JPH03231203A - Ion exchange method - Google Patents

Ion exchange method

Info

Publication number
JPH03231203A
JPH03231203A JP2762690A JP2762690A JPH03231203A JP H03231203 A JPH03231203 A JP H03231203A JP 2762690 A JP2762690 A JP 2762690A JP 2762690 A JP2762690 A JP 2762690A JP H03231203 A JPH03231203 A JP H03231203A
Authority
JP
Japan
Prior art keywords
ion exchange
soln
pressure
solution
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2762690A
Other languages
Japanese (ja)
Other versions
JP3089640B2 (en
Inventor
Yutaka Urino
豊 賣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP02027626A priority Critical patent/JP3089640B2/en
Publication of JPH03231203A publication Critical patent/JPH03231203A/en
Application granted granted Critical
Publication of JP3089640B2 publication Critical patent/JP3089640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To stabilize temp. and to improve the controllability and reproducibility of ion exchange depth by immersing a substrate in a soln. at a temp. close to the b.p. of the soln. under constant vapor pressure and carrying out ion exchange. CONSTITUTION:The region of a substrate 1 not to be subjected to ion exchange is coated with a film 2 of a metal, oxide, nitride, etc., and the substrate 1 is immersed in a soln. 3 as an ion source. This soln. 3 is heated to a temp. close to the b.p. of the soln. 3 with a heater 4 and vapor pressure is kept constant. When the pressure of a vapor phase generated from the soln. is relieved to atmospheric pressure, it can be made constant within a range in which atmospheric pressure varies. Temp. is stabilized, the controllability and reproducibility of ion exchange depth are improved and an optical element is simply obtd. by ion exchange.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、イオン交換を利用した光学素子とくに偏光素
子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an optical element, particularly a polarizing element, using ion exchange.

(従来の技術) 偏光素子特に偏光ビームスプリッタは、直交する偏光間
で光の伝搬方向を異ならしめることによって特定の偏光
を得る素子である。このような素子は、光フアイバ通信
用光源モジュールや光デ、イスク用光ヘッドなどに、光
アイソレータや光サーキュレータを構成する部品として
使われている。
(Prior Art) A polarizing element, particularly a polarizing beam splitter, is an element that obtains a specific polarized light by changing the propagation direction of light between orthogonal polarized lights. Such elements are used as parts constituting optical isolators and optical circulators in light source modules for optical fiber communications, optical heads for optical discs, and the like.

従来、偏光ビームスプリッタとしては、グラントムソン
プリズムやロッシコンプリズムなど、複屈折の大きな結
晶の光反射面における偏光による透過ないしは全反射の
違いを利用し光路を分離するもの、またはガラスなどの
等方性光学媒質でできた全反射プリズム反射面に誘電体
多層膜を設け、この誘電体多層膜の偏光による屈折率の
違いを利用して、光を全反射ないしは透過させるものが
多く使用されている。しかしながら、これらの素子は大
型であること、生産性が低いこと、値段が高いことなど
の欠点がある。
Conventionally, polarizing beam splitters are those that separate optical paths by utilizing the difference in transmission or total reflection due to polarization on the light reflecting surface of a crystal with large birefringence, such as a Glan-Thompson prism or Rossicon prism, or isotropic beam splitters such as glass. A total reflection prism made of a reflective optical medium has a dielectric multilayer film on its reflective surface, and the difference in refractive index due to the polarization of this dielectric multilayer film is used to completely reflect or transmit light. . However, these devices have drawbacks such as large size, low productivity, and high cost.

これに対して、小型で生産性が高く、安価な複層折回折
子型偏光子がある。複屈折回折格子型偏光子は光学的異
方性をもつ結晶の光学軸と平行な主面に、周期的なイオ
ン交換領域をもうけ、かつ該主面上にイオン交換を施し
た領域では厚くイオン交換を施していない領域では薄く
誘電体膜を形成したものであり、偏光による回折効率の
違いを利用して光路を分離するものである。例えば、ニ
オブ酸リチウムのX板またはY板の主面に周期的にプロ
トン交換を施すと、プロトン交換を施した領域では波長
1.3pmの異常光線に対する屈折率が0.09増加し
、常光線に対する屈折率が約0.04減少する。
On the other hand, there is a multilayer diffraction polarizer that is small, highly productive, and inexpensive. A birefringent grating polarizer has periodic ion exchange regions on the main surface parallel to the optical axis of an optically anisotropic crystal, and the ion exchange region on the main surface has a thick ion exchange region. A thin dielectric film is formed in the area where no exchange is performed, and optical paths are separated by utilizing differences in diffraction efficiency due to polarization. For example, when proton exchange is performed periodically on the main surface of an X plate or a Y plate of lithium niobate, the refractive index for extraordinary rays with a wavelength of 1.3 pm increases by 0.09 in the proton exchanged region, and the refractive index for ordinary rays increases by 0.09. The refractive index decreases by about 0.04.

従って、プロトン交換を施した領域の誘電体膜厚を、プ
ロトン交換を施していない領域の誘電体膜厚に比べて厚
くし、プロトン交換を施した領域の常光線に対する屈折
率の減少を相殺することによって、常光線の1次上の回
折効率及び異常光線の0次の回折効率を共に零にするこ
とができ、偏光子になる。
Therefore, the dielectric film thickness in the proton-exchanged region is made thicker than the dielectric film thickness in the non-proton-exchanged region to offset the decrease in the refractive index for ordinary rays in the proton-exchanged region. By doing so, both the first-order diffraction efficiency of ordinary rays and the zero-order diffraction efficiency of extraordinary rays can be made zero, and the polarizer becomes a polarizer.

(発明が解決しようとする課題) この複屈折回折格子型偏光子は、イオン交換の深さを正
確に制御しないと消光比または挿入損失が劣化する。例
えば、イオン交換深さが最適値から1%ずれると、消光
比は20dB以下に制限されてしまう。一方、イオン交
換の際の温度が1度ずれると、拡散深さは約1.5%ず
れる。このため、高消光比の複屈折回折格子型偏光子を
作成するためにはイオン交換の温度を精度よく制御する
必要がある。
(Problems to be Solved by the Invention) In this birefringent grating type polarizer, the extinction ratio or insertion loss deteriorates unless the depth of ion exchange is accurately controlled. For example, if the ion exchange depth deviates from the optimum value by 1%, the extinction ratio will be limited to 20 dB or less. On the other hand, if the temperature during ion exchange shifts by 1 degree, the diffusion depth shifts by about 1.5%. Therefore, in order to create a birefringent grating polarizer with a high extinction ratio, it is necessary to control the ion exchange temperature with high accuracy.

従来、イオン交換の温度制御には、通常の温度制御装置
が用いられていたが、従来の温度制御装置では十分な温
度制御精度が得られな力じた。
Conventionally, normal temperature control devices have been used to control the temperature of ion exchange, but it has been difficult to obtain sufficient temperature control accuracy with the conventional temperature control devices.

本発明の目的は、イオン交換のさいの温度を安定化し、
イオン交換の深さの制御性や再現性を向上させる簡便な
技術を提供することにある。
The purpose of the present invention is to stabilize the temperature during ion exchange,
The objective is to provide a simple technique that improves the controllability and reproducibility of ion exchange depth.

(課題を解決するための手段) 本発明のイオン交換の方法は、基板をイオン源となる溶
液中に浸漬して、イオン交換する方法において、その蒸
気圧が一定のもとで、その溶液の沸点付近の温度で基板
をその溶液中に浸漬してイオン交換することを特徴とす
る。
(Means for Solving the Problems) The ion exchange method of the present invention is a method of ion exchange by immersing a substrate in a solution serving as an ion source, in which the vapor pressure of the solution is kept constant. It is characterized by ion exchange by immersing the substrate in the solution at a temperature near the boiling point.

(作用) 物質の沸点は圧力が一定の場合には一定の値を採る。し
たがって、イオン源となる溶液をその溶液の沸点まで加
熱し、気相の圧力が一定になるようにしておけば、溶液
の温度をその沸点で安定化できる。一般に、圧力の変化
に対する沸点の変化は小さいので、圧力を一定に保つこ
とにより、温度自身を制御するよりも簡便にかつ精度よ
く温度を安定化することができる。
(Function) The boiling point of a substance takes a constant value when the pressure is constant. Therefore, by heating a solution serving as an ion source to its boiling point and keeping the pressure of the gas phase constant, the temperature of the solution can be stabilized at that boiling point. Generally, the change in boiling point with respect to a change in pressure is small, so by keeping the pressure constant, the temperature can be stabilized more easily and accurately than by controlling the temperature itself.

(実施例) 以下、本発明の実施例について図面を参照して詳細に説
明する。第1図は本発明によるイオン交換領域の形成装
置の一実施例の断面図である。イオン交換されたくない
領域上に金属、酸化物、窒化物等の膜2で覆いをした基
板1を、イオン源となる溶液3中にに浸漬し、この溶液
3をヒーター4等で溶液3の沸点付近まで加減する。こ
の溶液3は蒸気圧が一定となるようにする。第1図の実
施具では溶液の気相を大気圧に解放した例である。この
場合大気圧の変動範囲程度で圧力を一定にすることがで
きる。また、イオン交換が長時間になる場合には、イオ
ン源の溶液3が気化して溶液3の量が減少するのを防ぐ
ために、第2図に示すように、溶液3を保持する容器5
に蓋6をするとよい。この蓋6に適当な気密性をもたせ
る二とにより、溶液3の減少を防ぐと共に一定の圧力を
維持することができる。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view of an embodiment of an ion exchange region forming apparatus according to the present invention. A substrate 1 with a film 2 of metal, oxide, nitride, etc. covered on areas that are not desired to undergo ion exchange is immersed in a solution 3 that serves as an ion source, and this solution 3 is heated using a heater 4 or the like. Adjust to near boiling point. This solution 3 is made to have a constant vapor pressure. The embodiment shown in FIG. 1 is an example in which the gas phase of the solution is released to atmospheric pressure. In this case, the pressure can be kept constant within a range of atmospheric pressure fluctuations. In addition, when the ion exchange takes a long time, in order to prevent the solution 3 of the ion source from vaporizing and reducing the amount of the solution 3, a container 5 for holding the solution 3 is installed as shown in FIG.
It is best to put a lid 6 on it. By providing the lid 6 with appropriate airtightness, it is possible to prevent the solution 3 from decreasing and maintain a constant pressure.

さらに、第3図に示すように、この容器5または稿6に
圧力弁7等の圧力を一定に保つ装置を付ければ、さらに
安定な温度制御が行える。また、圧力大気圧よりも高く
保つことにより、沸点を上昇させることができるので、
短時間でイオン交換することができる。
Furthermore, as shown in FIG. 3, if a device for keeping the pressure constant, such as a pressure valve 7, is attached to the container 5 or the paper 6, even more stable temperature control can be achieved. Also, by keeping the pressure higher than atmospheric pressure, the boiling point can be raised.
Ion exchange can be performed in a short time.

なお、本発明のイオン交換の方法は、複層折回折子型偏
光子の作成に限らず他の光学素子に適用しても有効であ
る。
Note that the ion exchange method of the present invention is effective not only for producing a multilayer diffraction type polarizer but also for other optical elements.

(発明の効果) 以上に述べたように本発明によれば、イオン交換の温度
を安定化し、イオン交換の深さの制御性や再現性を向上
させ、簡便にイオン交換を用%1徳光学素子を製作する
ことができる。また、溶液の圧力を大気圧よりも高く保
つことにより、イオン第1図は本発明によるイオン交換
装置の一実施例の断面図であり、第2図および第3図は
他の実施例の断面図である。
(Effects of the Invention) As described above, according to the present invention, the temperature of ion exchange can be stabilized, the controllability and reproducibility of ion exchange depth can be improved, and ion exchange can be easily performed. element can be manufactured. Furthermore, by keeping the pressure of the solution higher than atmospheric pressure, ion exchangers are shown in FIG. It is a diagram.

1・・・光学的異方性を持つ結晶基板、2・・・イオン
交換用マスク、3.・・イオン源溶液、4・・・ヒータ
、5・・・容器、6・・・蓋、7・・・圧力弁。
1... Crystal substrate with optical anisotropy, 2... Ion exchange mask, 3. ... Ion source solution, 4... Heater, 5... Container, 6... Lid, 7... Pressure valve.

Claims (1)

【特許請求の範囲】[Claims] 基板表面にイオン交換領域を形成するさいに、イオン源
となる溶液の蒸気圧を一定に保ちながら、その溶液の温
度を溶液の沸点付近の温度にし、基板をその溶液中に浸
漬し、イオン交換することを特徴とするイオン交換の方
法。
When forming an ion exchange region on the surface of a substrate, the vapor pressure of the solution serving as an ion source is kept constant, the temperature of the solution is brought to a temperature near the boiling point of the solution, and the substrate is immersed in the solution to perform ion exchange. An ion exchange method characterized by:
JP02027626A 1990-02-06 1990-02-06 Ion exchange method and ion exchange region forming apparatus Expired - Fee Related JP3089640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02027626A JP3089640B2 (en) 1990-02-06 1990-02-06 Ion exchange method and ion exchange region forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02027626A JP3089640B2 (en) 1990-02-06 1990-02-06 Ion exchange method and ion exchange region forming apparatus

Publications (2)

Publication Number Publication Date
JPH03231203A true JPH03231203A (en) 1991-10-15
JP3089640B2 JP3089640B2 (en) 2000-09-18

Family

ID=12226168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02027626A Expired - Fee Related JP3089640B2 (en) 1990-02-06 1990-02-06 Ion exchange method and ion exchange region forming apparatus

Country Status (1)

Country Link
JP (1) JP3089640B2 (en)

Also Published As

Publication number Publication date
JP3089640B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
JP2703930B2 (en) Birefringent diffraction grating polarizer
US5029988A (en) Birefringence diffraction grating type polarizer
CA1317135C (en) Integrated optical device and method for manufacturing thereof
EP0618464B1 (en) Polarization splitter
US5436992A (en) Lithium niobate optical TE-TM mode splitter
WO2004008196A1 (en) Polarization analyzer
JPS60222805A (en) Stable fiber optic polarizer
JPH0575081B2 (en)
JPH10293228A (en) Optical device for splitting input light into two cross polarization states
JPH03231203A (en) Ion exchange method
JP2541548B2 (en) Diffraction grating type optical polarizer
JPH075316A (en) Diffraction grating type polarizer and its production
JP2001083321A (en) Polarizer and method for its production
JP2718112B2 (en) Birefringent diffraction grating polarizer and method of manufacturing the same
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP3569419B2 (en) Optical waveguide circuit with optical property adjusting plate and method of manufacturing the same
JPH04219701A (en) Polarization-dependent type grating element and its manufacture, and optical head device thereof
JP2503538B2 (en) Method for manufacturing diffraction grating type polarizing plate
JPH05196813A (en) Diffraction grating type optical polarizing element
JP7069966B2 (en) Optical control element
JP3713778B2 (en) Optical head device
JPH0830767B2 (en) Hologram element
JPH0212107A (en) Birefringent diffraction grating type polarizer
JPH01177505A (en) Manufacture of diffraction grating type polarizing plate
JP2789941B2 (en) How to use birefringent diffraction grating polarizer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070721

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees