JPH03231631A - Electronic blood pressure gauge - Google Patents

Electronic blood pressure gauge

Info

Publication number
JPH03231631A
JPH03231631A JP2025171A JP2517190A JPH03231631A JP H03231631 A JPH03231631 A JP H03231631A JP 2025171 A JP2025171 A JP 2025171A JP 2517190 A JP2517190 A JP 2517190A JP H03231631 A JPH03231631 A JP H03231631A
Authority
JP
Japan
Prior art keywords
blood pressure
pressure
pulse wave
cuff
wave amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2025171A
Other languages
Japanese (ja)
Other versions
JP2807024B2 (en
Inventor
Makoto Okamoto
誠 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2025171A priority Critical patent/JP2807024B2/en
Publication of JPH03231631A publication Critical patent/JPH03231631A/en
Application granted granted Critical
Publication of JP2807024B2 publication Critical patent/JP2807024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PURPOSE:To enable the determining of a correct minimum blood pressure even when a time- series change in amplitude of a pulse wave of a person to be measured is disturbed by arranging a fist minimum blood pressure determining means for calculating an temporary minimum blood pressure and a second minimum blood pressure determining means to calculate the amplitude of the pulse wave. CONSTITUTION:In a pressure reducing process, a first minimum blood pressure determining means which calculates an amplitude of a pulse wave by an artery beating of a cuff pressure in a pressure reducing process and a temporary minimum blood pressure P(d) by an expression of P(d)={3XP(M)-P(S)}/2 from a max. blood pressure P(S) and an average blood pressure P(M) as measured in a pressure changing process and a second minimum blood pressure determining means which determines a comparison pulse wave amplitude H(D) by an expression of H(D)=H(M)XK from a pulse wave amplitude H(M) at an average blood pressure P(M) and a minimum blood pressure determining coefficient K. Then, a cuff pressure P(i) as given when the cuff pressure P(i) in the pressure changing process is below the temporary minimum blood pressure P(d) as calculated by the first minimum blood pressure determining means while the pulse wave amplitude H(i) falls below the comparison pulse wave amplitude H(D) as calculated by the second minimum blood pressure determining means is determined to be the minimum blood pressure P(D).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、脈波振幅より血圧値を計測する振動法を採
用した血圧計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a blood pressure monitor that employs a vibration method for measuring blood pressure values from pulse wave amplitude.

〔従来の技術〕[Conventional technology]

一般に電子血圧計は、第2図に示す如くカフ32を血圧
計測部位31(例えば上腕)に巻き、最高血圧以上にカ
フ32の圧力を上昇させ、動脈を閉塞させる。その後、
微速減圧すると、動脈拍動に応じてカフ圧の振動(脈波
)が生ずる。第4図は、微速減圧過程にある時の、カフ
圧の変化を示すグラフである。第5図は、第4図のカフ
圧信号から抽出分離される振動成分を示すグラフである
Generally, in an electronic blood pressure monitor, as shown in FIG. 2, a cuff 32 is wrapped around a blood pressure measurement site 31 (for example, the upper arm), and the pressure of the cuff 32 is increased above the systolic blood pressure to occlude the artery. after that,
When the pressure is reduced at a slow rate, oscillations (pulse waves) in the cuff pressure occur in response to the arterial pulsation. FIG. 4 is a graph showing changes in cuff pressure during a slow decompression process. FIG. 5 is a graph showing vibration components extracted and separated from the cuff pressure signal of FIG. 4.

以下、振動成分の高さ(圧力差)を脈波振幅と呼ぶ。脈
波振幅の遷移過程を第5図を参照して説明する。減圧過
程において、脈波振幅は、はしめは小さく (C区間)
、その後、徐々に大きくなり(b区間)、最大脈波振幅
を示したく時間9)の後、また徐々に小さくなる(C区
間)。この時、カフ圧減少過程において、振幅が増加し
始めるカフ圧が最高血圧P (S)に相当しく時間3)
、脈波振幅が最大になる点が平均血圧P、(M)に相当
しく時間9)、この脈波振幅から血圧を決定する原理は
振動法またはオシロメトリック法として知られており、
電子血圧計によく用いられている。
Hereinafter, the height of the vibration component (pressure difference) will be referred to as pulse wave amplitude. The transition process of pulse wave amplitude will be explained with reference to FIG. During the decompression process, the pulse wave amplitude is small (section C).
, then gradually increases (section B), reaches the maximum pulse wave amplitude at time 9), and then gradually decreases again (section C). At this time, in the cuff pressure decreasing process, the cuff pressure at which the amplitude begins to increase corresponds to the systolic blood pressure P (S) at time 3).
, the point where the pulse wave amplitude is maximum corresponds to the mean blood pressure P, (M) at time 9), and the principle of determining blood pressure from this pulse wave amplitude is known as the vibration method or oscillometric method.
Often used in electronic blood pressure monitors.

振動法を原理とした電子血圧計の最低血圧の決定方法と
して、第1に最大脈波振幅を示した後の、脈波振幅の減
少率、すなわち脈波振幅H(i)と1拍動前の脈波振幅
H(i−1)の比を関係式、H(i}/H(i−1) により算出して、減少率が小となるカフ圧を最低血圧と
する方法(以下実測法と称す)、第2に、最高血圧P 
(S)及び平均血圧P (M)から、最低血圧P (D
)を関係式、 P (D) = (3P (M) −P (S) }/
2により推定する方法(以下推定演算法と称す)、第3
に、平均血圧P (M)時の脈波振幅H(M)に最低血
圧決定係数Kを乗じて、その積と平均血圧P (M)を
過ぎた減圧過程にある脈波振幅とを比較して最低血圧を
決定する方法(以下脈波振幅比較法と称す)が従来用い
ら、れていた。
As a method for determining the diastolic blood pressure of an electronic sphygmomanometer based on the vibration method, first, the rate of decrease in pulse wave amplitude after the maximum pulse wave amplitude is shown, that is, the pulse wave amplitude H(i) and one beat before. A method in which the ratio of the pulse wave amplitude H(i-1) is calculated using the relational expression, H(i}/H(i-1), and the cuff pressure at which the rate of decrease is small is set as the diastolic blood pressure (hereinafter referred to as the actual measurement method). ), secondly, the systolic blood pressure P
(S) and mean blood pressure P (M), diastolic blood pressure P (D
) as the relational expression, P (D) = (3P (M) −P (S) }/
2 estimation method (hereinafter referred to as estimation calculation method), 3rd method
Then, the pulse wave amplitude H (M) at the time of mean blood pressure P (M) is multiplied by the diastolic blood pressure determination coefficient K, and the product is compared with the pulse wave amplitude in the depressurization process that has passed the mean blood pressure P (M). Conventionally, a method (hereinafter referred to as pulse wave amplitude comparison method) of determining the diastolic blood pressure based on the pulse wave amplitude has been used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の電子血圧計における最低血圧の決定方法では
、第1に脈波の時系列変化が明確でない場合(第6図、
第7図)、第2に被計測者の計測中の体動(アーチファ
クト)、被計測者の計測部位の個人差、電気的雑音など
により脈波振幅の時系列的変化が乱される場合に最低血
圧値に誤差を生ずる原因となる。本発明は上記第2の原
因による問題点を解決しようとするもので、脈波振幅比
較法と推定演算法を例にして説明する。第9図は脈波振
幅比較法で誤った最低血圧の決定を生ずる例である。減
圧過程において、脈波振幅は時間3から増加し始める。
In the conventional method for determining diastolic blood pressure using an electronic sphygmomanometer, the first problem is when the time-series change in the pulse wave is not clear (Fig. 6,
(Fig. 7), and secondly, when the time-series change in pulse wave amplitude is disturbed by body movements (artifacts) of the person being measured during measurement, individual differences in the measurement site of the person being measured, electrical noise, etc. This causes an error in the diastolic blood pressure value. The present invention aims to solve the problem caused by the second cause, and will be explained using a pulse wave amplitude comparison method and an estimation calculation method as examples. FIG. 9 is an example of an incorrect determination of diastolic blood pressure using the pulse wave amplitude comparison method. In the decompression process, the pulse wave amplitude begins to increase from time 3.

脈波振幅の最大値を示す時間9のときのカフ圧は平均血
圧P (M)に相当し、そのときの脈波振幅をH(9)
とする。減圧過程においては、通常第5図に示すように
脈波振幅は減少過程になるが、前記体動などの原因によ
り、規則正しい脈波振幅の減少過程において、規則的な
減少とは異なる脈波振幅の小さいピークが生じる場合(
時間11)がある。規則正しい脈波振幅の減少過程では
時間11の脈波振幅はH′(11)を示し、H(9)と
最低血圧決定係数にの積取下の脈波振幅を示すH(13
)の時のカフ圧が最低血圧であるべきであるが、第9図
の例のように、時間11の脈波振幅がH,(11)であ
ると、H(9)と最低血圧決定係数にとの積がH(11
)より小さいので、本来の最低血圧に相当するH(13
)とは異なる最低血圧値を決定する。また、第10図は
推定演算法で前記と同様の誤った最低血圧の決定を生ず
る例である。減圧過程において、脈波振幅は第10図の
時間3から増加し始める。減圧過程においては、通常第
5図に示すように、脈波振幅が増加し、脈波振幅は時間
9で最大になる。前記体動などの原因により、規則正し
い脈波振幅の増加過程において、第10図の時間8のよ
うに脈波振幅が小さい場合がある。本来であれば、最大
振幅を示す第10図の時間9の時のカフ圧P(9)と最
高血圧P(3)とより、最低血圧P (D)を関係式、 P (D)= (3XP (9)−P (3)}/2に
より決定すべきであるが、この場合、推定演算法では、
時間7での脈波振幅H(7)を最大振幅とし、この時の
カフ圧P(7)と最高血圧P(3)とより、最低血圧P
 (D)を関係式、p (D)= (3xP(7)−p
 (3)}/2により最低血圧P (D)を誤って決定
する。
The cuff pressure at time 9, which indicates the maximum pulse wave amplitude, corresponds to the mean blood pressure P (M), and the pulse wave amplitude at that time is expressed as H (9).
shall be. During the decompression process, the pulse wave amplitude usually decreases as shown in Figure 5. However, due to the above-mentioned body movements and other causes, the pulse wave amplitude may differ from the regular decrease in the regular decrease process of the pulse wave amplitude. If a small peak of (
There is a time 11). In the regular pulse wave amplitude decreasing process, the pulse wave amplitude at time 11 shows H'(11), and H(13) shows the pulse wave amplitude after multiplying H(9) and the diastolic blood pressure determination coefficient.
) should be the diastolic blood pressure, but as in the example in Figure 9, if the pulse wave amplitude at time 11 is H, (11), then H (9) and the diastolic blood pressure determination coefficient The product of Ni is H(11
), so H(13
) to determine a different diastolic blood pressure value. Further, FIG. 10 shows an example in which the same erroneous determination of the diastolic blood pressure as described above occurs using the estimation calculation method. During the pressure reduction process, the pulse wave amplitude begins to increase at time 3 in FIG. During the pressure reduction process, the pulse wave amplitude usually increases and reaches its maximum at time 9, as shown in FIG. Due to causes such as body movement, the pulse wave amplitude may be small as shown at time 8 in FIG. 10 during the regular process of increasing the pulse wave amplitude. Originally, the diastolic blood pressure P (D) was calculated by the relational expression, P (D) = ( 3XP (9)-P (3)}/2, but in this case, in the estimation calculation method,
The pulse wave amplitude H(7) at time 7 is the maximum amplitude, and from the cuff pressure P(7) and systolic blood pressure P(3) at this time, the diastolic blood pressure P
(D) is a relational expression, p (D) = (3xP(7)-p
(3) }/2 incorrectly determines the diastolic blood pressure P (D).

本発明は、上記に鑑みて、カフ圧の減圧過程において、
被計測者の計測中の体動(アーチファクト)、被計測者
の計測部位の個人差、電気的雑音などにより脈波振幅の
時系列的変化が乱される場合においても、正しい最低血
圧の決定できる最低血圧決定法を提供するものである。
In view of the above, the present invention provides, in the cuff pressure reduction process,
The correct diastolic blood pressure can be determined even when the time-series change in pulse wave amplitude is disturbed due to body movements (artifacts) of the person being measured, individual differences in the measurement site of the person being measured, electrical noise, etc. A method for determining diastolic blood pressure is provided.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための本発明の要旨は、仮の最低血
圧P (d)をカフ圧減少過程において計測された最高
血圧P’(S)と平均血圧P (M)とから関係式 %式%)) により算出する第1の最低血圧決定手段と、比較脈波振
幅H(D)を平均血圧P(M)時の脈波振幅H(M)と
最低血圧決定係数にとから関係式%式%) により算出する第2の最低血圧決定手段とから構成され
ることを特徴とする。
The gist of the present invention for achieving the above object is to calculate the temporary diastolic blood pressure P (d) from the systolic blood pressure P' (S) measured during the cuff pressure reduction process and the mean blood pressure P (M) using the relational formula %. The first diastolic blood pressure determination means calculates the comparative pulse wave amplitude H(D) by the pulse wave amplitude H(M) at the mean blood pressure P(M) and the diastolic blood pressure determination coefficient, and the relational expression % and a second diastolic blood pressure determination means that calculates the blood pressure according to the formula (%).

[作用] この電子血圧計では、カフ圧変化過程中のカフ圧P (
i)が第1の最低血圧決定手段により算出された仮の最
低血圧P (d)以下であり、かつ脈波振幅H(i)が
、第2の最低血圧決定手段により算出された比較脈波振
幅H(D)以下になった時のカフ圧P (i)を最低血
圧P (D)とする。
[Function] In this electronic blood pressure monitor, the cuff pressure P (
i) is equal to or lower than the provisional diastolic blood pressure P (d) calculated by the first diastolic blood pressure determining means, and the pulse wave amplitude H(i) is a comparative pulse wave calculated by the second diastolic blood pressure determining means. The cuff pressure P (i) when the amplitude falls below H (D) is defined as the diastolic blood pressure P (D).

〔実施例〕〔Example〕

以下、実施例により、この発明をさらに詳細に説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

第2図は電子血圧計による血圧計測の実施例を示す。被
計測者の血圧計測部位31(例えば上腕)に、動脈血を
阻血するカフ32が装着され、カフ32の一部にゴム管
33を接続し、ゴム管33の他端を計測器本体゛34に
接続するようにしており、カフ32と計測器本体34と
はゴム管33を介して流体(例えば空気)が移動できる
。以下流体(例えば空気)が移動する回路を流体回路と
呼ぶ。第3図は本体内の構成を示すブロック図である。
FIG. 2 shows an example of blood pressure measurement using an electronic blood pressure monitor. A cuff 32 for blocking arterial blood is attached to the blood pressure measurement site 31 (for example, the upper arm) of the person being measured, a rubber tube 33 is connected to a part of the cuff 32, and the other end of the rubber tube 33 is connected to the measuring device body 34. The cuff 32 and the measuring device main body 34 are connected to each other, and fluid (for example, air) can be transferred between the cuff 32 and the measuring device main body 34 via the rubber tube 33. Hereinafter, a circuit in which a fluid (for example, air) moves will be referred to as a fluid circuit. FIG. 3 is a block diagram showing the internal structure of the main body.

まず計測器本体34における流体回路について説明する
。計測器本体34内において流体回路は、4つに分岐さ
れる。第1はカフ32内の圧力を電気信号に変換する圧
力センサー35であり、第2はカフ32内の圧力を徐々
に減圧させるための微速排気弁39であり、第3はカフ
32内の圧力を急速に減圧させるための急速排気弁40
であり、第4はカフ32内の圧力を上昇させるための加
圧ポンプ41である。次に計測器本体4における電気回
路について説明する。圧力センサー35によって変換さ
れた圧力のアナログ電気信号は、A/D変換器36によ
ってデジタル信号に変換される。このデジタル信号はC
PU、ROMとRAMなどにより構成されるマイクロコ
ンピュータ37に入力される。また、マイクロコンピュ
ータ37からはカフ32を加圧するための加圧ポンプ4
1をオン・オフするための制御信号、急速排気弁40を
オン・オフするための制御信号が出力される。計測器本
体34の前面には、この電子血圧計による血圧計測を制
御し、電源スィッチ、開始スイッチおよび加圧上限設定
スイッチなどから構成されている操作スイッチ部42が
配置され、操作スイッチ部42の信号はマイクロコンピ
ュータ37に入力される。同様に計測器本体34の前面
には、計測した結果などを表示するための表示器38が
配置され、マイクロコンピュータ37から表示データ信
号が出力される。計測器本体34には、電源部43が内
蔵され、マイクロコンピュータ37の作動などの電力を
必要とする場合に、電源部43より電力を供給する。本
実施例は一般的に自動式と呼ばれるカフ圧を加圧ポンプ
41によって行なう方法であるが、一般的に手動式と呼
ばれるカフ圧を手動により行なう方法にも適用できる。
First, the fluid circuit in the measuring instrument main body 34 will be explained. The fluid circuit within the measuring instrument main body 34 is branched into four. The first is a pressure sensor 35 that converts the pressure inside the cuff 32 into an electrical signal, the second is a slow exhaust valve 39 that gradually reduces the pressure inside the cuff 32, and the third is the pressure inside the cuff 32. Rapid exhaust valve 40 for rapidly depressurizing
The fourth is a pressure pump 41 for increasing the pressure within the cuff 32. Next, the electric circuit in the measuring instrument main body 4 will be explained. The pressure analog electrical signal converted by the pressure sensor 35 is converted into a digital signal by the A/D converter 36. This digital signal is C
The data is input to a microcomputer 37 composed of a PU, ROM, RAM, and the like. The microcomputer 37 also sends a pressurizing pump 4 for pressurizing the cuff 32.
A control signal for turning on and off the rapid exhaust valve 40 and a control signal for turning on and off the rapid exhaust valve 40 are output. On the front surface of the measuring device main body 34, an operation switch unit 42 is arranged, which controls blood pressure measurement by this electronic blood pressure monitor and is composed of a power switch, a start switch, a pressurization upper limit setting switch, etc. The signal is input to the microcomputer 37. Similarly, a display 38 for displaying measured results and the like is arranged on the front surface of the measuring instrument main body 34, and a display data signal is output from the microcomputer 37. The measuring instrument main body 34 has a built-in power supply unit 43, and when power is required for operating the microcomputer 37, the power supply unit 43 supplies power. This embodiment is a method generally called an automatic method in which cuff pressure is applied by the pressurizing pump 41, but it can also be applied to a method generally referred to as a manual method in which cuff pressure is manually performed.

第8図は血圧計測の流れを示したフローチャートである
。操作スイッチ部42によって血圧計測が開始しく5T
O)、加圧ポンプ41によってカフ圧が上昇する(ST
I)。加圧中は急速排気弁40を閉じる。カフ圧が予め
計測開始前に操作スイッチ部42によって設定しである
所定圧力に達する(Sr2)と、加圧ポンプ41による
加圧を停止しく5T3)、微速排気弁39によりカフ圧
の降下が開始する(Sr1)。前述の第4図に示す如く
カフ圧には動脈拍動に応じて振動(脈波)が生じ、この
脈波振幅より最高血圧(Sr1)、平均血圧P (M)
(Sr6)および最低血圧(Sr1)を決定して、表示
部38に結果を表示(Sr8)し、急速排気弁40を開
き計測部位を圧迫しているカフ32の圧力を取り除き(
Sr1)、血圧計測が終了する(STIO)。
FIG. 8 is a flowchart showing the flow of blood pressure measurement. Blood pressure measurement is started by the operation switch section 42.
O), the cuff pressure is increased by the pressure pump 41 (ST
I). The rapid exhaust valve 40 is closed during pressurization. When the cuff pressure reaches a predetermined pressure set by the operation switch unit 42 before the start of measurement (Sr2), the pressurization by the pressurizing pump 41 is stopped (5T3), and the slow exhaust valve 39 starts lowering the cuff pressure. (Sr1). As shown in Figure 4 above, oscillations (pulse waves) occur in the cuff pressure in response to arterial pulsation, and the systolic blood pressure (Sr1) and mean blood pressure P (M) are determined from the amplitude of this pulse wave.
(Sr6) and the diastolic blood pressure (Sr1) are determined, the results are displayed on the display unit 38 (Sr8), and the rapid exhaust valve 40 is opened to remove the pressure of the cuff 32 pressing on the measurement site (
Sr1), blood pressure measurement ends (STIO).

第4図は微速減圧過程にある時のカフ圧の変化を示す図
である。第5図は、第4図のカフ圧信号から抽出分離さ
れる振動成分を示す図である。
FIG. 4 is a diagram showing changes in cuff pressure during a slow decompression process. FIG. 5 is a diagram showing vibration components extracted and separated from the cuff pressure signal of FIG. 4.

第1図は本発明の血圧計測の流れを示すフローチャート
である。計測開始(STO)から最高血圧決定(Sr1
)までは、第8図に示したのと同様である。最高血圧の
決定法については、前記最低血圧の決定法と同様に1拍
毎の脈波振幅の増加率が最大となる時のカフ圧を最大血
圧とする実測法と最大脈波振幅H(M)に最大血圧決定
係数Gを乗じて、脈波振幅がH(M)とGの積を越える
時のカフ圧を最大血圧とする脈波振幅比較法などがある
が、本実施例では脈波振幅比較法を使用した。第11図
は脈波振幅比較法を用いて最高血圧を決定する論理(ア
ルゴリズム)を示す図である。
FIG. 1 is a flowchart showing the flow of blood pressure measurement according to the present invention. Systolic blood pressure determination (Sr1) from the start of measurement (STO)
) is the same as shown in FIG. The method for determining systolic blood pressure is similar to the method for determining diastolic blood pressure described above, using two methods: an actual measurement method in which the cuff pressure at which the rate of increase in pulse wave amplitude per beat is the maximum is taken as the systolic blood pressure, and a method in which the maximum pulse wave amplitude H (M ) is multiplied by the systolic blood pressure determination coefficient G, and the cuff pressure when the pulse wave amplitude exceeds the product of H(M) and G is the systolic blood pressure. However, in this example, the pulse wave amplitude is Amplitude comparison method was used. FIG. 11 is a diagram showing the logic (algorithm) for determining systolic blood pressure using the pulse wave amplitude comparison method.

第11図を参照して最高血圧決定のアルゴリズムを説明
する。準備段階として最大脈波振幅H(M)と、最大脈
波振幅における圧力P (M)およびカウンタiとカウ
ンタjをゼロ・クリアする(STII)。脈波を検出す
る(ST12)と脈波開始カフ圧PをP (i)に、脈
波振幅HをH(i)にメモリ (ST13)L、iを1
つインクリメント(ST14)L、iが1の場合(ST
I5)には5T12へ戻る。iが1でない場合(ST1
5)はH(i)がH(M)を越えていないかを判断しく
5T16)、越えていない場合は5T18へ移行する。
The algorithm for determining the systolic blood pressure will be explained with reference to FIG. As a preparatory step, the maximum pulse wave amplitude H (M), the pressure P (M) at the maximum pulse wave amplitude, and counter i and counter j are cleared to zero (STII). When the pulse wave is detected (ST12), the pulse wave starting cuff pressure P is set to P(i), and the pulse wave amplitude H is set to H(i) (ST13) L, i are set to 1.
Increment (ST14) L, if i is 1 (ST
I5) returns to 5T12. If i is not 1 (ST1
In step 5), it is determined whether H(i) exceeds H(M) (5T16), and if it does not, the process moves to 5T18.

越えている場合には最大脈波振−(1−、゛ 幅H(M)を更新する(ST17)。カウンタj−・を
ゼロ・クリアしくSTI 8) 、H(j)が最高血圧
決定係数Gと最大脈波振幅H(M)との積を越えていな
いかを判断しく5T19)、越えていない場合はjを1
インクリメントしく5T20)、次にjがiに等しいか
を判断しく5T21)、等しくない場合は5T19へ戻
る。等しい場合には5T12へ戻る。5T19において
H(j)が最大脈波振幅H(M)と最高血圧決定係数G
との積を越えた場合の脈波開始カフ圧P (i)を最高
血圧P (S)とする(Sr22)。
If it exceeds the maximum pulse wave amplitude, update the width H(M) (ST17). Clear the counter j to zero (STI 8), and H(j) is the systolic blood pressure determination coefficient. Determine whether the product of G and maximum pulse wave amplitude H (M) is not exceeded (5T19), and if it is not, set j to 1.
Increment 5T20), then determine whether j is equal to i 5T21), and if not, return to 5T19. If they are equal, return to 5T12. At 5T19, H(j) is the maximum pulse wave amplitude H(M) and the systolic blood pressure determination coefficient G
The pulse wave starting cuff pressure P (i) when the product exceeds the product of P (i) is defined as the systolic blood pressure P (S) (Sr22).

最高血圧を決定した後、最低血圧の決定をする。After determining the systolic blood pressure, the diastolic blood pressure is determined.

最低血圧の決定アルゴリズムを第1図を参照して説明す
る。計測開始(STO)から最高血圧決定(Sr1)ま
では、第8図に示したのと同様である。脈波を検出する
(Sr23)と脈波開始カフ圧PをP (i)に、脈波
振幅HをH(i)にメモリ (Sr24)L、iを1つ
インクリメント(Sr25)L、H(i)がH(M)を
越えていないかを判断しく5T26)、越えていない場
合はS“T28へ移行する。越えている場合にはH(M
)を更新する(Sr27)。仮の最低血圧P (d)を
関係式、 P (d) = (3(’M)−P (S) ) /2
により算出(Sr2B)L、最大脈波振幅H(M)と最
低血圧決定係数にとを乗じ比較脈波振幅H(D)とする
(Sr29)。カフ圧P (i)が仮の最低血圧P (
d)を越えているかを判断(S730)L、P(i)が
P (d)を越えている場合はSr23に戻る。P (
i)がP (d)以下の場合は脈波振幅H(i)が比較
脈波振幅H(D)を越えているかを判断する(ST31
)。H(i)がH(D)を越えている場合には5T23
に戻る。H(i)がH(D)以下の場合には脈波開始カ
フ圧P(i)を最低血圧P (D)とする(ST32)
。最低血圧決定後の血圧表示(Sr8)から計測終了(
STIO)までは第8図と同様である。第9図及び第1
O図を参照して、最低血圧を決定する時に脈波振幅比較
法及び推定演算法の一方のみによって生ずる最低血圧決
定の過ちを本発明が回避できるアルゴリズムを説明する
。はじめに第9図を参照して脈波振幅比較法について説
明する。脈波振幅比較法のみでは、第9図の時間11の
ように規則正しい脈波振幅の減少過程から著しく小さい
脈波が計測されたとき、最大脈波振幅を示す脈波振幅H
(9)と最低血圧決定係数Gとの積がH(11)より大
きいとH(11)におけるカフ圧を最低血圧P (D)
とした。しかしながら本発明のように、推定演算法との
論理積によって最低血圧を決定すれば、カフ圧P (i
)がP(M)(=P (9))と最高血圧p (s)に
よって演算される仮の最低血圧以下にならなければ最低
血圧を決定しないので、第9図の例は回避できる。また
推定演算法のみでは、第10図の時間8のように規則正
しい脈波振幅の上昇過程から著しく小さい脈波が計測さ
れたとき、最大脈波振幅H(M)[=H(7)]と最高
血圧p (s)とにより最低血圧P (D)を関係式、 p (D) ={3×P (7)−P (S))により
誤った最低血圧を算出する場合においても、本発明のよ
うに脈波振幅比較法との論理積によって最低血圧を決定
すれば、最大脈波振幅H(7)と最低血圧決定係数Gと
の積より第10図の時間8における脈波振幅H(8)が
大きいので第10図の時間8において最低血圧を決定す
る過ちは回避できる。
The algorithm for determining the diastolic blood pressure will be explained with reference to FIG. The process from the start of measurement (STO) to the determination of systolic blood pressure (Sr1) is the same as that shown in FIG. When the pulse wave is detected (Sr23), the pulse wave starting cuff pressure P is set to P(i), and the pulse wave amplitude H is set to H(i). (Sr24) L, i is incremented by one (Sr25) L, H( 5T26) to determine whether i) does not exceed H(M), and if it does not, proceed to S"T28. If it does exceed H(M).
) is updated (Sr27). The tentative diastolic blood pressure P (d) is expressed as the relational expression, P (d) = (3('M) - P (S) ) /2
Calculate by (Sr2B)L, and multiply the maximum pulse wave amplitude H(M) by the diastolic blood pressure determination coefficient to obtain the comparison pulse wave amplitude H(D) (Sr29). The cuff pressure P (i) is the temporary diastolic blood pressure P (
d) (S730) If L, P(i) exceeds P(d), the process returns to Sr23. P (
If i) is less than P (d), it is determined whether the pulse wave amplitude H(i) exceeds the comparative pulse wave amplitude H(D) (ST31
). 5T23 if H(i) exceeds H(D)
Return to If H(i) is less than or equal to H(D), set pulse wave starting cuff pressure P(i) to diastolic blood pressure P(D) (ST32)
. Measurement ends from blood pressure display (Sr8) after determining diastolic blood pressure (
STIO) is the same as in FIG. Figure 9 and 1
An algorithm by which the present invention can avoid mistakes in determining the diastolic blood pressure caused by only one of the pulse wave amplitude comparison method and the estimation calculation method when determining the diastolic blood pressure will be described with reference to FIG. First, the pulse wave amplitude comparison method will be explained with reference to FIG. With only the pulse wave amplitude comparison method, when a significantly small pulse wave is measured from the regular decreasing process of pulse wave amplitude as at time 11 in Fig. 9, the pulse wave amplitude H indicating the maximum pulse wave amplitude is
If the product of (9) and the diastolic blood pressure determination coefficient G is greater than H(11), the cuff pressure at H(11) is determined by the diastolic blood pressure P (D).
And so. However, as in the present invention, if the diastolic blood pressure is determined by logical product with the estimation calculation method, cuff pressure P (i
) is less than the hypothetical diastolic blood pressure calculated by P(M) (=P (9)) and systolic blood pressure p (s), the diastolic blood pressure is not determined, so the example of FIG. 9 can be avoided. In addition, with only the estimation calculation method, when a significantly small pulse wave is measured from the regular pulse wave amplitude rising process as at time 8 in Figure 10, the maximum pulse wave amplitude H(M) [=H(7)] Even in the case where an incorrect diastolic blood pressure is calculated using the relational expression p (D) = {3×P (7) - P (S)), the present invention can be applied to If the diastolic blood pressure is determined by logical product with the pulse wave amplitude comparison method, the pulse wave amplitude H(7) at time 8 in FIG. 8) is large, the error in determining the diastolic blood pressure at time 8 in FIG. 10 can be avoided.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、カフ圧の振動で血圧を決定する振動
法の電子血圧計において、被計測者の計測中の体動(ア
ーチファクト)、被計測者の計測部位の個人差、電気的
雑音などにより脈波振幅の時系列的変化が乱され、最低
血圧の決定に誤差を生ずる原因場合にも、減圧過程にお
いて、カフ圧の動脈拍動による脈波の振幅を、圧力変化
過程において計測された最高血圧P (S)と平均血圧
P(M)とから関係式、P (d)= (3xP (M
)−p (s) }/2 により仮の最低血圧P (d)を算出する第1の最低血
圧決定手段と、比較脈波振幅H(D)を、平均血圧P 
(M)時の脈波振幅H(M)と最低血圧決定係数にとか
ら関係式、 H(D) =H(M) XK により算出する第2の最低血圧決定手段とから構成され
、圧力変化過程中のカフ圧P (i)が第1の最低血圧
決定手段により算出された仮の最低血圧P (d)以下
であり、かつ脈波振幅H(i)が、第2の最低血圧決定
手段により算出された比較脈波振幅H(D)以下になっ
た時のカフ圧P(i)を最低血圧P (D)とすること
により、上記脈波振幅の時系列変化が乱された場合でも
、正確に最低血圧を決定できる。
According to this invention, in an electronic sphygmomanometer using a vibration method that determines blood pressure by vibration of cuff pressure, body movements (artifacts) of a person to be measured during measurement, individual differences in the measurement site of a person to be measured, electrical noise, etc. In this case, the amplitude of the pulse wave due to the arterial pulsation of the cuff pressure was measured during the pressure change process. From the systolic blood pressure P (S) and the mean blood pressure P (M), the relational expression, P (d) = (3xP (M
)-p (s) }/2, the first diastolic blood pressure determining means calculates the provisional diastolic blood pressure P (d), and the comparative pulse wave amplitude H(D) is calculated from the mean blood pressure P
A second diastolic blood pressure determining means calculates the pulse wave amplitude H(M) at time (M) and the diastolic blood pressure determination coefficient from the relational expression, H(D) = H(M) XK, and the pressure change The cuff pressure P (i) during the process is equal to or lower than the temporary diastolic blood pressure P (d) calculated by the first diastolic blood pressure determining means, and the pulse wave amplitude H (i) is By setting the cuff pressure P(i) when it falls below the comparative pulse wave amplitude H(D) calculated by as the diastolic blood pressure P(D), even if the above-mentioned time-series change in pulse wave amplitude is disturbed. , can accurately determine diastolic blood pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による最低血圧決定方法のフローチャー
ト、第2図は血圧計測の実施例、第3図は同上のブロッ
ク図、第4図はカフを加圧後、微速減圧過程にある時の
カフ圧の振動を示す図、第5図は第4図より抽出分離さ
れた振動を示す図であり、理想的な振動変化を示す場合
である。第6図は抽出分離された振動を示す図で、最高
脈波振幅が小さい場合、第7図は抽出分離された脈波を
示す図で、時系列的変化がなだらかな場合、第8図は血
圧計測の流れを示すフローチャートであり、第9図は脈
波振幅比較法により、最低血圧決定に過ちを起こす例、
第10図は推定演算法により、最低血圧決定に過ちを起
こす例であり、第11図は脈波振幅比較法により最高血
圧を決定する方法を示すフローチャートである。 血圧計測部位・・ カフ・・・32、 圧力センサー・・ A/D変換器・・ 微速排気弁・・・ 急速排気弁・・・ 加圧ポンプ・・・ ・ 31、 ・ 35、 ・ 36. 39. 40. 41゜ 第 1 第 図 第 図 時間 第 5 図 第 図 時開 第 図 第 囚 第 図 r m 第 0 四 時間
Figure 1 is a flowchart of the diastolic blood pressure determination method according to the present invention, Figure 2 is an example of blood pressure measurement, Figure 3 is a block diagram of the same as above, and Figure 4 is when the cuff is in the slow decompression process after pressurizing. FIG. 5, a diagram showing vibrations in cuff pressure, is a diagram showing vibrations extracted and separated from FIG. 4, and is a diagram showing ideal vibration changes. Figure 6 is a diagram showing extracted and separated vibrations. When the maximum pulse wave amplitude is small, Figure 7 is a diagram showing extracted and separated pulse waves. When the time series change is gentle, Figure 8 is a diagram showing extracted and separated vibrations. This is a flowchart showing the flow of blood pressure measurement, and FIG. 9 shows an example in which an error occurs in determining the diastolic blood pressure using the pulse wave amplitude comparison method.
FIG. 10 shows an example in which an error occurs in determining the diastolic blood pressure using the estimation calculation method, and FIG. 11 is a flowchart showing a method for determining the systolic blood pressure using the pulse wave amplitude comparison method. Blood pressure measurement site... Cuff... 32, Pressure sensor... A/D converter... Slow exhaust valve... Rapid exhaust valve... Pressure pump... ・ 31, ・ 35, ・ 36. 39. 40. 41゜ 1st Figure Time 5 Figure Time Opening Figure Prisoner Figure r m 0th 4th hour

Claims (2)

【特許請求の範囲】[Claims] (1)被計測者の血圧計測部位に装着されたカフと、カ
フ内の圧力を上昇させるための加圧ポンプと、カフ内の
圧力を徐々に減圧させるための微速排気弁と、計測が終
了した後、急速にカフ内の圧力を減圧するための急速排
気弁と、カフ内の圧力を電気信号に変換する圧力センサ
ーと、圧力センサーの信号をデジタル値に変換するA/
D変換器と、カフの圧力変化過程において脈波振幅を検
出する脈波振幅検出手段と、脈波振幅検出手段と圧力セ
ンサーにより検出されたカフ圧とから血圧を決定する血
圧値決定手段とを含む電子血圧計において、仮の最低血
圧P(d)をカフ圧変化過程において計測された最高血
圧P(S)と平均血圧P(M)とから関係式、 P(d)={3×P(M)−P(S)}/2により算出
する第1の最低血圧決定手段と、比較脈波振幅H(D)
を平均血圧P(M)時の脈波振幅H(M)と最低血圧決
定係数Kとから関係式、H(D)=H(M)×K により算出する第2の最低血圧決定手段とから構成され
、圧力変化過程中のカフ圧P(i)が第1の最低血圧決
定手段により算出された仮の最低血圧P(d)以下であ
り、かつ脈波振幅H(i)が、第2の最低血圧決定手段
により算出された比較脈波振幅H(D)以下になった時
のカフ圧P(i)を最低血圧とすることを特徴とする電
子血圧計。
(1) The cuff attached to the blood pressure measurement site of the person to be measured, the pressurizing pump to increase the pressure inside the cuff, and the slow exhaust valve to gradually reduce the pressure inside the cuff, and the measurement is completed. After that, there is a rapid exhaust valve that rapidly reduces the pressure inside the cuff, a pressure sensor that converts the pressure inside the cuff into an electrical signal, and an A/D converter that converts the pressure sensor signal into a digital value.
A D converter, a pulse wave amplitude detecting means for detecting pulse wave amplitude in a cuff pressure change process, and a blood pressure value determining means for determining blood pressure from the pulse wave amplitude detecting means and the cuff pressure detected by the pressure sensor. In the electronic sphygmomanometer, the relational expression P(d) = {3×P (M)-P(S)}/2, and a comparison pulse wave amplitude H(D).
from the pulse wave amplitude H(M) at the mean blood pressure P(M) and the diastolic blood pressure determination coefficient K using the relational expression H(D)=H(M)×K. and the cuff pressure P(i) during the pressure change process is equal to or lower than the provisional diastolic blood pressure P(d) calculated by the first diastolic blood pressure determination means, and the pulse wave amplitude H(i) is the second An electronic sphygmomanometer characterized in that the cuff pressure P(i) when the cuff pressure becomes equal to or less than the comparative pulse wave amplitude H(D) calculated by the diastolic blood pressure determining means is set as the diastolic blood pressure.
(2)最低血圧決定係数Kが0.5から0.8であるこ
とを特徴とする請求範囲1記載の電子血圧計。
(2) The electronic blood pressure monitor according to claim 1, wherein the diastolic blood pressure determination coefficient K is 0.5 to 0.8.
JP2025171A 1990-02-06 1990-02-06 Electronic sphygmomanometer Expired - Fee Related JP2807024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2025171A JP2807024B2 (en) 1990-02-06 1990-02-06 Electronic sphygmomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2025171A JP2807024B2 (en) 1990-02-06 1990-02-06 Electronic sphygmomanometer

Publications (2)

Publication Number Publication Date
JPH03231631A true JPH03231631A (en) 1991-10-15
JP2807024B2 JP2807024B2 (en) 1998-09-30

Family

ID=12158560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2025171A Expired - Fee Related JP2807024B2 (en) 1990-02-06 1990-02-06 Electronic sphygmomanometer

Country Status (1)

Country Link
JP (1) JP2807024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509123A (en) * 2008-11-18 2012-04-19 キングス カレッジ ロンドン Blood pressure measuring device and method
US10159445B2 (en) 2011-10-27 2018-12-25 Suntech Medical, Inc. Method and apparatus for measuring blood pressure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509123A (en) * 2008-11-18 2012-04-19 キングス カレッジ ロンドン Blood pressure measuring device and method
US9289138B2 (en) 2008-11-18 2016-03-22 Suntech Medical, Inc. Apparatus and method for measuring blood pressure
US10213116B2 (en) 2008-11-18 2019-02-26 Suntech Medical, Inc. Methods for measuring blood pressure
US10159445B2 (en) 2011-10-27 2018-12-25 Suntech Medical, Inc. Method and apparatus for measuring blood pressure

Also Published As

Publication number Publication date
JP2807024B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
US6733460B2 (en) Arteriosclerosis diagnosing apparatus
US5791348A (en) Automatic blood pressure measuring system
JP3587837B2 (en) Arterial stiffness evaluation device
US8430822B2 (en) Blood pressure measuring apparatus and method of controlling the same
TW491697B (en) Blood-pressure measuring apparatus
JPH0614892A (en) Blood pressure monitor device equipped with finger cuff calibration device
EP0456844A1 (en) Non-invasive automatic blood pressure measuring apparatus
JP2003144400A (en) Automatic oscillometric device and method for measuring blood pressure
EP0775465B1 (en) Automatic sphygmomanometer
JP2003235816A (en) Pressure pulse wave detector
KR20030017693A (en) Apparatus and method for measuring blood-pressure using air-pressure capable of being linearly varied thereby
US4860760A (en) Electronic blood pressure meter incorporating compensation function for systolic and diastolic blood pressure determinations
JP3726650B2 (en) Sphygmomanometer
JPH06189917A (en) Peripheral artery hardening indication measuring method apparatus
JPH03231631A (en) Electronic blood pressure gauge
JP5208150B2 (en) Electronic blood pressure monitor
JP3818853B2 (en) Electronic blood pressure monitor
JPH10137204A (en) Blood noninvasive sphygmomanometer
JP2011234876A (en) Blood pressure measuring instrument
JP3683255B2 (en) Pulse wave velocity information measuring device
JPH07284479A (en) Continuous blood pressure monitoring apparatus
JP5112767B2 (en) Blood pressure measurement device
JPH0628639B2 (en) Blood pressure measurement device
JPH031837A (en) Electronic hemodynamometer
JP3717990B2 (en) Electronic blood pressure monitor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees