B2 (en)
JPH07207712A (en) Work scope limiting device for construction machine
JPH03208923A (en) Operation height limiting device
JP2000265498A (en) Control device for hydraulic machinery
JPH07109746A (en) Operation room interference prevention device of working machine
JP3455359B2 (en) Work range control device for construction machinery
JP3468331B2 (en) Construction machine interference prevention equipment
JP3262236B2 (en) Control equipment for construction machinery
WO2019179595A1 (en) An electrically powered hydraulic system and a method for controlling an electrically powered hydraulic system
JPH08302753A (en) Hydraulic construction equipment
JP2913250B2 (en) Working height limiting device for construction machinery
JP3466371B2 (en) Construction machine interference prevention equipment
JP3781920B2 (en) Area-limited excavation control device for construction machinery
JP2577551B2 (en) Actuator drive control device
JPH0447087B2 (en)
JP3727423B2 (en) Control method of electronically controlled work vehicle