JPH03232723A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH03232723A
JPH03232723A JP2030489A JP3048990A JPH03232723A JP H03232723 A JPH03232723 A JP H03232723A JP 2030489 A JP2030489 A JP 2030489A JP 3048990 A JP3048990 A JP 3048990A JP H03232723 A JPH03232723 A JP H03232723A
Authority
JP
Japan
Prior art keywords
oxide
superconductor
layer
substrate
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2030489A
Other languages
Japanese (ja)
Inventor
Hajime Yuzurihara
肇 譲原
Wasaburo Ota
太田 和三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2030489A priority Critical patent/JPH03232723A/en
Publication of JPH03232723A publication Critical patent/JPH03232723A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a lamination type superconductor capable of showing the critical temperature of the superconductive oxide itself by laminating a silicon substrate, an oxide ground layer having a spinel type crystal structure and an oxide superconductor layer in order. CONSTITUTION:(a) A substrate (Silicon is suitable), (b) an oxide ground layer [a layer having spinel type crystal structure, composed of oxide represented by AB2O4 (A is Zn or Mg; B is Fe, Al or Ga) and having 200Angstrom -1mum, especially 500-2000Angstrom thickness] and (c) an oxide superconductor layer [especially oxide superconductor thin film of Y (or Er)-Ba-Cu-O-based oxide, Bi-Sr-Ca-Cu-O-based oxide, etc., having 1000Angstrom -1mum, especially 1000-4000Angstrom thickness] are laminated in that order to obtain the objective superconductor applicable to a device composed of combined semiconductors such as a superconductive transistor.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、イツトリウム系、バリウム系等を含む酸化物
超伝導層を有する積層型超伝導体に関する。とくに本発
明はY(またはEr)−Ba−Cu−0系、B1−5 
r−Ca−Cu−0系等の酸化物超伝導体薄膜を有する
積層型超伝導体に関する。これらの超伝導体はエレクト
ロニクス分野、とくに超伝導トランジスタ分野への応用
が可能である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a stacked superconductor having an oxide superconducting layer containing yttrium, barium, or the like. In particular, the present invention relates to Y (or Er)-Ba-Cu-0 system, B1-5
The present invention relates to a stacked superconductor having a thin film of an oxide superconductor such as r-Ca-Cu-0. These superconductors can be applied to the electronics field, especially to the superconducting transistor field.

〔従来技術〕[Prior art]

従来、Y系、Bi系等の酸化物超伝導体層を形成する基
板としては、S r T x Oa単結晶基板、MgO
単結晶基板、SiO,基板、ガラス基板、シリコン基板
等が用いられている。
Conventionally, substrates for forming Y-based, Bi-based, etc. oxide superconductor layers include S r T x Oa single crystal substrates, MgO
Single crystal substrates, SiO substrates, glass substrates, silicon substrates, etc. are used.

ところが、酸化物超伝導層を半導体と結合させてエレク
トロニクス分野に応用することを考えると、基板として
シリコンを使用することが好ましい。
However, when considering applying the oxide superconducting layer to the electronics field by combining it with a semiconductor, it is preferable to use silicon as the substrate.

しかし、シリコンを基板として使用してみると、その臨
界温度は超伝導性酸化物の本来持っている臨界温度より
、かなり低下してしまう。
However, when silicon is used as a substrate, its critical temperature is considerably lower than that of superconducting oxides.

これはシリコン基板上に超伝導性酸化物薄膜を形成する
ため基板が加熱されたり、アニールされたりして、65
0℃〜800℃という高温の熱履歴を受けること、およ
びこれらの高温時にシリコンと超伝導酸化物間に相互に
拡散現象がおこり、酸化物層の超伝導特性やシリコン基
板の特性を悪化させることに原因があるものと考えられ
る。
This is because the substrate is heated or annealed to form a superconducting oxide thin film on the silicon substrate.
It is subject to a thermal history at high temperatures of 0°C to 800°C, and at these high temperatures, a mutual diffusion phenomenon occurs between silicon and superconducting oxide, which deteriorates the superconducting properties of the oxide layer and the properties of the silicon substrate. This is thought to be caused by.

このような超伝導層の超伝導特性の悪影響を避けるため
には超伝導層の膜厚を厚くしなければならない。
In order to avoid such adverse effects of the superconducting properties of the superconducting layer, the thickness of the superconducting layer must be increased.

膜厚を厚くすることにともなう問題点を解消するため超
伝導性酸化物の格子定数に近いMgO,ZrO2,Ca
F2.Pt等の単結晶状で、しかも−軸配向した中間層
を設ける方法が考えられるが、その成果は今一つ不充分
である。
In order to solve the problems associated with increasing the film thickness, MgO, ZrO2, Ca
F2. A method of providing an intermediate layer made of a single crystal of Pt or the like and oriented along the -axis has been considered, but the results are still unsatisfactory.

〔目  的〕〔the purpose〕

本発明の目的は、超伝導性酸化物それ自体が本来持って
いる臨界温度を発揮できる積層型超伝導体を提供する点
にある。
An object of the present invention is to provide a layered superconductor that can exhibit the critical temperature inherent to the superconducting oxide itself.

また、”本発明の他の目的は、基板としてシリコンを用
いたとき、シリコンと超伝導性酸化物が相互に悪影響を
およぼさない積層型超伝導体を提供する点にある。
Another object of the present invention is to provide a stacked superconductor in which silicon and superconducting oxide do not adversely affect each other when silicon is used as a substrate.

〔構  成〕〔composition〕

本発明は、基板、スピネル型結晶構造をもつ一般式 (たダし、式中、AはZnまたはMg、BはFe、 A
 Q + Gaよりな る群から選らばれた 少くとも1種の元素。) で示される酸化物下地層、酸化物超伝導層の順に積層さ
れていることを特徴とする超伝導体に関する。
The present invention provides a substrate with a general formula (Tadashi) having a spinel type crystal structure, where A is Zn or Mg, B is Fe, and A
At least one element selected from the group consisting of Q + Ga. ) The present invention relates to a superconductor characterized in that an oxide underlayer and an oxide superconducting layer shown in the following are laminated in this order.

酸化物下地層の膜厚は200人〜1μ閣、とくに500
人〜2000人が好ましく、超伝導層の膜厚は1000
人〜1μm、とくに1000人〜4000人が好ましい
The thickness of the oxide base layer is 200 to 1 μm, especially 500 μm.
The number of people is preferably 2000 to 2000, and the thickness of the superconducting layer is 1000.
1 μm to 1 μm, particularly preferably 1000 to 4000 people.

前記基板としては、従来から使用されている5rTiO
,やMgO等の単結晶や多結晶シリコンも使用できるが
、本発明においてはシリコン単結晶がもっとも好ましく
、結晶面としては、(1,1,1)、(100)、(1
10)面が用いられる。
The substrate is 5rTiO, which has been used conventionally.
, MgO, etc., or polycrystalline silicon can also be used, but silicon single crystal is most preferred in the present invention, and the crystal planes are (1,1,1), (100), (1
10) Surfaces are used.

っぎに、一般式AB、04をもつスピネル型結晶構造の
酸化物について説明する。
Next, an oxide having a spinel crystal structure having the general formula AB, 04 will be explained.

Aは2価の金属イオン、Bは3価の金属イオンで、Aは
Mg、Zn、BはFe、Al、Gaよりなる群から選ら
ばれる。
A is a divalent metal ion, B is a trivalent metal ion, A is Mg, Zn, and B is selected from the group consisting of Fe, Al, and Ga.

Feを含む場合は強磁性を持たないほうが望ましい* 
ZnFe20.は極低温領域で反強磁性を示し、それ以
上では常磁性である。非磁性材料ではZ n G a2
0.、 M g G a、04などがある。
If it contains Fe, it is preferable not to have ferromagnetism*
ZnFe20. exhibits antiferromagnetism at extremely low temperatures and is paramagnetic above that temperature. For non-magnetic materials, Z n Ga2
0. , Mg Ga, 04, etc.

これらは、格子定数が8.2〜8.4人種度である。These have a lattice constant of 8.2 to 8.4 chromaticity.

一方、YlB a2Cu、Ox、Bi25 r、Ca2
Cu、Oxに代表される超伝導体の格子定数は。
On the other hand, YlB a2Cu, Ox, Bi25 r, Ca2
What is the lattice constant of superconductors such as Cu and Ox?

3.83〜3.88人、5.4人である。また、Siの
格子定数は、5.41人である。
3.83 to 3.88 people, 5.4 people. Further, the lattice constant of Si is 5.41.

本発明では、超伝導薄膜を下地層上にエピタキシャル成
長させることが好ましいがその条件は、いくつかあるが
その一つとして格子定数のfittingがあり、その
他熱膨張係数、応力、下地層の元素と超伝導層の元素の
結合状態等がある。下地層がSi基板上でスピネル構造
のC軸に配向し、超伝導層は同じくc軸に配向した膜に
なっていることが好ましい。Si、スピネル(A B 
z O4)−超伝導層は結晶構造が共に方晶系に属する
ものであり、エピタキシャル成長に至らないまでも、−
軸配向膜になることが十分可能になる。
In the present invention, it is preferable to epitaxially grow the superconducting thin film on the underlying layer, but there are several conditions, one of which is the fitting of the lattice constant, as well as thermal expansion coefficient, stress, elements of the underlying layer, and superconductivity. There are bonding states of elements in the conductive layer, etc. Preferably, the underlayer is oriented along the C-axis of a spinel structure on the Si substrate, and the superconducting layer is also a film oriented along the c-axis. Si, spinel (A B
z O4) - The crystal structure of the superconducting layer belongs to the cubic system, and even if it does not lead to epitaxial growth, -
It is fully possible to form an axially oriented film.

薄膜作製手段としては、下地層は通常のrfスパッタリ
ング法かあるいは、対向ターゲットスパッタ法で作製し
、超伝導膜はプラズマ蒸着法(蒸発源上にフィラメント
、グリッドを設け、これにより酸素ガス、蒸発物をプラ
ズマ状態にし作製する方法)により作製する。Si基板
を400℃から650℃で加熱してas−depoで下
地膜と超伝導膜ができることが必要である。
As for thin film production methods, the base layer is produced by the usual RF sputtering method or the facing target sputtering method, and the superconducting film is produced by plasma evaporation method (a filament and a grid are provided on the evaporation source, thereby removing oxygen gas and evaporated substances. It is manufactured by a method in which the plasma is made into a plasma state. It is necessary to heat the Si substrate at 400° C. to 650° C. to form a base film and a superconducting film as-depo.

〔実施例〕〔Example〕

10m10mX10.5mのSi基板〔結晶面(100
))上に、対向ターゲットスパッタリングでZnGa、
O,膜を作製する。ターゲットはZn:Ga:O=1:
2:4にほぼ一致するように組成を合わせ、焼結したタ
ーゲットを用いる。
10m x 10.5m Si substrate [crystal plane (100
)) ZnGa by facing target sputtering,
O, prepare a membrane. Target is Zn:Ga:O=1:
A sintered target with a composition adjusted to approximately match the ratio of 2:4 is used.

Arと02の混合ガスをもちいて、酸素分圧は、1mt
orrから5mtorr (0,l P aからIPa
)で行ない、基板温度は450℃から600℃の範囲で
行なった。投入電力は、0.8A、1.5KVで、基板
加熱温度550℃、酸素分圧2mtorrで行なった。
Using a mixed gas of Ar and 02, the oxygen partial pressure is 1 mt.
orr to 5mtorr (0, l Pa to IPa
), and the substrate temperature was in the range of 450°C to 600°C. The input power was 0.8 A and 1.5 KV, the substrate heating temperature was 550° C., and the oxygen partial pressure was 2 mtorr.

Arと02の比は4:1であった。The ratio of Ar and 02 was 4:1.

こうして得られた薄膜は、X線回折結果からC軸配向し
ており、膜厚1000人、膜表面は平坦であった。
The thin film thus obtained was C-axis oriented according to the results of X-ray diffraction, had a thickness of 1000 mm, and had a flat film surface.

次に真空槽を予め10−3から10−’Paに引いてお
き酸素ガスを導入する。その時の圧力は10−1から1
0−”Paであった。電子銃の蒸発源にはY金属、Ba
金属、Cu金属が王台の銃に各々入れてあり、加速電圧
10KVで各材料を蒸発させた。先に作製したZnGa
2O,膜被覆81基板を使い加熱温度は550℃にして
行なった。一方、蒸発源上に設けであるタングステンフ
ィラメントには400Wの電力を投入し、熱電子を放出
させた。その熱電子は、更にその上部に設けである網目
状のグリッドに印加された正の電圧1(IOVにより、
引っ張られここで捕らえられるようになっている。この
間、酸素及び蒸発材料は一部イオン化され、この領域に
プラズマが発生する。
Next, the vacuum chamber was previously drawn to 10-3 to 10-'Pa, and oxygen gas was introduced. The pressure at that time is 10-1 to 1
0-''Pa.The evaporation source of the electron gun contains Y metal, Ba
Metal and Cu metal were each placed in a royal gun, and each material was evaporated at an accelerating voltage of 10 KV. The previously prepared ZnGa
The heating temperature was 550° C. using a 2O2 film-coated 81 substrate. On the other hand, a power of 400 W was applied to the tungsten filament provided on the evaporation source to cause thermionic electrons to be emitted. The thermoelectrons are further absorbed by a positive voltage of 1 (IOV) applied to a mesh grid provided above.
It is being pulled and captured here. During this time, the oxygen and evaporated material are partially ionized and a plasma is generated in this region.

ただし基板は、接地しである。However, the board is grounded.

こうして得られた膜の厚さは2000人、配向軸はC軸
になっており、膜表面は平滑で緻密な膜になっていた。
The thickness of the thus obtained film was 2000 mm, the orientation axis was the C axis, and the film surface was smooth and dense.

臨界温度は、電気抵抗と磁化率測定から約80にとなっ
た。
The critical temperature was found to be approximately 80°C from electrical resistance and magnetic susceptibility measurements.

[効  果〕 以上のAB204スピネル型結晶構造を持つ下地層を用
いることで、直接Si基板上に成膜した超伝導薄膜に比
べ、臨界温度の上昇や膜質が改善されるとともに、超伝
導トランジスタなどの半導体を組合せた素子への応用が
可能となった。
[Effects] By using the base layer with the AB204 spinel crystal structure described above, the critical temperature can be increased and the film quality can be improved compared to a superconducting thin film deposited directly on a Si substrate, and it can also be used for superconducting transistors, etc. It has become possible to apply this technology to devices that combine these semiconductors.

さらに、基板加熱温度の低温化も図られた。Furthermore, the substrate heating temperature was also lowered.

Claims (1)

【特許請求の範囲】 1、基板、スピネル型結晶構造をもつ一般式AB_2O
_4 (たゞし、式中、AはZnまたはMg、 BはFe、Al、Gaよりな る群から選らばれた 少くとも1種の元素。) で示される酸化物下地層、酸化物超伝導層の順に積層さ
れていることを特徴とする伝導体。 2、前記基板がシリコンであることを特徴とする請求項
1記載の超伝導体。
[Claims] 1. Substrate, general formula AB_2O having a spinel crystal structure
_4 (In the formula, A is Zn or Mg, and B is at least one element selected from the group consisting of Fe, Al, and Ga.) Oxide base layer and oxide superconducting layer represented by A conductor characterized by being laminated in this order. 2. The superconductor according to claim 1, wherein the substrate is silicon.
JP2030489A 1990-02-09 1990-02-09 Superconductor Pending JPH03232723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2030489A JPH03232723A (en) 1990-02-09 1990-02-09 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2030489A JPH03232723A (en) 1990-02-09 1990-02-09 Superconductor

Publications (1)

Publication Number Publication Date
JPH03232723A true JPH03232723A (en) 1991-10-16

Family

ID=12305250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2030489A Pending JPH03232723A (en) 1990-02-09 1990-02-09 Superconductor

Country Status (1)

Country Link
JP (1) JPH03232723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069509A (en) * 2011-07-25 2013-04-24 古河电气工业株式会社 Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
CN111653652A (en) * 2020-05-08 2020-09-11 浙江大学 Silicon-based erbium-doped zinc gallate thin film electroluminescent device and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069509A (en) * 2011-07-25 2013-04-24 古河电气工业株式会社 Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
CN111653652A (en) * 2020-05-08 2020-09-11 浙江大学 Silicon-based erbium-doped zinc gallate thin film electroluminescent device and preparation method thereof
CN111653652B (en) * 2020-05-08 2023-09-01 浙江大学 Silicon-based erbium-doped zinc gallate film electroluminescent device and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH01126205A (en) Superconducting thin film and its formation
JP2711253B2 (en) Superconducting film and method for forming the same
US7871663B1 (en) Minute doping for YBCO flux pinning
JPH03232723A (en) Superconductor
Muroi et al. Sputter deposition of YBa2Cu3O7-x thin films with low gas pressure
JPH026394A (en) Superconductive thin layer
Hirata et al. Preparation of high‐T c oxide superconductors at low substrate temperature by facing‐targets sputtering
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
US5314870A (en) Preparing thin film of oxide superconductor
US5141919A (en) Superconducting device and method of producing superconducting thin film
JPS63225599A (en) Preparation of oxide superconductive thin film
JP2598973B2 (en) Laminated superconducting element
JPH0499077A (en) Superconductor
JP2544759B2 (en) How to make a superconducting thin film
JP3353871B2 (en) Oxide superconductor thin film laminate and method for producing oxide superconductor thin film laminate
JPS63236794A (en) Production of superconductive thin film of oxide
JP2913653B2 (en) Oxide superconducting thin film structure
JPH02141568A (en) Production of thin superconducting film of multiple oxide
JP3059464B2 (en) Oxide material
JPH03275504A (en) Oxide superconductor thin film and its production
JP2544761B2 (en) Preparation method of superconducting thin film
JP2577056B2 (en) Preparation method of composite oxide superconducting thin film
JPH0244782A (en) Superconductive element and manufacture thereof
JPH0335569A (en) Superconductor
JPH0244786A (en) Manufacture of josephson element