JP2807024B2 - Electronic sphygmomanometer - Google Patents

Electronic sphygmomanometer

Info

Publication number
JP2807024B2
JP2807024B2 JP2025171A JP2517190A JP2807024B2 JP 2807024 B2 JP2807024 B2 JP 2807024B2 JP 2025171 A JP2025171 A JP 2025171A JP 2517190 A JP2517190 A JP 2517190A JP 2807024 B2 JP2807024 B2 JP 2807024B2
Authority
JP
Japan
Prior art keywords
blood pressure
pressure
pulse wave
cuff
wave amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2025171A
Other languages
Japanese (ja)
Other versions
JPH03231631A (en
Inventor
誠 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2025171A priority Critical patent/JP2807024B2/en
Publication of JPH03231631A publication Critical patent/JPH03231631A/en
Application granted granted Critical
Publication of JP2807024B2 publication Critical patent/JP2807024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、脈波振幅より血圧値を計測する振動法を
採用した血圧計に関するものである。
Description: TECHNICAL FIELD The present invention relates to a sphygmomanometer that employs a vibration method for measuring a blood pressure value from a pulse wave amplitude.

〔従来の技術〕[Conventional technology]

一般に電子電圧計は、第2図に示す如くカフ32を血圧
計測部位31(例えば上腕)に巻き、最高血圧以上にカフ
32の圧力を上昇させ、動脈を閉塞させる。その後、微速
減圧すると、動脈拍動に応じてカフ圧の脈動(脈波)が
生ずる。第4図は、微速減圧過程にある時の、カフ圧の
変化を示すグラフである。第5図は、第4図のカフ圧信
号から抽出分離される振動成分を示すグラフである。以
下、振動成分の高さ(圧力差)を脈波振幅と呼ぶ。脈波
振幅の遷移過程を第5図を参照して説明する。減圧過程
において、脈波振幅は、はじめは小さく(a区間)、そ
の後、徐々に大きくなり(b区間)、最大脈波振幅を示
した(時間9)の後、また徐々に小さくなる(c区
間)。この時、カフ圧減少過程において、振幅が増加し
始めるカフ圧が最高血圧P(S)に相当し(時間3)、
脈波振幅が最大になる点が平均血圧P(M)に相当し
(時間9)、この脈波振幅から血圧を決定する原理は振
動法またはオシロメトリック法として知られており、電
子電圧計によく用いられている。振動法を原理とした電
子血圧計の最低血圧の決定方法として、第1に最大脈波
振幅を示した後の、脈波振幅の減少率、すなわち脈波振
幅H(i)と1拍動前の脈波振幅H(i−1)の比を関
係式、H(i)/H(i−1) により算出して、減少率が小となるカフ圧を最低血圧と
する方法(以下実測法と称す)、第2に、最高血圧P
(S)及び平均血圧P(M)から、最低血圧P(D)を
関係式、 P(D)={3P(M)−P(S)}/2 により推定する方法(以下推定演算法と称す)、第3
に、平均血圧P(M)時の脈波振幅H(M)に最低血圧
決定係数Kを乗じて、その積と平均血圧P(M)を過ぎ
た減圧過程にある脈波振幅とを比較して最低血圧を決定
する方法(以下脈波振幅比較法と称す)が従来用いられ
ていた。
In general, an electronic voltmeter wraps a cuff 32 around a blood pressure measurement site 31 (for example, upper arm) as shown in FIG.
Increase pressure at 32 to occlude the artery. Thereafter, when the pressure is reduced at a very low speed, a pulsation (pulse wave) of the cuff pressure is generated according to the arterial pulsation. FIG. 4 is a graph showing a change in the cuff pressure during the slow speed depressurization process. FIG. 5 is a graph showing a vibration component extracted and separated from the cuff pressure signal of FIG. Hereinafter, the height (pressure difference) of the vibration component is referred to as a pulse wave amplitude. The transition process of the pulse wave amplitude will be described with reference to FIG. In the decompression process, the pulse wave amplitude is initially small (section a), and then gradually increases (section b). After the maximum pulse wave amplitude is shown (time 9), it gradually decreases again (section c). ). At this time, in the cuff pressure decreasing process, the cuff pressure at which the amplitude starts to increase corresponds to the systolic blood pressure P (S) (time 3),
The point where the pulse wave amplitude becomes maximum corresponds to the average blood pressure P (M) (time 9). The principle of determining the blood pressure from this pulse wave amplitude is known as a vibration method or an oscillometric method. Often used. As a method of determining the diastolic blood pressure of the electronic sphygmomanometer based on the vibration method, a decrease rate of the pulse wave amplitude after showing the maximum pulse wave amplitude first, that is, the pulse wave amplitude H (i) and one pulse before A method of calculating the ratio of the pulse wave amplitude H (i-1) to the cuff pressure at which the decrease rate becomes small as the diastolic blood pressure by the relational expression H (i) / H (i-1) Second, systolic blood pressure P
(S) and a method of estimating the diastolic blood pressure P (D) from the mean blood pressure P (M) by a relational expression, P (D) = {3P (M) -P (S)} / 2 (hereinafter referred to as an estimation calculation method and 3)
Then, the pulse wave amplitude H (M) at the time of the average blood pressure P (M) is multiplied by the diastolic blood pressure determination coefficient K, and the product is compared with the pulse wave amplitude in the decompression process that has passed the average blood pressure P (M). (Hereinafter referred to as a pulse wave amplitude comparison method) has been conventionally used.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記従来の電子電圧計における最低血圧の決定方法で
は、第1に脈波の時系列変化が明確でない場合(第6
図、第7図)、第2に被計測者の計測中の体動(アーチ
ファクト)、被計測者の計測部位の個人差、電気的雑音
などにより脈波振幅の時系列変化が乱される場合に最低
血圧値に誤差を生ずる原因となる。本発明は上記第2の
原因による問題点を解決しようとするもので、脈波振幅
比較法と推定演算法を例にして説明する。第9図は脈波
振幅比較法で誤った最低血圧の決定を生ずる例である。
減圧過程において、脈波振幅は時間3から増加し始め
る。脈波振幅の最大値を示す時間9のときのカフ圧は平
均血圧P(M)に相当し、そのときの脈波振幅をH
(9)とする。減圧過程においては、通常第5図に示す
ように脈波振幅は減少過程になるが、前記体動などの原
因により、規則正しい脈波振幅の減少過程において、規
則的な減少とは異なる脈波振幅の小さいピークが生じる
場合(時間11)がある。規則正しい脈波振幅の減少過程
では時間11の脈波振幅はH′(11)を示し、H(9)と
最低血圧決定係数Kの積以下の脈波振幅を示すH(13)
の時のカフ圧が最低血圧であるべきであるが、第9図の
例のように、時間11の脈波振幅がH(11)であると、H
(9)と最低血圧決定係数Kとの積がH(11)より大き
いので、本来の最低血圧に相当するH(13)とは異なる
最低血圧値を決定する。また、第10図は推定演算法で前
記と同様の誤った最低血圧の決定を生ずる例である。減
圧過程において、脈波振幅は第10図の時間3から増加し
始める。減圧過程においては、通常第5図に示すよう
に、脈波振幅が増加し、脈波振幅は時間9で最大にな
る。前記体動などの原因により、規則正しい脈波振幅の
増加過程において、第10図の時間8のように脈波振幅が
小さい場合がある。本来であれば、最大振幅を示す第10
図の時間9の時のカフ圧P(9)と最高血圧P(3)と
より、最低血圧P(D)を関係式、 P(D)={3×P(9)−P(3)}/2 により決定すべきであるが、この場合、推定演算法で
は、時間7での脈波振幅H(7)を最大振幅とし、この
時のカフ圧P(7)と最高血圧P(3)とより、最低血
圧P(D)を関係式、 P(D)={3×P(7)−P(3)}/2 により最低血圧P(D)を誤って決定する。本発明は、
上記に鑑みて、カフ圧の減圧過程において、被計測者の
計測中の体動(アーチファクト)、被計測者の計測部位
の個人差、電気的雑音などにより脈波振幅の時系列的変
化が乱される場合においても、正しい最低血圧の決定で
きる最低血圧決定法を提供するものである。
In the conventional method of determining a diastolic blood pressure in the conventional electronic voltmeter, first, when the time series change of the pulse wave is not clear (6th
(Fig. 7, Fig. 7), Secondly, when the time series change of the pulse wave amplitude is disturbed by body movement (artifact) during measurement of the subject, individual differences in the measurement site of the subject, electrical noise, etc. This may cause an error in the diastolic blood pressure value. The present invention is intended to solve the problem caused by the second cause, and will be described using a pulse wave amplitude comparison method and an estimation calculation method as examples. FIG. 9 shows an example in which an incorrect determination of the diastolic blood pressure is made by the pulse wave amplitude comparison method.
In the decompression process, the pulse wave amplitude starts increasing at time 3. The cuff pressure at time 9 indicating the maximum value of the pulse wave amplitude corresponds to the average blood pressure P (M), and the pulse wave amplitude at that time is represented by H
(9). In the depressurization process, the pulse wave amplitude normally undergoes a decreasing process as shown in FIG. 5, but due to the above-mentioned body movement and the like, the pulse wave amplitude differs from the regular decreasing in the regular pulse wave amplitude decreasing process. May occur (time 11). In the process of regularly decreasing the pulse wave amplitude, the pulse wave amplitude at time 11 indicates H '(11), and H (13) indicates a pulse wave amplitude equal to or less than the product of H (9) and the diastolic blood pressure determination coefficient K.
The cuff pressure at the time should be the minimum blood pressure, but if the pulse wave amplitude at time 11 is H (11) as in the example of FIG.
Since the product of (9) and the diastolic blood pressure determination coefficient K is larger than H (11), a diastolic blood pressure value different from H (13) corresponding to the original diastolic blood pressure is determined. FIG. 10 shows an example in which an erroneous determination of the diastolic blood pressure is made in the same manner as described above by the estimation calculation method. In the decompression process, the pulse wave amplitude starts to increase from time 3 in FIG. In the depressurization process, the pulse wave amplitude usually increases as shown in FIG. 5, and the pulse wave amplitude becomes maximum at time 9. Due to the body motion and the like, the pulse wave amplitude may be small as shown at time 8 in FIG. 10 in the process of regularly increasing the pulse wave amplitude. Originally, the 10th that indicates the maximum amplitude
From the cuff pressure P (9) and the systolic blood pressure P (3) at the time 9 in the figure, the diastolic blood pressure P (D) is expressed by a relational expression: P (D) = {3 × P (9) −P (3) In this case, in the estimation calculation method, the pulse wave amplitude H (7) at time 7 is set as the maximum amplitude, and the cuff pressure P (7) and the systolic blood pressure P (3 ), The diastolic blood pressure P (D) is erroneously determined by the relational expression P (D) = {3 × P (7) -P (3)} / 2. The present invention
In view of the above, in the process of reducing the cuff pressure, time-series changes in pulse wave amplitude are disturbed due to body movements (artifacts) during measurement of the subject, individual differences in the measurement site of the subject, and electrical noise. In this case, a diastolic blood pressure determination method capable of determining a correct diastolic blood pressure is provided.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するための本発明の要旨は、仮の最低
血圧P(d)をカフ圧減少過程において計測された最高
血圧P(S)と平均血圧P(M)とから関係式 P(d)={3×P(M)−P(S)}/2 により算出する第1の最低血圧決定手段と、比較脈波振
幅H(D)を平均血圧P(M)時の脈波振幅H(M)と
最低血圧決定係数Kとから関係式 H(D)=H(M)×K により算出する第2の最低血圧決定手段とから構成され
ることを特徴とする。
The gist of the present invention for achieving the above object is to determine a temporary diastolic blood pressure P (d) from a systolic blood pressure P (S) measured in a cuff pressure decreasing process and an average blood pressure P (M) using a relational expression P (d). ) = {3 × P (M) −P (S)} / 2, and the comparison pulse wave amplitude H (D) is calculated as the pulse wave amplitude H at the time of the average blood pressure P (M). (M) and a second diastolic blood pressure determining means which is calculated from the diastolic blood pressure determining coefficient K by a relational expression H (D) = H (M) × K.

〔作用〕[Action]

この電子電圧計では、カフ圧変化過程中のカフ圧P
(i)が第1の最低血圧決定手段により算出された仮の
最低血圧P(d)以下であり、かつ脈波振幅H(i)
が、第2の最低血圧決定手段により算出された比較脈波
振幅H(D)以下になった時のカフ圧P(i)を最低血
圧P(D)とする。
In this electronic voltmeter, the cuff pressure P during the cuff pressure change process is
(I) is equal to or less than the provisional diastolic blood pressure P (d) calculated by the first diastolic blood pressure determining means, and the pulse wave amplitude H (i)
Is the cuff pressure P (i) when the amplitude becomes equal to or smaller than the comparison pulse wave amplitude H (D) calculated by the second diastolic blood pressure determining means, as the diastolic blood pressure P (D).

〔実施例〕〔Example〕

以下、実施例により、この発明をさらに詳細に説明す
る。
Hereinafter, the present invention will be described in more detail with reference to examples.

第2図は電子電圧計による血圧計測の実施例を示す。
被計測者の血圧計測部位31(例えば上腕)に、動脈血を
阻血するカフ32が装着され、カフ32の一部にゴム管33を
接続し、ゴム管33の他端を計測器本体34に接続するよう
にしており、カフ32と計測器本体34とはゴム管33を介し
て流体(例えば空気)が移動できる。以下流体(例えば
空気)が移動する回路を流体回路と呼ぶ。第3図は本体
内の構成を示すブロック図である。まず計測器本体34に
おける流体回路について説明する。計測器体34内におい
て流体回路は、4つに分岐される。第1はカフ32内の圧
力を電気信号に変換する圧力センサー35であり、第2は
カフ32内の圧力を徐々に減圧させるための微速排気弁39
であり、第3はカフ32内の圧力を急速に減圧させるため
の急速排気弁40であり、第4はカフ32内の圧力を上昇さ
せるための加圧ポンプ41である。次に計測器本体34にお
ける電気回路について説明する。圧力センサー35によっ
て変換された圧力のアナログ電気信号は、A/D変換器36
によってデジタル信号に変換される。このデジタル信号
はCPU、ROMとRAMなどにより構成されるマイクロコンピ
ュータ37に入力される。また、マイクロコンピュータ37
からはカフ32を加圧するための加圧ポンプ41をオン・オ
フするための制御信号、急速排気弁40をオン・オフする
ための制御信号が出力される。計測器本体34の前面に
は、この電子電圧計による血圧計測を制御し、電源スイ
ッチ、開始スイッチおよび加圧上限設定スイッチなどか
ら構成されている操作スイッチ部42は配置され、操作ス
イッチ部42の信号はマイクロコンピュータ37に入力され
る。同様に計測器本体34の前面には、計測した結果など
を表示するための表示器38が配置され、マイクロコンピ
ュータ37から表示データ信号が出力される。計測器本体
34には、電源部43が内蔵され、マイクロコンピュータ37
の作動などの電力を必要とする場合に、電源部43より電
力を供給する。本実施例は一般的に自動式と呼ばれるカ
フ圧を加圧ポンプ41によって行なう方法であるが、一般
的に手動式と呼ばれるカフ圧を手動により行なう方法に
も適用できる。
FIG. 2 shows an embodiment of blood pressure measurement by an electronic voltmeter.
A cuff 32 for blocking arterial blood is attached to the blood pressure measurement site 31 (for example, the upper arm) of the subject, a rubber tube 33 is connected to a part of the cuff 32, and the other end of the rubber tube 33 is connected to the measuring instrument body 34. The fluid (for example, air) can move between the cuff 32 and the measuring instrument main body 34 via the rubber tube 33. Hereinafter, a circuit in which a fluid (for example, air) moves is referred to as a fluid circuit. FIG. 3 is a block diagram showing a configuration inside the main body. First, the fluid circuit in the measuring instrument body 34 will be described. The fluid circuit in the measuring instrument body 34 is branched into four. The first is a pressure sensor 35 for converting the pressure in the cuff 32 into an electric signal, and the second is a slow exhaust valve 39 for gradually reducing the pressure in the cuff 32.
The third is a quick exhaust valve 40 for rapidly reducing the pressure in the cuff 32, and the fourth is a pressurizing pump 41 for increasing the pressure in the cuff 32. Next, an electric circuit in the measuring instrument body 34 will be described. The analog electric signal of the pressure converted by the pressure sensor 35 is converted to an A / D converter 36.
Is converted into a digital signal. The digital signal is input to a microcomputer 37 including a CPU, a ROM, a RAM, and the like. In addition, microcomputer 37
A control signal for turning on / off the pressurizing pump 41 for pressurizing the cuff 32 and a control signal for turning on / off the quick exhaust valve 40 are output from the control unit. On the front surface of the measuring instrument body 34, an operation switch unit 42 configured to control a blood pressure measurement by the electronic voltmeter and configured by a power switch, a start switch, a pressurization upper limit setting switch, and the like is disposed. The signal is input to the microcomputer 37. Similarly, a display 38 for displaying a measurement result or the like is arranged on the front surface of the measuring instrument body 34, and a display data signal is output from the microcomputer 37. Measuring instrument body
The power supply unit 43 is built in the
When power is required for the operation of the power supply, power is supplied from the power supply unit 43. Although the present embodiment is a method in which cuff pressure is generally called an automatic type by the pressurizing pump 41, it is also applicable to a method in which cuff pressure is generally called manually in which a cuff pressure is manually generated.

第8図は血圧計測の流れを示したフローチャートであ
る。操作スイッチ部42によって血圧計測が開始し(ST
0)、加圧ポンプ41によってカフ圧が上昇する(ST1)。
加圧中は急速排気弁40を閉じる。カフ圧が予め計測開始
前に操作スイッチ部42によって設定してある所定圧力に
達する(ST2)と、加圧ポンプ41に加圧を停止し(ST
3)、微速排気弁39によりカフ圧の降下が開始する(ST
4)。前述の第4図に示す如くカフ圧には動脈拍動に応
じて振動(脈波)が生じ、この脈波振幅より最高血圧
(ST5)、平均血圧P(M)(ST6)および最低血圧(ST
7)を決定して、表示部38に結果を表示(ST8)し、急速
排気弁40を開き計測部位を圧迫しているカフ32の圧力を
取り除き(ST9)、血圧計測が終了する(ST10)。
FIG. 8 is a flowchart showing the flow of blood pressure measurement. Blood pressure measurement is started by the operation switch unit 42 (ST
0), the cuff pressure is increased by the pressure pump 41 (ST1).
During pressurization, the quick exhaust valve 40 is closed. When the cuff pressure reaches a predetermined pressure set by the operation switch section 42 before the start of measurement (ST2), the pressurizing pump 41 stops pressurizing (ST2).
3), the cuff pressure starts to decrease due to the slow exhaust valve 39 (ST
Four). As shown in FIG. 4, vibration (pulse wave) is generated in the cuff pressure according to the arterial pulsation, and the systolic blood pressure (ST5), the average blood pressure P (M) (ST6) and the diastolic blood pressure ( ST
7) is determined, the result is displayed on the display unit 38 (ST8), the rapid exhaust valve 40 is opened, the pressure of the cuff 32 pressing the measurement site is removed (ST9), and the blood pressure measurement ends (ST10). .

第4図は微速減圧過程にある時のカフ圧の変化を示す
図である。第5図は、第4図のカフ圧信号から抽出分離
される振動成分を示す図である。
FIG. 4 is a view showing a change in the cuff pressure during the slow pressure reduction process. FIG. 5 is a diagram showing a vibration component extracted and separated from the cuff pressure signal of FIG.

第1図は本発明の血圧計測の流れを示すフローチャー
トである。計測開始(ST0)から最高血圧決定(ST5)ま
では、第8図に示したのと同様である。最高血圧の決定
法については、前記最低血圧の決定法と同様に1拍毎の
脈波振幅の増加率が最大となる時のカフ圧を最大血圧と
する実測法と最大脈波振幅H(M)に最大血圧決定係数
Gを乗じて、脈波振幅がH(M)とGの積を越える時の
カフ圧を最大血圧とする脈波振幅比較法などがあるが、
本実施例では脈波振幅比較法を使用した。第11図は脈波
振幅比較法を用いて最高血圧を決定する論理(アルゴリ
ズム)を示す図である。第11図を参照して最高血圧決定
のアルゴリズムを説明する。準備段階として最大脈波振
幅H(M)と、最大脈波振幅における圧力P(M)およ
びカウンタiとカウンタjをゼロ・クリアする(ST1
1)。脈波を検出する(ST12)と脈波開始カフ圧PをP
(i)に、脈波振幅HをH(i)にメモリ(ST13)し、
iを1つインクリメント(ST14)し、iが1の場合(ST
15)にはST12に戻る。iが1でない場合(ST15)はH
(i)がH(M)を越えていないかを判断し(ST16)、
越えていない場合はST18へ移行する。越えている場合に
は最大脈波振幅H(M)を更新する(ST17)。カウンタ
jをゼロ・クリアし(ST18)、H(j)が最高血圧決定
係数Gと最大脈波振幅H(M)との積を越えていないか
を判断し(ST19)、越えていない場合はjを1インクリ
メントし(ST20)、次にjがiに等しいかを判断し(ST
21)、等しくない場合はST19へ戻る。等しい場合にはST
12へ戻る。ST19においてH(j)が最大脈波振幅H
(M)と最高血圧決定係数Gとの積を越えた場合の脈波
開始カフ圧P(j)を最高血圧P(S)とする(ST2
2)。
FIG. 1 is a flowchart showing the flow of blood pressure measurement according to the present invention. The process from the start of measurement (ST0) to the determination of systolic blood pressure (ST5) is the same as that shown in FIG. As for the method of determining the systolic blood pressure, similar to the method of determining the diastolic blood pressure, an actual measurement method in which the cuff pressure at the time when the rate of increase of the pulse wave amplitude for each beat becomes the maximum is the maximum blood pressure, and the maximum pulse wave amplitude H (M ) Is multiplied by the maximum blood pressure determination coefficient G, and there is a pulse wave amplitude comparison method in which the cuff pressure when the pulse wave amplitude exceeds the product of H (M) and G is set as the maximum blood pressure.
In this embodiment, a pulse wave amplitude comparison method was used. FIG. 11 is a diagram showing a logic (algorithm) for determining systolic blood pressure using the pulse wave amplitude comparison method. The algorithm for determining systolic blood pressure will be described with reference to FIG. As a preparation stage, the maximum pulse wave amplitude H (M), the pressure P (M) at the maximum pulse wave amplitude, and the counters i and j are cleared to zero (ST1).
1). When the pulse wave is detected (ST12), the pulse wave start cuff pressure P is set to P
In (i), the pulse wave amplitude H is stored in H (i) (ST13),
i is incremented by one (ST14), and when i is 1 (ST14)
15) Return to ST12. H if i is not 1 (ST15)
It is determined whether (i) does not exceed H (M) (ST16),
If not, shift to ST18. If it exceeds, the maximum pulse wave amplitude H (M) is updated (ST17). The counter j is cleared to zero (ST18), and it is determined whether or not H (j) exceeds the product of the systolic blood pressure determination coefficient G and the maximum pulse wave amplitude H (M) (ST19). j is incremented by 1 (ST20), and it is determined whether j is equal to i (ST20).
21) If not equal, return to ST19. ST if equal
Return to 12. In ST19, H (j) is the maximum pulse wave amplitude H
The pulse wave start cuff pressure P (j) when the product exceeds the product of (M) and the systolic blood pressure determination coefficient G is set as the systolic blood pressure P (S) (ST2
2).

最高血圧を血圧した後、最低血圧の決定をする。最低
血圧の決定アルゴリズムを第1図を参照して説明する。
計測開始(ST0)から最高血圧決定(ST5)までは、第8
図に示したのと同様である。脈波を検出する(ST23)と
脈波開始カフ圧PをP(i)に、脈波振幅HをH(i)
にメモリ(ST24)し、iを1つインクリメント(ST25)
し、H(i)がH(M)を越えていないかを判断し(ST
26)、越えていない場合はST28へ移行する。越えている
場合にはH(M)を更新する(ST27)。仮に最低血圧P
(d)を関係式、 P(d)={3×P(M)−P(S)}/2 により算出(ST28)し、最大脈波振幅H(M)と最低血
圧決定係数Kとを乗じ比較脈波振幅H(D)とする(ST
29)。ここで最低血圧決定係数Kの値及びその決定方法
について説明する。被血圧測定者の血圧測定部位にカフ
を巻き最高血圧以上にカフの圧力を上昇させた後、カフ
圧を徐々に減圧していく過程のカフ圧P(i)の変化を
記録し、同時に聴診法によって最低血圧P(D)と平均
血圧P(M)を決定する。聴診法で決定した最低血圧P
(D)時の脈波振幅すなわち比較脈波振幅H(D)の値
と平均血圧P(M)時の脈波振幅H(M)の値を、比較
脈波振幅H(D)と平均血圧P(M)時の脈波振幅H
(M)と最低血圧決定係数Kとの関係式、 H(D)=H(M)×K に代入して最低血圧決定係数Kの値を求める。最低血圧
決定係数Kは0.5〜0.8を示し、この値はたとえば上腕、
手首、指など被計測者の血圧測定部位毎に定まる。第1
図の説明にもどり、カフ圧P(i)が仮の最低血圧P
(d)を越えているかを判断(ST30)し、P(i)がP
(d)を越えている場合はST23に戻る。P(i)がP
(d)以下の場合は脈波振幅H(i)が比較脈波振幅H
(D)を越えているかを判断する(ST31)。H(i)が
H(D)を越えている場合にはST23に戻る。H(i)が
H(D)以下の場合には脈波開始カフ圧P(i)を最低
血圧P(D)とする(ST32)。最低血圧決定後の血圧表
示(ST8)から計測終了(ST10)までは第8図と同様で
ある。第9図及び第10図を参照して、最低血圧を決定す
る時に脈波振幅比較法及び推定演算法の一方のみによっ
て生ずる最低血圧決定の過ちを本発明が回避できるアル
ゴリズムを説明する。はじめに第9図を参照して脈波振
幅比較法について説明する。脈波振幅比較法のみでは、
第9図の時間11のように規則正しい脈波振幅の減少過程
から著しく小さい脈波が計測されたとき、最大脈波振幅
を示す脈波振幅H(9)と最低血圧決定係数Kとの積が
H(11)より大きいとH(11)におけるカフ圧を最低血
圧P(D)とした。しかしながら本発明のように、推定
演算法との論理積によって最低血圧を決定すれば、カフ
圧P(i)がP(M)(=P(9))と最高血圧P
(S)によって演算される仮の最高血圧以下にならなけ
れば最低血圧を決定しないので、第9図の例は回避でき
る。また推定演算法のみでは、第10図の時間8のように
規則正しい脈波振幅の上昇過程から著しく小さい脈波が
計測されたとき、最大脈波振幅H(M)[=H(7)]
と最高血圧P(S)とにより最低血圧P(D)を関係
式、 P(D)={3×P(7)−P(S)} により誤った最低血圧を算出する場合においても、本発
明のように脈波振幅比較法との論理積によって最低血圧
を決定すれば、最大脈波振幅H(7)と最低血圧決定係
数Kとの積より第10図の時間8における脈波振幅H
(8)が大きいので第10図の時間8において最低血圧を
決定する過ちは回避できる。
After the systolic blood pressure, determine the diastolic blood pressure. The algorithm for determining the diastolic blood pressure will be described with reference to FIG.
From the start of measurement (ST0) to the determination of systolic blood pressure (ST5),
It is the same as shown in the figure. When the pulse wave is detected (ST23), the pulse wave start cuff pressure P is set to P (i), and the pulse wave amplitude H is set to H (i).
To memory (ST24) and increment i by one (ST25)
It is determined whether H (i) does not exceed H (M) (ST
26) If not, move to ST28. If it exceeds, H (M) is updated (ST27). Temporary diastolic blood pressure P
(D) is calculated by the relational expression, P (d) = {3 × P (M) −P (S)} / 2 (ST28), and the maximum pulse wave amplitude H (M) and the diastolic blood pressure determination coefficient K are calculated. Multiply and compare pulse wave amplitude H (D) (ST
29). Here, the value of the diastolic blood pressure determination coefficient K and its determination method will be described. After the cuff is wound around the blood pressure measurement site of the blood pressure measurement person and the pressure of the cuff is increased above the systolic blood pressure, the change in the cuff pressure P (i) in the process of gradually reducing the cuff pressure is recorded, and auscultation is simultaneously performed. The minimum blood pressure P (D) and the average blood pressure P (M) are determined by the method. Diastolic blood pressure P determined by auscultation
The pulse wave amplitude at the time (D), that is, the value of the comparison pulse wave amplitude H (D) and the value of the pulse wave amplitude H (M) at the time of the mean blood pressure P (M) are calculated by comparing the pulse wave amplitude H (D) with the mean pulse pressure. Pulse wave amplitude H at P (M)
The value of the diastolic blood pressure determination coefficient K is obtained by substituting into a relational expression between (M) and the diastolic blood pressure determination coefficient K, H (D) = H (M) × K. The diastolic blood pressure determination coefficient K indicates 0.5 to 0.8, and this value is, for example,
It is determined for each blood pressure measurement site of the subject, such as a wrist or finger. First
Returning to the explanation of the figure, the cuff pressure P (i) is
(D) is determined (ST30), and P (i) is
If it exceeds (d), return to ST23. P (i) is P
(D) In the following cases, the pulse wave amplitude H (i) is
It is determined whether (D) is exceeded (ST31). If H (i) exceeds H (D), the process returns to ST23. If H (i) is equal to or lower than H (D), the pulse wave start cuff pressure P (i) is set as the minimum blood pressure P (D) (ST32). The process from the blood pressure display after the determination of the diastolic blood pressure (ST8) to the end of the measurement (ST10) is the same as in FIG. With reference to FIGS. 9 and 10, an algorithm will be described in which the present invention can avoid a mistake in determining the diastolic blood pressure caused by only one of the pulse wave amplitude comparison method and the estimation calculation method when determining the diastolic blood pressure. First, the pulse wave amplitude comparison method will be described with reference to FIG. In the pulse wave amplitude comparison method alone,
When an extremely small pulse wave is measured from the regular pulse wave amplitude decreasing process as at time 11 in FIG. 9, the product of the pulse wave amplitude H (9) indicating the maximum pulse wave amplitude and the diastolic blood pressure determination coefficient K is If it was greater than H (11), the cuff pressure at H (11) was taken as the diastolic blood pressure P (D). However, as in the present invention, if the diastolic blood pressure is determined by the logical product of the estimation calculation method, the cuff pressure P (i) becomes P (M) (= P (9)) and the systolic blood pressure P
Since the diastolic blood pressure is not determined unless it becomes lower than the provisional systolic blood pressure calculated by (S), the example of FIG. 9 can be avoided. In addition, with only the estimation calculation method, when a significantly small pulse wave is measured from the regular rising process of the pulse wave amplitude as at time 8 in FIG. 10, the maximum pulse wave amplitude H (M) [= H (7)]
Even if an erroneous diastolic blood pressure is calculated by the relational expression P (D) = {3 × P (7) -P (S)}, the diastolic blood pressure P (D) is calculated by If the diastolic blood pressure is determined by the logical product of the pulse wave amplitude comparison method as in the present invention, the pulse wave amplitude H at time 8 in FIG. 10 is obtained from the product of the maximum pulse wave amplitude H (7) and the diastolic blood pressure determination coefficient K.
Since (8) is large, the mistake of determining the diastolic blood pressure at time 8 in FIG. 10 can be avoided.

〔発明の効果〕〔The invention's effect〕

この発明によれば、カフ圧の振動で血圧を決定する振
動法の電子血圧計において、被計測者の計測中の体動
(アーチファクト)、被計測者の計測部位の個人差、電
気的雑音などにより脈波振幅の時系列的変化が乱され、
最低血圧の決定に誤差を生ずる場合にも、減圧過程にお
いて、カフ圧の動脈拍動による脈波の振幅を、圧力変化
過程において計測された最高血圧P(S)と平均血圧P
(M)とから関係式、P(d)={3×P(M)−P
(S)}/2 により仮の最低血圧P(d)を算出する第1の最低血圧
決定手段と、比較脈波振幅H(D)を、平均血圧P
(M)時の脈波振幅H(M)と最低血圧決定係数Kとか
ら関係式、 H(D)=H(M)×K により算出する第2の最低血圧決定手段とから構成さ
れ、圧力変化過程中のカフ圧P(i)が第1の最低血圧
決定手段により算出された仮の最低血圧P(d)以下で
あり、かつ脈波振幅H(i)が、第2の最低血圧決定手
段により算出された比較脈波振幅H(D)以下になった
時のカフ圧P(i)を最低血圧P(D)とすることによ
り、上記脈波振幅の時系列変化が乱された場合でも、正
確に最低血圧を決定できる。
According to the present invention, in an electronic sphygmomanometer of a vibration method in which blood pressure is determined by vibration of a cuff pressure, a body movement (artifact) during measurement of a subject, individual differences in a measurement site of the subject, electric noise, and the like. Disturbs the time-series changes in pulse wave amplitude,
Even when an error occurs in the determination of the diastolic blood pressure, the amplitude of the pulse wave caused by the arterial pulsation of the cuff pressure is determined by the systolic blood pressure P (S) and the average blood pressure P measured during the pressure change process in the decompression process.
(M) and P (d) = {3 × P (M) −P
(S) The first diastolic blood pressure determining means for calculating the provisional diastolic blood pressure P (d) from} / 2, and the comparison pulse wave amplitude H (D) is calculated as the average blood pressure P (d).
And a second diastolic blood pressure determining means which is calculated from a relational expression from the pulse wave amplitude H (M) at (M) and the diastolic blood pressure determining coefficient K, H (D) = H (M) × K. The cuff pressure P (i) during the change process is equal to or less than the provisional diastolic blood pressure P (d) calculated by the first diastolic blood pressure determining means, and the pulse wave amplitude H (i) is determined by the second diastolic blood pressure determination. The time series change of the pulse wave amplitude is disturbed by setting the cuff pressure P (i) at the time when the pulse wave amplitude becomes equal to or smaller than the comparison pulse wave amplitude H (D) calculated by the means as the diastolic blood pressure P (D). However, the diastolic blood pressure can be determined accurately.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による最低血圧決定方法のフローチャー
ト、第2図は血圧計測の実施例、第3図は同上のブロッ
ク図、第4図はカフを加圧後、微速減圧過程にある時の
カフ圧の振動を示す図、第5図は第4図より抽出分離さ
れた振動を示す図であり、理想的な振動変化を示す場合
である。第6図は抽出分離された振動を示す図で、最高
脈波振幅が小さい場合、第7図は抽出分離された脈波を
示す図で、時系列的変化がなだらかな場合、第8図は血
圧計測の流れを示すフローチャートであり、第9図は脈
波振幅比較法により、最低血圧決定に過ちを起こす例、
第10図は推定演算法により、最低血圧決定に過ちを起こ
す例であり、第11図は脈波振幅比較法により最高血圧を
決定する方法を示すフローチャートである。 血圧計測部位……31、 カフ……32、 圧力センサー……35、 A/D変換器……36、 微速排気弁……39、 急速排気弁……40、 加圧ポンプ……41。
FIG. 1 is a flowchart of a method for determining a diastolic blood pressure according to the present invention, FIG. 2 is an embodiment of blood pressure measurement, FIG. 3 is a block diagram of the same, and FIG. FIG. 5 is a diagram showing the vibration of the cuff pressure, and FIG. 5 is a diagram showing the vibration extracted and separated from FIG. 4, which is a case showing an ideal vibration change. FIG. 6 is a diagram showing the extracted and separated vibrations, and FIG. 7 is a diagram showing the extracted and separated pulse waves when the maximum pulse wave amplitude is small, and FIG. FIG. 9 is a flow chart showing the flow of blood pressure measurement. FIG. 9 shows an example in which a diastolic blood pressure is erroneously determined by the pulse wave amplitude comparison method.
FIG. 10 is an example in which a diastolic blood pressure is erroneously determined by the estimation calculation method, and FIG. 11 is a flowchart showing a method of determining the systolic blood pressure by the pulse wave amplitude comparison method. Blood pressure measurement site ... 31, Cuff ... 32, Pressure sensor ... 35, A / D converter ... 36, Slow exhaust valve ... 39, Quick exhaust valve ... 40, Pressurizing pump 41.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被計測者の血圧計測部位に装着されたカフ
と、該カフ内の圧力を上昇させるための加圧ポンプと、
前記カフ内の圧力を徐々に減圧させるための微速排気弁
と、計測が終了した後、急速に前記カフ内の圧力を減圧
するための急速排気弁と、前記カフ内の圧力を電気信号
に変換する圧力センサーと、前記圧力センサーの信号を
デジタル値に変換するA/D変換器と、前記カフの圧力変
化過程において脈波振幅を検出する脈波振幅検出手段
と、該脈波振幅検出手段と前記圧力センサーにより検出
されたカフ圧とから血圧を決定する血圧値決定手段とを
含む電子電圧計において、前記血圧値決定手段は仮の最
低血圧P(d)をカフ圧変化過程において計測された最
高血圧P(S)と平均血圧P(M)とから関係式、 P(d)={3×P(M)−P(S)}/2 により算出する第1の最低血圧決定手段と、比較脈波振
幅H(D)を平均血圧P(M)時の脈波振幅H(M)と
最低血圧決定係数Kとから関係式、 H(D)=H(M)×K により算出する第2の最低血圧決定手段とを有し、圧力
変化過程中のカフ圧P(i)が前記第1の最低血圧決定
手段により算出された仮の最低血圧P(d)以下であ
り、かつ脈波振幅H(i)が、前記第2の最低血圧決定
手段により算出された比較脈波振幅H(D)以下になっ
た時のカフ圧P(i)を最低血圧とすることを特徴とす
る電子電圧計。
1. A cuff attached to a blood pressure measurement site of a subject, a pressurizing pump for increasing a pressure in the cuff,
A slow exhaust valve for gradually reducing the pressure in the cuff, a quick exhaust valve for rapidly reducing the pressure in the cuff after measurement is completed, and a conversion of the pressure in the cuff to an electric signal Pressure sensor, an A / D converter for converting a signal of the pressure sensor into a digital value, a pulse wave amplitude detecting means for detecting a pulse wave amplitude in a pressure change process of the cuff, and the pulse wave amplitude detecting means. In an electronic voltmeter including a blood pressure value determining means for determining a blood pressure from the cuff pressure detected by the pressure sensor, the blood pressure value determining means measures a provisional diastolic blood pressure P (d) in a cuff pressure changing process. First diastolic blood pressure determining means which is calculated from a systolic blood pressure P (S) and an average blood pressure P (M) by a relational expression, P (d) = {3 × P (M) -P (S)} / 2; Comparison pulse wave amplitude H (D) with pulse wave at mean blood pressure P (M) A second diastolic blood pressure determining means for calculating the relational expression from the width H (M) and the diastolic blood pressure determining coefficient K by the following equation: H (D) = H (M) × K, and the cuff pressure P during the pressure change process. (I) is not more than the provisional diastolic blood pressure P (d) calculated by the first diastolic blood pressure determining means, and the pulse wave amplitude H (i) is calculated by the second diastolic blood pressure determining means. An electronic voltmeter, wherein the cuff pressure P (i) when the amplitude becomes equal to or smaller than the comparison pulse wave amplitude H (D) is set as the minimum blood pressure.
JP2025171A 1990-02-06 1990-02-06 Electronic sphygmomanometer Expired - Fee Related JP2807024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2025171A JP2807024B2 (en) 1990-02-06 1990-02-06 Electronic sphygmomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2025171A JP2807024B2 (en) 1990-02-06 1990-02-06 Electronic sphygmomanometer

Publications (2)

Publication Number Publication Date
JPH03231631A JPH03231631A (en) 1991-10-15
JP2807024B2 true JP2807024B2 (en) 1998-09-30

Family

ID=12158560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2025171A Expired - Fee Related JP2807024B2 (en) 1990-02-06 1990-02-06 Electronic sphygmomanometer

Country Status (1)

Country Link
JP (1) JP2807024B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0821084D0 (en) 2008-11-18 2008-12-24 King S College London Apparatus and method
GB201118644D0 (en) 2011-10-27 2011-12-07 King S College London A method and apparatus for measuring blood pressure

Also Published As

Publication number Publication date
JPH03231631A (en) 1991-10-15

Similar Documents

Publication Publication Date Title
US6733460B2 (en) Arteriosclerosis diagnosing apparatus
US5054494A (en) Oscillometric blood pressure device
US5680867A (en) Electronic blood pressure measurment device
US7029448B2 (en) Electronic hemomanometer and blood pressure measuring method of electronic hemomanometer
US6475155B2 (en) Pulse-wave-propagation-relating information obtaining apparatus and arterial-bifurcate-portion determining apparatus
JP2938234B2 (en) Blood pressure monitor device with finger cuff calibration device
US5711303A (en) Device to measure vascular function
US4926873A (en) Method for measuring blood pressure and apparatus for automated blood pressure measuring
EP0536782A1 (en) A method and apparatus for excluding artifacts from automatic blood pressure measurements
US20110224558A1 (en) Blood pressure information measurement device for measuring pulse wave propagation speed as blood pressure information
US6440080B1 (en) Automatic oscillometric apparatus and method for measuring blood pressure
US5072736A (en) Non-invasive automatic blood pressure measuring apparatus
WO2006024871A1 (en) Methods and apparatus for the measurement of blood pressure
GB2381076A (en) Non-invasive method for determining diastolic blood pressure
US4860760A (en) Electronic blood pressure meter incorporating compensation function for systolic and diastolic blood pressure determinations
US7803122B2 (en) Device for determining the transition between systole and diastole
JP2807024B2 (en) Electronic sphygmomanometer
US4905704A (en) Method and apparatus for determining the mean arterial pressure in automatic blood pressure measurements
JP3216029B2 (en) Cardiovascular function measurement device
JP2001309895A (en) Sphygmomanometer
JPS63255036A (en) Apparatus for measuring blood pressure at contraction stage
JP3211130B2 (en) Electronic sphygmomanometer
JP3042051B2 (en) Electronic sphygmomanometer
KR890002764B1 (en) Electronic blood pressure meter
KR890002765B1 (en) Electronic blood pressure meter

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees