JPH03232742A - Nonlinear optical quartz glass and production thereof - Google Patents

Nonlinear optical quartz glass and production thereof

Info

Publication number
JPH03232742A
JPH03232742A JP2029231A JP2923190A JPH03232742A JP H03232742 A JPH03232742 A JP H03232742A JP 2029231 A JP2029231 A JP 2029231A JP 2923190 A JP2923190 A JP 2923190A JP H03232742 A JPH03232742 A JP H03232742A
Authority
JP
Japan
Prior art keywords
quartz glass
iii
glass
group
nonlinear optics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2029231A
Other languages
Japanese (ja)
Inventor
Kazuo Kamiya
和雄 神屋
Minoru Taya
田家 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2029231A priority Critical patent/JPH03232742A/en
Publication of JPH03232742A publication Critical patent/JPH03232742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the subject quartz glass having high nonlinear effects and nonlinear sensitivity by dispersing fine crystal particles of a specific compound semiconductor in quartz glass and constructing the subject quartz glass. CONSTITUTION:Quartz glass constructed by dispersing fine crystal particles of a III-V compound semiconductor, preferably InP having <=1mu average particle diameter in quartz glass.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非線形光学用石英ガラス、特には光スィッチ、
双安定素子などとして有用とされる、III −V族化
合物半導体の結晶微粒子を分散させてなる非線形光学用
石英ガラスおよびその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to quartz glass for nonlinear optics, particularly optical switches,
The present invention relates to a quartz glass for nonlinear optics in which fine crystal particles of a III-V compound semiconductor are dispersed, which is useful as a bistable element, etc., and a method for manufacturing the same.

[従来の技術] 半導体の結晶微粒子を分散させた石英ガラスが光機能を
有していることから、このものは光スィッチ、双安定素
子として使用されており、これについては石英ガラスに
Cd5xSel−xなどのII−Vl族化合物半導体の
結晶微粒子を分散させたものが知られている[J、Op
t、Soc、八m、、73,647 (1983)参照
コ [発明が解決しようとする課!!!!]しかし、この種
のガラスは以前より光フィルターとして使用されていた
ものであることから容易に人手できるものであるが、こ
れはCdS、Se、−x自身が非線形感受率の必ずしも
大きいものではなく、さらにこのものはこれを構成する
ガラスが多成分ガラスであるために光を吸収する不純物
、欠陥中心が含まれており、したがってモの非線形効果
も不充分であるという不利がある。
[Prior art] Silica glass in which semiconductor crystal particles are dispersed has an optical function, so it is used as an optical switch or a bistable element. It is known that crystal fine particles of II-Vl group compound semiconductors such as [J, Op.
t, Soc, 8m, 73, 647 (1983) Reference [The problem to be solved by the invention! ! ! ! ] However, since this type of glass has been used as an optical filter for some time, it can be easily made by hand, but this is because CdS, Se, and -x themselves do not necessarily have high nonlinear susceptibilities. Furthermore, since the glass constituting this glass is a multi-component glass, it contains impurities and defect centers that absorb light, and therefore has the disadvantage that its nonlinear effect is insufficient.

[課題を解決するための手段] 本発明はこのような不利を解決することのできる非線形
光学用石英ガラスおよびその製造方法に関するものであ
り、これは石英ガラス中に平均粒子径が11以下のII
I −V族化合物半導体の結晶微粒子を分散してなるこ
とを特徴とする非線形光学用石英ガラスおよび火炎加水
分解によって生成したシリカガラス微粒子を堆積して得
られる多孔質ガラス母材をIII族およびV族の元素の
化合物を含む溶液中に浸漬したのち、水素雰囲気中にお
いて焼結温度以下の温度で還元してIII −V族化合
物半導体の結晶微粒子を生成させ、その後高温で焼成し
て透明ガラス化することを特徴とする非線形光学用石英
ガラスの製造方法に関するものである。
[Means for Solving the Problems] The present invention relates to a quartz glass for nonlinear optics and a method for manufacturing the same that can solve such disadvantages.
Silica glass for nonlinear optics is characterized by dispersing crystalline fine particles of group I-V compound semiconductors, and porous glass base material obtained by depositing fine silica glass particles produced by flame hydrolysis is used for group III and V compound semiconductors. After being immersed in a solution containing a compound of a group element, it is reduced in a hydrogen atmosphere at a temperature below the sintering temperature to produce crystalline fine particles of a III-V compound semiconductor, and then fired at a high temperature to form transparent glass. The present invention relates to a method of manufacturing quartz glass for nonlinear optics, characterized by:

すなわち、本発明者らは十分大きな非線形光学定数をも
つ非線形光学用石英ガラスを開発すべく種々検討した結
果、VAD法やOVD法などのような公知の方法でシリ
カガラス微粒子からなる多孔質ガラス母材を作り、これ
を■族およびV族の元素の化合物を含む溶液中に浸漬し
たのち、これを還元してIII −V族化合物半導体の
結晶微粒子とし、ついでこの多孔質ガラス母材を高温で
焼結して石英ガラスとすれば石英管中にIII −V族
化合物半導体の結晶微粒子が分散されたものが得られ、
このものはガラス体が石英ガラスであることからこれに
は光を吸収する不純物や欠陥中心が存在しないし、この
III −V族化合物半導体も平均粒径が1μm以下の
微粒子状のものとなるので非線形光学効果の大きいもの
になるということを見出して本発明を完成させた。
That is, as a result of various studies in order to develop quartz glass for nonlinear optics having a sufficiently large nonlinear optical constant, the present inventors found that a porous glass matrix made of silica glass fine particles was prepared using known methods such as the VAD method and the OVD method. After making a material and immersing it in a solution containing compounds of group I and V elements, it is reduced to crystal fine particles of a III-V compound semiconductor, and then this porous glass base material is heated at high temperature. When sintered to produce quartz glass, a quartz tube in which fine crystal particles of a III-V compound semiconductor are dispersed is obtained.
Since the glass body of this product is quartz glass, there are no impurities or defect centers that absorb light, and this III-V group compound semiconductor is also in the form of fine particles with an average particle size of 1 μm or less. The present invention was completed by discovering that the nonlinear optical effect is large.

以下にこれをさらに詳述する。This will be explained in further detail below.

[作 用] 本発明の非線形光学用石英ガラスは石英ガラスにIII
 −V族化合物半導体の結晶微粒子を分散させたもので
ある。
[Function] The quartz glass for nonlinear optics of the present invention has III
- This is a product in which crystal fine particles of a group V compound semiconductor are dispersed.

本発明の非線形光学用石英ガラスを構成する石英ガラス
は公知の方法で知られた合成石英ガラスとすればよい。
The quartz glass constituting the quartz glass for nonlinear optics of the present invention may be synthetic quartz glass made by a known method.

したがって、これは例えば四塩化けい素などのけい素化
合物を酸水素火炎と共に耐熱性の担体上に吹きつけてそ
の加水分解で発生したシリカガラス微粒子を担体上に堆
積して多孔質ガラス母材とし、ついでこれを高温で焼結
して透明ガラス化するという方法で作ったものとすれば
よい。
Therefore, for example, a silicon compound such as silicon tetrachloride is sprayed onto a heat-resistant carrier together with an oxyhydrogen flame, and the silica glass fine particles generated by the hydrolysis are deposited on the carrier to form a porous glass base material. , which is then sintered at high temperature to form transparent glass.

また、この石英ガラスに分散されるIII −V族化合
物半導体も公知のものでよく、したがってこれにはIn
P、 InAs、 GaP、 GaAs、 AjP、 
ARAsなどが例示されるが、これはこれらIII族と
V族の元素の化合物、例えばInPO,、GaP0.、
1PO4などの化合物の溶液を作り、これに上記した多
孔質ガラス母材を浸漬してこれらの化合物を多孔質ガラ
ス母材中に十分に浸透させたのち、これを還元してm 
−V族化合物半導体とすればよく、これによればIII
 −V族化合物半導体を平均粒径1μm以下の結晶微粒
子として得ることができる。
Further, the III-V compound semiconductor dispersed in this quartz glass may be of a known type, and therefore it may contain In.
P, InAs, GaP, GaAs, AjP,
Examples include ARAs, which are compounds of these Group III and V elements, such as InPO, GaP0. ,
A solution of compounds such as 1PO4 is prepared and the porous glass base material described above is immersed in the solution to allow these compounds to fully penetrate into the porous glass base material, and then this is reduced to form m.
-V group compound semiconductor may be used, and according to this, III
-V group compound semiconductor can be obtained as crystal fine particles with an average particle size of 1 μm or less.

このようにして得られたIll −V族化合物半導体の
結晶微粒子を分散させた多孔質ガラス母材はついでこれ
を高温で焼結して透明ガラス体とすれば石英ガラス中に
III −V族化合物半導体の結晶微粒子を分散させた
本発明の非線形光学用石英ガラスとなるのであるが、こ
のものはガラスが高純度の石英ガラスで光を吸収する不
純物や欠陥中心を全く含有していないので非線形効果の
大きいものとなり、これはまたこれに分散されている化
合物半導体がIII −V族系のものとされるので非線
形感受率の大きいものとなり、十分大きな非線形光学定
数をもつものになるという有利性が与えられる。
The porous glass base material in which the crystalline particles of the Ill-V group compound semiconductor thus obtained are then sintered at high temperature to form a transparent glass body. The quartz glass for nonlinear optics of the present invention has semiconductor crystal fine particles dispersed in it, and since this glass is highly pure quartz glass and does not contain any light-absorbing impurities or defect centers, there is no nonlinear effect. This also has the advantage of having a large nonlinear susceptibility and a sufficiently large nonlinear optical constant since the compound semiconductor dispersed therein is of the III-V group. Given.

つぎに本発明の非線形光学用石英ガラスの製造方法につ
いて述へる。
Next, a method for manufacturing silica glass for nonlinear optics according to the present invention will be described.

本発明の非線形光学用石英ガラスを構成する石英ガラス
は上記したように四塩化けい素などのけい素化合物の火
炎加水分解法で作られたものとされるので、この多孔質
ガラス母材は担体として石英ガラス棒を使用する公知の
VAD法、 OVD法で作られたものとすればよい。し
かし、このものは後述するIII −V族化合物の溶液
に浸漬したときに微粒子間の凝集力が失なわれて破壊し
ないだけの機械的強度を有するものであることが必要と
されるので、平均かさ密度が0.3g/cm3以上のも
のとすることかよいか、この多孔質ガラス母材をIII
 −V化合物の溶液に浸漬したときのIII −V族化
合物の拡散移動を容易なものとするためにはこのかさ密
度は1.0g/cm”以下とすることがよい。なお、こ
の多孔質ガラス母材はシリカ単独のものであってもよい
が、けい素化合物の加水分解によるシリカ生成時にけい
素化合物に光フアイバ用のドーパントとしてよく知られ
ている四塩化ゲルマニウムを添加してゲルマニウム(G
e02)を含有するものとしてもよく、さらには先導波
構造を形成するのに必要な屈折率分布を有するものとし
てもよい。
Since the quartz glass constituting the quartz glass for nonlinear optics of the present invention is made by the flame hydrolysis method of silicon compounds such as silicon tetrachloride as described above, this porous glass base material is used as a carrier. It may be made by the well-known VAD method or OVD method using a quartz glass rod. However, this material needs to have enough mechanical strength to not break due to loss of cohesive force between fine particles when immersed in a solution of III-V group compounds, which will be described later. It is recommended that the bulk density is 0.3 g/cm3 or more.
In order to facilitate the diffusion and movement of the III-V group compound when immersed in a solution of the -V compound, the bulk density is preferably 1.0 g/cm" or less. Note that this porous glass The base material may be made of silica alone, but germanium (G
e02), or may have a refractive index distribution necessary to form a leading wave structure.

また、ここに使用されるIII族およびV族の元素の化
合物は任意のものとすればよく、これにはInPO4,
GaCu a、 An PO2などが例示される。これ
らの化合物は上記した多孔質ガラス母材に含浸させるた
めに溶液状として供給する必要があるが、この溶剤につ
いては特にこれを限定する必要はない。したがってこれ
は水溶液としてもよいのであるが、水を使用すると多孔
質ガラス母材の凝集力を弱める作用が強いので、これは
III −V族化合物の溶解度、多孔質ガラス母材への
浸透性、乾燥速度の面からメタノール、エタノールのよ
うなアルコールとすることが好ましい。このIII −
V族化合物の多孔質ガラス母材への含浸は上記したII
I −V族化合物の溶液に多孔質ガラス母材を単に浸漬
すればよく、この浸漬によって多孔質ガラス母材にII
I −V族化合物を含浸させたのち、空気中で風乾して
溶剤を揮散させればよい。
Further, the compounds of Group III and Group V elements used here may be arbitrary, and include InPO4,
Examples include GaCu a and An PO2. These compounds need to be supplied in the form of a solution in order to impregnate the above-mentioned porous glass base material, but there is no particular need to limit the solvent. Therefore, this may be prepared as an aqueous solution, but since water has a strong effect of weakening the cohesive force of the porous glass matrix, this will depend on the solubility of the III-V compound, its permeability into the porous glass matrix, From the viewpoint of drying speed, alcohols such as methanol and ethanol are preferred. This III-
Impregnation of the V group compound into the porous glass base material is carried out in the above-mentioned II.
It is sufficient to simply immerse the porous glass base material in a solution of the I-V group compound, and this immersion gives the porous glass base material II
After impregnating the I-V compound, it may be air-dried in the air to volatilize the solvent.

このようにして得たIII −V族化合物を含浸した多
孔質ガラス母材はこのIII −V族化合物を還元して
これをIII −V族化合物半導体とする必要があるが
、これはIII −V族化合物を含浸した多孔質ガラス
母材を水素雰囲気中で多孔質ガラス母材の焼結温度以下
の温度に加熱すればよく、この加熱によってIII −
V族化合物は還元されてIII −V族化合物半導体と
なるが、この加熱温度は400〜1,200℃とすれば
よい。なお、このようにして得られるIII −V族化
合物半導体は平均粒径が1μm以下の結晶微粒子として
多孔質ガラス母材中に存在するようになるが、この結晶
微粒子の粒子径を調整するためにはついで600〜1,
200℃で加熱ニージンクすればよい。
The porous glass matrix impregnated with the III-V group compound thus obtained needs to be converted into a III-V group compound semiconductor by reducing the III-V group compound. The porous glass base material impregnated with the group compound may be heated in a hydrogen atmosphere to a temperature below the sintering temperature of the porous glass base material, and by this heating, III-
The V group compound is reduced to become a III-V group compound semiconductor, and the heating temperature may be 400 to 1,200°C. The III-V group compound semiconductor obtained in this way exists in the porous glass base material as crystalline particles with an average particle size of 1 μm or less, but in order to adjust the particle size of these crystalline particles, Then 600~1,
It may be heated at 200°C.

つぎにこのIII −V族化合物半導体粒子を含有する
多孔質ガラス母材はこれを焼結して石英ガラスとすれば
目的とする非線形光学用石英ガラスとすることかできる
。この焼結はこの多孔質ガラス母材を電気炉中で1.2
00〜1.800℃に加熱すればよいが、この場合の雰
囲気は還元剤としての水素とガスの置換を容易にするた
めと安全のためのヘリウムとの混合ガス雰囲気とするこ
とが好ましく、これによれば多孔質ガラス母材が透明な
石英ガラスとなるので石英ガラス中にIII −V族化
合物半導体の結晶微粒子が分散された非線形光学用石英
ガラスを容易に得ることができる。なお、この石英ガラ
ス中に分散されている非線形光学用石英ガラスの粒子径
を調整するためにはこれを600〜1.200℃に加熱
すればよい。
Next, the porous glass base material containing the III-V group compound semiconductor particles can be sintered to form quartz glass, thereby producing the intended quartz glass for nonlinear optics. This sintering process is performed by sintering this porous glass base material in an electric furnace.
The atmosphere may be heated to 00 to 1.800°C, but the atmosphere in this case is preferably a mixed gas atmosphere of hydrogen as a reducing agent and helium to facilitate gas replacement and for safety. According to the method, since the porous glass base material is transparent quartz glass, it is possible to easily obtain a quartz glass for nonlinear optics in which fine crystal particles of a III-V compound semiconductor are dispersed in the quartz glass. Incidentally, in order to adjust the particle diameter of the quartz glass for nonlinear optics dispersed in this quartz glass, it is sufficient to heat it to 600 to 1.200°C.

[実施例コ つぎに本発明の実施例をあげる。[Example code] Next, examples of the present invention will be given.

実施例 石英製同心多重管バーナーに水素ガスを5.5 ILZ
分、酸素ガスを8.017分供給して酸水素火炎を形成
させ、このバーナー中心部に酸素ガス0.17ρ/分を
キャリヤーガスとして四塩化けい素0.21/分を供給
し、この火炎を担体としての直径20mmの石英ガラス
棒に当て、四塩化けい素の火炎加水分解で発生したシリ
カガラス微粒子を担体の軸方向に堆積成長させ、8時間
運転したところ、外径45mm、長さ300mm 、重
さ170gで平均かさ密度が0.35g/cm3である
多孔質シリカガラス母材が得られた。
Example 5.5 ILZ of hydrogen gas in a quartz concentric multi-tube burner
Oxygen gas was supplied for 8.017 minutes to form an oxyhydrogen flame, and silicon tetrachloride 0.21/min was supplied to the center of the burner using oxygen gas 0.17ρ/min as a carrier gas, and this flame was applied to a quartz glass rod with a diameter of 20 mm as a carrier, and the silica glass fine particles generated by flame hydrolysis of silicon tetrachloride were deposited and grown in the axial direction of the carrier. When operated for 8 hours, the outer diameter was 45 mm and the length was 300 mm. A porous silica glass preform having a weight of 170 g and an average bulk density of 0.35 g/cm3 was obtained.

ついで、この多孔質ガラス母材をリン酸インジウムの5
重量%メタノール溶液に浸漬してこの溶液をガラス母材
の内部に浸透させ、空気中に12時間放置して風乾させ
たのち、電気炉中において水素、ヘリウム混合ガス雰囲
気に1,200℃に加熱してリン酸インジウムをInP
のIII −V族化合物半導体に還元させたところ、平
均粒子径が0.1μmであるInP粒子を含む多孔質ガ
ラス母材が得られた。
Next, this porous glass base material was coated with indium phosphate.
The glass base material was immersed in a wt% methanol solution to infiltrate the inside of the glass base material, left in the air for 12 hours to air dry, and then heated to 1,200°C in a hydrogen and helium mixed gas atmosphere in an electric furnace. to convert indium phosphate into InP
As a result, a porous glass base material containing InP particles having an average particle diameter of 0.1 μm was obtained.

つぎにこの多孔質ガラス母材を電気炉中で水素・ヘリウ
ムの混合ガス;囲気下に1,600℃に2時間加熱した
ところ、これは透明ガラス化して石英カラスとなったの
で、これを電子顕微鏡で観察したところ、これには平均
粒子径が0.1μmであるInP微結晶がほぼ均一に分
散されていることが確証された。
Next, this porous glass base material was heated to 1,600℃ for 2 hours in an electric furnace with a mixed gas of hydrogen and helium. When observed under a microscope, it was confirmed that InP microcrystals having an average particle diameter of 0.1 μm were almost uniformly dispersed.

また、この石英ガラスについてはこれを導波路構造とし
て縮退四光子混合による位相共役波の発生効率から三次
の非線形感受率を求めたところ1.5X 10’ eS
uとなったので、これに非線形光学効果のあることが確
認された。
Also, regarding this quartz glass, the third-order nonlinear susceptibility was determined from the generation efficiency of phase conjugate waves by degenerate four-photon mixing using this as a waveguide structure, and it was 1.5X 10' eS.
It was confirmed that this has a nonlinear optical effect.

[発明の効果コ 本発明は非線形光学用石英ガラスおよびその製造方法に
関するもので、これは前記したように石英ガラス中に平
均粒子径が1μm以下のIII −V族化合物半導体の
結晶微粒子を分散してなる非線形光学用石英ガラス、お
よび火炎加水分解によって得た多孔質ガラス母材をII
I −V族化合物溶液に浸漬したのち還元してIII 
−V族化合物半導体の結晶微粒子を生成させ、ついで高
温で焼成して多孔質ガラス母材を石英ガラスとすること
による非線形光学用石英ガラスの製造法に関するもので
あるか、このようにして得られた石英ガラスは高純度で
あり、光を吸収する不純物、欠陥中心を含んでいないの
で非線形効果の大きいものとなるほか、ここに分散され
ている化合物半導体力筒II −Vのものであるので非
線形感受率の大きいものとなり、十分大きな非線形光学
定数をもつものになるという有利性が与えられるし、こ
の石英ガラスを前記した方法で製造すれば目的とする非
線形光学用石英ガラスを容易かつ効率よく得ることがで
きるという有利性が与えられる。
[Effects of the Invention] The present invention relates to a quartz glass for nonlinear optics and a method for manufacturing the same, and as described above, this involves dispersing fine crystal particles of a III-V compound semiconductor having an average particle size of 1 μm or less in a quartz glass. quartz glass for nonlinear optics, and porous glass matrix obtained by flame hydrolysis.
After immersing in a solution of a group I-V compound, it is reduced to form III
- A method for producing quartz glass for nonlinear optics by producing crystalline fine particles of a group V compound semiconductor and then firing at a high temperature to form a porous glass base material into quartz glass. The quartz glass is of high purity and does not contain light-absorbing impurities or defect centers, so it has a large nonlinear effect, and it also has a nonlinear effect because it is made of compound semiconductor power tube II-V dispersed here. It has the advantage of having a high susceptibility and a sufficiently large nonlinear optical constant, and if this quartz glass is manufactured by the method described above, the desired quartz glass for nonlinear optics can be obtained easily and efficiently. This gives you the advantage of being able to.

Claims (1)

【特許請求の範囲】 1、石英ガラス中に平均粒子径が1μm以下のIII−V
族化合物半導体の結晶微粒子を分散してなることを特徴
とする非線形光学用石英ガラス。 2、III−V族化合物半導体がInPである請求項1に
記載の非線形光学用石英ガラス。 3、火炎加水分解によって生成したシリカガラス微粒子
を堆積して得られる多孔質ガラス母材をIII族およびV
族の元素の化合物を含む溶液中に浸漬したのち、水素雰
囲気中において焼結温度以下の温度で還元してIII−V
族化合物半導体の結晶微粒子を生成させ、その後高温で
焼結して透明ガラス化することを特徴とする非線形光学
用石英ガラスの製造方法。 4、III族およびV族の元素の化合物がInPO_4で
ある請求項3に記載の非線形光学用石英ガラスの製造方
法。 5、透明ガラス化を水素雰囲気下で行なう請求項3に記
載の非線形光学用石英ガラスの製造方法。 6、請求項3、4または5で得た石英ガラスを加熱処理
して結晶粒子を成長させる請求項3、4または5に記載
した非線形光学用石英ガラスの製造方法。
[Claims] 1. III-V with an average particle size of 1 μm or less in quartz glass
A quartz glass for nonlinear optics, characterized in that it is made by dispersing fine crystal particles of group compound semiconductors. 2. The quartz glass for nonlinear optics according to claim 1, wherein the III-V group compound semiconductor is InP. 3. Group III and V porous glass matrix obtained by depositing silica glass fine particles produced by flame hydrolysis
After being immersed in a solution containing a compound of a group element, it is reduced in a hydrogen atmosphere at a temperature below the sintering temperature to form III-V.
1. A method for producing quartz glass for nonlinear optics, characterized by producing crystalline fine particles of a group compound semiconductor, and then sintering at a high temperature to form transparent glass. 4. The method for producing quartz glass for nonlinear optics according to claim 3, wherein the compound of Group III and Group V elements is InPO_4. 5. The method for producing quartz glass for nonlinear optics according to claim 3, wherein the transparent vitrification is performed in a hydrogen atmosphere. 6. The method for producing quartz glass for nonlinear optics according to claim 3, 4, or 5, wherein the quartz glass obtained in claim 3, 4, or 5 is heat-treated to grow crystal grains.
JP2029231A 1990-02-08 1990-02-08 Nonlinear optical quartz glass and production thereof Pending JPH03232742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029231A JPH03232742A (en) 1990-02-08 1990-02-08 Nonlinear optical quartz glass and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029231A JPH03232742A (en) 1990-02-08 1990-02-08 Nonlinear optical quartz glass and production thereof

Publications (1)

Publication Number Publication Date
JPH03232742A true JPH03232742A (en) 1991-10-16

Family

ID=12270453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029231A Pending JPH03232742A (en) 1990-02-08 1990-02-08 Nonlinear optical quartz glass and production thereof

Country Status (1)

Country Link
JP (1) JPH03232742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258810A (en) * 1999-03-08 2000-09-22 Shin Etsu Chem Co Ltd Secondary optical nonlinear glass material and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258810A (en) * 1999-03-08 2000-09-22 Shin Etsu Chem Co Ltd Secondary optical nonlinear glass material and its production

Similar Documents

Publication Publication Date Title
JPS60239337A (en) Preparation of parent glass material for optical fiber
CN1030221A (en) The photoconductive fiber making method
JPS6038345B2 (en) Manufacturing method of glass material for optical transmission
US4643751A (en) Method for manufacturing optical waveguide
Edahiro et al. Deposition properties of high-silica particles in the flame hydrolysis reaction for optical fiber fabrication
JP2003026438A (en) Method and apparatus for manufacturing optical fiber using improved oxygen stoichiometric ratio and deuterium exposure
CN110228790A (en) A method of semiconductor microactuator ball particle is prepared based on fluid instability in optical fiber
JPH03232742A (en) Nonlinear optical quartz glass and production thereof
JP2004002106A (en) Low loss optical fiber preform and its manufacturing method
JPS60260436A (en) Manufacture of glass base material for optical fiber
US7058269B2 (en) Reconstructed glass for fiber optic applications
JPH0797223A (en) Production of nonlinear optical quartz glass
CN111653929A (en) Molybdenum trioxide saturable absorber based on intercalated tin atoms, preparation method thereof and fiber laser
JPH0250064B2 (en)
JPS6131324A (en) Production of base material for optical fiber
US11655183B2 (en) System and method for optical fiber preform preparation via high-surface-area coating
JPH0492825A (en) Production of silica glass and optical waveguide using same silica glass
JPH11180719A (en) Production of glass preform for optical fiber
JPH02217322A (en) Production of glass containing semiconductor fine particle dispersed therein
JPH0244031A (en) Production of nonlinear optical glass
JP2006044995A (en) Doped silica glass and its manufacturing method
JPH01219804A (en) Production of thin glass film having functionability
CN117361856A (en) Fluorine-doped quartz glass and preparation method and application thereof
JPS582170B2 (en) Method for manufacturing base material for optical functional elements
JPH085684B2 (en) Quartz glass manufacturing method