JPH03228310A - Mask for x-ray exposure and manufacture thereof - Google Patents

Mask for x-ray exposure and manufacture thereof

Info

Publication number
JPH03228310A
JPH03228310A JP2021969A JP2196990A JPH03228310A JP H03228310 A JPH03228310 A JP H03228310A JP 2021969 A JP2021969 A JP 2021969A JP 2196990 A JP2196990 A JP 2196990A JP H03228310 A JPH03228310 A JP H03228310A
Authority
JP
Japan
Prior art keywords
ray
thin film
thickness
transparent thin
film substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021969A
Other languages
Japanese (ja)
Inventor
Takashi Soga
隆 曽我
Shinji Kuniyoshi
伸治 国吉
Akihiko Kishimoto
岸本 晃彦
Kozo Mochiji
広造 持地
Takeshi Kimura
剛 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2021969A priority Critical patent/JPH03228310A/en
Publication of JPH03228310A publication Critical patent/JPH03228310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To reduce the strain on the mask positions without forming a supplementary layer as usual by a method wherein the opposite surface to the surface of an X-ray transmissible thin film substrate in contact with X-ray absorber patterns is processed so that the thickness of said substrate may be differentiated between the X-ray absorber pattern parts and the other parts. CONSTITUTION:Within the title mask for X-ray exposure, the opposite surface to the surface of an X-ray transmissive thin film substrate 2 in contact with X-ray absorber patterns 3 is processed so that the thickness of said substrate 2 may be differentiated between the X-ray absorber pattern parts 3 and the other parts. For example, when the stresses of said substrate 2 and said patterns 3 are tensile stress or compressive stress taking the same direction, the thickness of said substrate 2 on said patterns 3 is reduced, however, when both element 2 and 3 take different directions, the thickness of the X-ray transmissive thin film substrate 2 on the parts excluding the X-ray absorber patterns 3 is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造工程のりソグラフイ技術における
X線露光用マスクの構造に係り、特に応力によって発生
するパターンの位置歪の小さいX線露光用マスクおよび
その製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of an X-ray exposure mask in semiconductor manufacturing process lathography technology, and in particular to an X-ray exposure mask with small positional distortion of a pattern caused by stress. Related to a mask and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来のX線露光用マスクは、特開昭63−136620
号公報記載のように周辺を支持枠で固定されたX線透過
性薄膜基板上にX線吸収体パターンを設け、該X線吸収
体パターン間隙にX線透過性薄膜補足層を埋設していた
。その概略を第2図に示す。すなわち支持枠1およびX
線透過性薄膜2から成るマスクブランク上にX線吸収体
パターン3を形成すると、X線吸収体パターンの持つ応
力によって該X線透過性薄膜が伸縮してパターンの位置
歪を生ずるため、X線吸収体パターンの応力と同じ応力
を持つX線透過性薄膜補足層8をX線吸収体パターン間
隙に埋設している。
The conventional X-ray exposure mask is disclosed in Japanese Patent Application Laid-open No. 63-136620.
As described in the publication, an X-ray absorber pattern was provided on an X-ray transparent thin film substrate whose periphery was fixed with a support frame, and an X-ray transparent thin film supplementary layer was embedded in the gap between the X-ray absorber patterns. . The outline is shown in Fig. 2. That is, support frame 1 and
When an X-ray absorber pattern 3 is formed on a mask blank made of a radiation-transparent thin film 2, the stress of the X-ray absorber pattern expands and contracts the X-ray transparent thin film, causing positional distortion of the pattern. An X-ray transparent thin film supplementary layer 8 having the same stress as that of the absorber pattern is embedded in the gap between the X-ray absorber patterns.

尚、X線透過性薄膜基板にはS i、N4. S i 
C。
Note that the X-ray transparent thin film substrate has Si, N4. Si
C.

BN等の単層もしくは複合層を用い、X線吸収体パター
ンにはAu、W、Ta、 Mo等を用い、X線透過性薄
膜補足層には、S i3N4.S iO2を用いている
A single layer or a composite layer of BN or the like is used, Au, W, Ta, Mo, etc. are used for the X-ray absorber pattern, and Si3N4. SiO2 is used.

〔発明が解決しようとする課題〕 上記従来技術では、X線透過性薄膜補足層を形成する際
に課題がある。すなわち、X線吸収体パターンを形成し
た後、該X線吸収体パターン上部をレジスト層で被覆し
た状態の上にマイクロ波電子サイクロトロン共鳴(E 
CR、electroncyclotron reas
onance)型プラズマCVD法によりS 1lN4
や5in2 を積層し、しかる後レジスト剥離液を用い
てレジスト上のSi、N4やS io2膜をリフトオフ
除去することでX線吸収体パターン間隙にX線透過性薄
膜補足層が形成される。しかしECRプラズマCVD膜
がレジスト側壁に付着したり、除去するパターンが大面
積になる場合にはリフトオフ除去工程の残存部が生じる
ことがあり、欠陥不良を多発する要因となっていた。
[Problems to be Solved by the Invention] The above-mentioned prior art has a problem when forming the X-ray transparent thin film supplementary layer. That is, after forming an X-ray absorber pattern, microwave electron cyclotron resonance (E
CR, electrocyclotron reas
onance) type plasma CVD method.
After that, the Si, N4, and Sio2 films on the resist are lifted off and removed using a resist stripping solution, thereby forming an X-ray transparent thin film supplementary layer in the gap between the X-ray absorber patterns. However, if the ECR plasma CVD film adheres to the side wall of the resist or the pattern to be removed has a large area, residual portions of the lift-off removal process may occur, leading to frequent defects.

本発明の目的は、従来のような補足層を形成することな
くマスク位置歪を低減させることにある。
An object of the present invention is to reduce mask position distortion without forming a conventional supplementary layer.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明においては、X線透過性
薄膜基板の裏面を、該X線透過性薄膜基板の表面に設け
られたX線吸収体パターンの部分に応して加工し、薄膜
基板の応力を吸収体パターンの応力とバランスさせるこ
とにより、吸収体パターンの位置歪を低減する。
In order to achieve the above object, in the present invention, the back surface of an X-ray transparent thin film substrate is processed in accordance with the portion of the X-ray absorber pattern provided on the surface of the X-ray transparent thin film substrate, and the thin film substrate By balancing the stress of the absorber pattern with the stress of the absorber pattern, the positional strain of the absorber pattern is reduced.

〔作用〕[Effect]

第5図に示すようにX線吸収体パターンの応力をσΔ、
厚さをt^、X線透過性薄膜基板の応力をσと、パター
ン部における厚さの違いをΔtとした時、σAt^=σ
阿Δt を満足するようX線透過性薄膜基板の厚さを変
えることにより、両者の応力が平衡し、X線吸収体パタ
ーンの応力によるパターンの位置歪が低下する。例えば
、X線透過性薄膜基板とX線吸収体パターンの応力がそ
れぞれ引張り応力、もしくは圧縮応力で同し方向の応力
を持つ場合は、第1図に示す如くX線吸収体パタンの部
分のX線透過性薄膜基板の厚さを減じ、また、両者の応
力の方向が互いに異なる場合には、第3図に示す如くX
線吸収体パターン以外の部分のX線透過性薄膜基板の厚
さを減じることが有効である。
As shown in Figure 5, the stress of the X-ray absorber pattern is σΔ,
When the thickness is t^, the stress of the X-ray transparent thin film substrate is σ, and the difference in thickness in the pattern part is Δt, σAt^=σ
By changing the thickness of the X-ray transparent thin film substrate so as to satisfy Δt, the stress between the two is balanced, and the positional strain of the X-ray absorber pattern due to the stress is reduced. For example, if the stress in the X-ray transparent thin film substrate and the X-ray absorber pattern are tensile stress or compressive stress, and have stresses in the same direction, the If the thickness of the radiation-transparent thin film substrate is reduced and the stress directions of the two are different from each other, the X
It is effective to reduce the thickness of the X-ray transparent thin film substrate in areas other than the radiation absorber pattern.

〔実施例〕〔Example〕

以下、本発明の一実施例を第4図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

まずシリコン基板の表面にX線透過性薄膜基板2として
シリコン窒化膜を3μmの厚さで堆積した後5支持枠1
となる部分を残してシリコン基板のエツチングを行ない
、しかる後シリコン窒化膜2上に電極層4として金を真
空蒸着法にて0.1μmの厚さを被着し、さらに該電極
層4上に電子線レジスト5を1μmの厚さで塗布した。
First, a silicon nitride film is deposited to a thickness of 3 μm as an X-ray transparent thin film substrate 2 on the surface of a silicon substrate.
The silicon substrate is etched leaving a portion that will become etched, and then gold is deposited on the silicon nitride film 2 as an electrode layer 4 to a thickness of 0.1 μm by vacuum evaporation, and then on the electrode layer 4. Electron beam resist 5 was applied to a thickness of 1 μm.

次いで電子線描画と現像を行ない、メツキ用レジスト5
のパターンを形成した。この状態を第4図(A)に示す
Next, electron beam drawing and development are performed to form plating resist 5.
formed a pattern. This state is shown in FIG. 4(A).

上記シリコン窒化膜は減圧化学気相成長法(LPCVD
法)によって形成したもので、反応ガスとしてジクロル
シラン(S i H,CQ2)とアンモニア(NH3)
との混合ガスを用い、両者の相対濃度を10:1とし、
膜形成温度を700℃とした時に、応力が7X10’N
/m2(引張り)の膜が得られた。
The above silicon nitride film was formed by low pressure chemical vapor deposition (LPCVD).
method) using dichlorosilane (S i H, CQ2) and ammonia (NH3) as reaction gases.
using a mixed gas with a relative concentration of 10:1,
When the film formation temperature is 700℃, the stress is 7X10'N
/m2 (tensile) membrane was obtained.

次に、メツキ用レジストパターンをもとに電極層の露出
部上へ選択的な金の電解メツキを行ない、厚さ1μmの
X線吸収体パターン3を形成した後、メツキ用レジスト
パターンを酸素プラズマエツチングで除去し、さらに露
出した電極層をアルゴンイオンのスパッタエツチングで
除去した。この状態を第4図(B)に示す。上記金メツ
キには、メツキ液としてエレクトロプレーテイングエン
ジニャーズ社製ニュートロネクス309を用い、平均電
流密度1mA/cm2の条件で応力が6 X 10’N
/m2(引張り)の膜が得られた。
Next, selective gold electrolytic plating is performed on the exposed parts of the electrode layer based on the plating resist pattern to form an X-ray absorber pattern 3 with a thickness of 1 μm, and then the plating resist pattern is replaced with oxygen plasma. It was removed by etching, and the exposed electrode layer was further removed by sputter etching using argon ions. This state is shown in FIG. 4(B). For the above gold plating, Neutronex 309 manufactured by Electroplating Engineers was used as the plating liquid, and the stress was 6 x 10'N at an average current density of 1 mA/cm2.
/m2 (tensile) membrane was obtained.

次いで、X線吸収体パターンを形成した面と反対側の面
にネガ型のX線レジスト7aを0.5μmの厚さで塗布
し、次にX線吸収体パターンを形成した面の側からX線
6を照射する。この状態を第4図(C)に示す。
Next, a negative X-ray resist 7a is applied to a thickness of 0.5 μm on the side opposite to the side on which the X-ray absorber pattern is formed, and then X-ray resist 7a is applied from the side on which the X-ray absorber pattern is formed. Irradiate line 6. This state is shown in FIG. 4(C).

次いで、X線レジストを現像することによりX線レジス
トパターン7bを得る。この状態を第4図(D)に示す
。次にX線レジストパターンをもとにシリコン窒化膜を
四弗化炭素ガスを用いた平行平板型反応性イオンエツチ
ングで0.86μmの深さをエツチングする。この状態
を第4図(E)に示す。
Next, the X-ray resist is developed to obtain an X-ray resist pattern 7b. This state is shown in FIG. 4(D). Next, based on the X-ray resist pattern, the silicon nitride film is etched to a depth of 0.86 μm by parallel plate reactive ion etching using carbon tetrafluoride gas. This state is shown in FIG. 4(E).

位置歪の測定は以下に示す条件で行なった。すなわちX
線露光開口径を4On+n+とじ、開口径内に面積が1
.51m2の各種の形状のパターンをそれぞれがほぼ等
間隔となるように5×5列で25個配列し、各パターン
の間隔をシリコン窒化膜の加工前後で測定した。上記実
施例の場合には、シリコン窒化膜加工前では、金メツキ
膜の応力でパターン間隔が設計値より広がり、設計値か
らの変化量の偏差値(3σ)は0.5μmであったもの
が、シリコン窒化膜加工後には0.1μm以下に収まっ
た。
Measurement of positional strain was performed under the conditions shown below. That is, X
The line exposure aperture diameter is 4On+n+, and the area is 1 within the aperture diameter.
.. Twenty-five 51 m2 patterns of various shapes were arranged in 5×5 rows so that each pattern was approximately equally spaced, and the spacing between each pattern was measured before and after processing the silicon nitride film. In the case of the above example, before processing the silicon nitride film, the pattern spacing was wider than the design value due to the stress of the gold plating film, and the deviation value (3σ) of the amount of change from the design value was 0.5 μm. , after processing the silicon nitride film, it was less than 0.1 μm.

また、上記実施例において、メツキ膜応力が変動し、2
X10’N/m2と小さくなった場合には、シリコン窒
化膜の加工深さを0.29μm にし、また、メツキ膜
応力がlX10sN/m2と大きくなった場合は、シリ
コン窒化膜の加工深さを1.43μmとすることで同様
の効果が得られた。
In addition, in the above embodiment, the plating film stress fluctuates and 2
When the plating film stress becomes as small as 10'N/m2, the processing depth of the silicon nitride film is set to 0.29μm, and when the plating film stress becomes as large as 1x10sN/m2, the processing depth of the silicon nitride film is set to 0.29μm. A similar effect was obtained by setting the thickness to 1.43 μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、X線吸収体パターンの応力がX線透過
性薄膜基板を伸縮させようとするのに対し、該X線透過
性薄膜基板が該X線吸収体パターンの応力を打ち消すよ
うに応力分布を備え持つことにより、X線透過性薄膜基
板の伸縮を抑え、X線吸収体パターンの位置歪を大幅に
低減した。
According to the present invention, while the stress of the X-ray absorber pattern tends to expand and contract the X-ray transparent thin film substrate, the X-ray transparent thin film substrate cancels out the stress of the X-ray absorber pattern. By having a stress distribution, the expansion and contraction of the X-ray transparent thin film substrate is suppressed, and the positional distortion of the X-ray absorber pattern is significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図は本発明の詳細な説明するための断面構
造図、第2図は従来技術を説明するための断面構造図、
第4図は本発明の詳細な説明するための断面構造図、第
5図は本発明の詳細な説明するための部分断面構造図で
ある。 ■・・支持枠、2・・・X線透過性薄膜基板、3・・・
X線吸収体パターン、4・・・電極層、5・・・メツキ
用レジストパターン、6・・・X線、7・・・xiレジ
スト、8猶 区 猶 図 集
1 and 3 are cross-sectional structural diagrams for explaining the present invention in detail, FIG. 2 is a cross-sectional structural diagram for explaining the prior art,
FIG. 4 is a sectional structural diagram for explaining the present invention in detail, and FIG. 5 is a partial sectional structural diagram for explaining the present invention in detail. ■...Support frame, 2...X-ray transparent thin film substrate, 3...
X-ray absorber pattern, 4...electrode layer, 5...resist pattern for plating, 6...X-ray, 7...xi resist, 8.

Claims (1)

【特許請求の範囲】 1、X線透過性薄膜基板と該X線透過性薄膜基板上に設
けたX線吸収体パターンと該X線透過性薄膜基板を周辺
で支持する支持枠とから成るX線露光用マスクにおいて
、該X線線透過性薄膜基板の該X線吸収体パターンと接
する面と反対側の面を加工し、該X線透過性薄膜基板の
厚さがX線吸収体パターン部とそれ以外の部分で異なる
ことを特徴とするX線露光用マスク。 2、前記X線透過性薄膜基板の厚さが、X線吸収体パタ
ーンの部分で、それ以外の部分より薄くなつていること
を特徴とする特許請求範囲第1項記載のX線露光用マス
ク。 3、前記X線透過性薄膜基板の厚さが、X線吸収体パタ
ーンの部分で、それ以外の部分より厚くなっていること
を特徴とする特許請求範囲第1項記載のX線露光用マス
ク。 4、X線を透過させる均一な厚さのX線透過性薄膜基板
上にX線吸収体材料から成る所望のパターンを形成し、
該パターン面と反対側のX線透過性薄膜上にX線感光部
が不溶化もしくは可溶化するレジストを積層し、上記X
線吸収体パターンをマスクとして上記X線吸収体パター
ン側からX線を照射した後、上記X線感光レジストを現
像し、上記X線感光レジストパターンをマスクとしてX
線透過性薄膜基板をドライエッチングし、所定の厚さ分
薄くすることを含むX線露光用マスクの製造方法。
[Claims]1. In the radiation exposure mask, the surface of the X-ray transparent thin film substrate opposite to the surface in contact with the X-ray absorber pattern is processed so that the thickness of the X-ray transparent thin film substrate is equal to the X-ray absorber pattern portion. An X-ray exposure mask characterized by being different in other parts. 2. The X-ray exposure mask according to claim 1, wherein the thickness of the X-ray transparent thin film substrate is thinner in the X-ray absorber pattern portion than in the other portions. . 3. The X-ray exposure mask according to claim 1, wherein the thickness of the X-ray transparent thin film substrate is thicker at the X-ray absorber pattern portion than at other portions. . 4. Forming a desired pattern made of an X-ray absorber material on an X-ray transparent thin film substrate with a uniform thickness that transmits X-rays;
A resist that makes the X-ray sensitive area insolubilized or solubilized is laminated on the X-ray transparent thin film on the side opposite to the patterned surface, and the
After irradiating X-rays from the X-ray absorber pattern side using the ray absorber pattern as a mask, the X-ray photoresist is developed, and the X-ray photoresist pattern is used as a mask to irradiate X-rays.
A method for manufacturing an X-ray exposure mask, which includes dry etching a radiation-transparent thin film substrate to reduce the thickness by a predetermined thickness.
JP2021969A 1990-02-02 1990-02-02 Mask for x-ray exposure and manufacture thereof Pending JPH03228310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021969A JPH03228310A (en) 1990-02-02 1990-02-02 Mask for x-ray exposure and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021969A JPH03228310A (en) 1990-02-02 1990-02-02 Mask for x-ray exposure and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03228310A true JPH03228310A (en) 1991-10-09

Family

ID=12069877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021969A Pending JPH03228310A (en) 1990-02-02 1990-02-02 Mask for x-ray exposure and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03228310A (en)

Similar Documents

Publication Publication Date Title
JP2003068641A (en) Large-area membrane mask and method for manufacturing the same
JPS5933673B2 (en) Method of manufacturing thin free-standing metal structures
JP4245900B2 (en) Method for manufacturing transfer mask and transfer mask substrate
JPH03228310A (en) Mask for x-ray exposure and manufacture thereof
JP4333107B2 (en) Transfer mask and exposure method
JPH05326381A (en) Manufacture of double-sided absorber x-ray mask
JPH1078650A (en) Aperture for charge beam plotter and its production
JPS62119924A (en) Manufacture of transmitting mask
JPH03116716A (en) X-ray mask and manufacture thereof
US4368215A (en) High resolution masking process for minimizing scattering and lateral deflection in collimated ion beams
JPH023218A (en) X-ray mask and manufacture thereof
JP3451431B2 (en) X-ray exposure mask and method of manufacturing the same
JPS58207048A (en) Production of mask
JPS61204933A (en) Manufacture of semiconductor device
JPH08176799A (en) Selective film forming mask and production thereof
JPS5923104B2 (en) Manufacturing method for soft X-ray exposure mask
JPH02252229A (en) X-ray exposure mask and its manufacture
JPS6061750A (en) Manufacture of x-ray exposure mask
JPH03182752A (en) Formation of mask for exposing
JPS63104327A (en) X-ray mask and manufacture thereof
JP3991721B2 (en) Stencil mask and pattern transfer method thereof
JPS631740B2 (en)
JPH05251314A (en) Manufacture of double-face absorber x-ray mask
JPS63278333A (en) Forming method for pattern
JPS63140530A (en) X-ray mask