JPH03227216A - Plastic spiral winding pipe, manufacture thereof and manufacturing equipment - Google Patents

Plastic spiral winding pipe, manufacture thereof and manufacturing equipment

Info

Publication number
JPH03227216A
JPH03227216A JP2459790A JP2459790A JPH03227216A JP H03227216 A JPH03227216 A JP H03227216A JP 2459790 A JP2459790 A JP 2459790A JP 2459790 A JP2459790 A JP 2459790A JP H03227216 A JPH03227216 A JP H03227216A
Authority
JP
Japan
Prior art keywords
tube
plastic
hollow
strip
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2459790A
Other languages
Japanese (ja)
Other versions
JPH0733059B2 (en
Inventor
Kiyoshi Kameda
清 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Plastics Co Ltd
Original Assignee
Dainippon Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Plastics Co Ltd filed Critical Dainippon Plastics Co Ltd
Priority to JP2459790A priority Critical patent/JPH0733059B2/en
Publication of JPH03227216A publication Critical patent/JPH03227216A/en
Publication of JPH0733059B2 publication Critical patent/JPH0733059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

PURPOSE:To strengthen a spiral projecting part which is cut, split and weakened and to retain the shape and to obtain a spiral wiring pipe which is excellent in pressure resistant strength properties and shape retaining properties and has high quality by filling fluid substance into the hollow part formed in a pipe main body via the cut and split part through which a core material is taken out and solidifying the fluid substance. CONSTITUTION:A plastic spiral winding pipe 51 is constituted of a pipe main body 53 spirally having hollow parts 52 and the filled layers 54 which are formed by filling the mixed material being in a fluid state into the hollow parts 52. The pipe main body 53 is formed of the inner pipe parts 55 described hereunder and the spiral projecting parts 56 integral to the surfaces thereof. The inner pipe parts 55 are formed by comparting the hollow parts 52 along the lengthwise direction of the plastic bandlike bodies 1 in these insides while spirally winding the said bodies 1. In the spiral projecting parts 56, the filled layers 54 are formed by filling the mixed material being in a fluid state into the hollow parts 52 via the cut grooves C as the continuously cut and split parts which are formed by cutting and splitting the outermost circumferential parts of the bodies 1. The cover plate parts 2 are joined so as to cover the cut grooves C.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、プラスチックス螺旋巻き管、例えば地中に埋
設して使用されるコルゲート管のように、表面に山部と
谷部を有する波付きの外観を呈し、かつ内面を平滑に形
成した耐圧管、その製造方法及び製造装置に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention is directed to a plastic spirally wound pipe, such as a corrugated pipe buried underground, which has peaks and valleys on its surface. The present invention relates to a pressure tube that has a corrugated appearance and a smooth inner surface, and a method and apparatus for manufacturing the same.

(ロ)従来の技術 従来、この種の合成樹脂管は、通常、押出機より溶融し
たプラスチックス帯状体を押出してその押出方向に対し
て所定の角度をもった仮想円筒体等の軸芯に螺旋状に捲
回し、帯状体の端部(ヒレ片)を重ね合せ、溶着して得
られる[例えば第16図(A )(B )参照コ。しか
しながら、例えば断面逆U字状に山部を形成する場合、
押出機先端に設けた金型の吐出口を断面逆U字状として
成形された帯状体を軸1缶に捲回するが、あるいは断面
−文字状として押出し軸芯に捲回する途中で賦形部を設
けて断面逆U字状とし、その後軸芯に捲回して所望形状
のプラスチックス管を得ることが考えられろ。こころの
場合、帯状体端部が互いに重、!2合わされ完全に一体
融着する温度で軸芯に捲回すると帯状体が半溶融状態に
あるため、断面逆U字状の帯状体か変形し設計どおりの
保形が困難となる。
(B) Conventional technology Conventionally, this type of synthetic resin pipe has been made by extruding a molten plastic strip from an extruder and inserting it into the axis of a virtual cylinder or the like having a predetermined angle with respect to the direction of extrusion. It is obtained by winding the strip in a spiral, overlapping the ends (fin pieces) of the strip, and welding them together [see, for example, FIGS. 16(A) and 16(B)]. However, for example, when forming a mountain part with an inverted U-shaped cross section,
The discharge port of the mold provided at the tip of the extruder is formed with an inverted U-shaped cross section, and the strip is wound around one can, or it is extruded with a letter-shaped cross section and shaped during winding around the core of the extruder. It is conceivable to provide a plastic tube with an inverted U-shaped cross section and then wind it around the shaft to obtain a plastic tube of the desired shape. In the case of the heart, the ends of the band overlap each other,! When the two are brought together and wound around the shaft at a temperature at which they are completely fused together, the strip is in a semi-molten state, so the strip with an inverted U-shaped cross section deforms, making it difficult to maintain the designed shape.

これを防止するためにある程度の保形ができるまで冷却
しその後、軸芯に捲回することとなるが、この時は帯状
体の冷却が進んでいるため、断面逆U字形状の剛性が強
く、捲回が容易でなく、かつ帯状体を重ね合せて押圧し
ても帯状体が溶着できる温度以下となっているため、互
いに接合できないという問題がある。これらの保形と接
合の相矛盾する問題を解決するために、例えば特公昭6
2−29213号公報や特開昭63−219982号公
報等に記載の方法が提案されている。
To prevent this, the band is cooled until it retains its shape to a certain extent, and then it is wound around the shaft, but at this time, the cooling of the band has progressed, so the rigidity of the inverted U-shaped cross section is strong. However, there is a problem that winding is not easy, and even if the strips are overlapped and pressed, the temperature is lower than that at which the strips can be welded, so they cannot be joined to each other. In order to solve these contradictory problems of shape preservation and bonding, for example,
Methods described in JP-A No. 2-29213 and Japanese Unexamined Patent Application Publication No. 63-219982 have been proposed.

前者の公報によれば、押出機のアウトサイドダイから吐
出する加熱溶融した熱可塑性樹脂テープを仮想円筒状回
転軸体の前端部側外周面に設ける螺旋突条にこの螺旋突
条を跨ぐように傾斜角度を付けて先に捲回される熱可塑
性樹脂テープに対し後から続いて捲回される熱可塑性樹
脂テープの一部か重!9合うニーとく供給して捲回させ
、二〆−を冷却して螺旋状、)凹凸を有する外管を形成
する第1の工程と、仮想円筒状回転軸体の軸芯部近傍に
内蔵する押出機のインサイドダイから吐出する加熱溶融
した熱可塑性樹脂テープを該仮想円筒状回転軸体の後端
部側の平滑周面上に傾斜角度をつけて先に捲回される熱
可塑性樹脂テープに対し後ろから捲回するテープが一部
重り合うように供給して螺旋状に捲回し内管を形成する
第2の工程とがあり、上記第1の工程で成形された外管
を上記回転軸体の後端部側に誘導して該後ろ端部側平滑
周面上で成形される上記内管と複合させ、該内管が未だ
溶融点以下軟化点以上の温度下にある段階において上記
外管の凹部外面を回転軸体に対接する押圧ロールで押圧
し内外両管を融着し、これを冷却硬化させて内面平滑に
して外面に螺旋突条を有した管体を連続的に製造するこ
とを特徴とした内面平滑コルゲート管の製造方法が提案
されている。
According to the former publication, a heated and molten thermoplastic resin tape discharged from an outside die of an extruder is applied to a spiral protrusion provided on the outer peripheral surface of the front end of a virtual cylindrical rotating shaft so as to straddle this spiral protrusion. A portion of the thermoplastic resin tape that is wound later than the thermoplastic resin tape that is wound first at an inclined angle! The first step is to form an outer tube with unevenness by supplying and winding it with nine matching knees, and cooling the second one into a spiral shape. The heated and melted thermoplastic resin tape discharged from the inside die of the extruder is wound onto the smooth circumferential surface of the rear end of the virtual cylindrical rotating shaft at an inclined angle to the thermoplastic resin tape that is first wound. On the other hand, there is a second step in which tapes are wound from behind so that they partially overlap and are wound spirally to form an inner tube. The outer tube is guided to the rear end of the body and combined with the inner tube formed on the smooth peripheral surface of the rear end, and when the inner tube is still at a temperature lower than the melting point and higher than the softening point. The outer surface of the concave part of the tube is pressed with a pressure roll that is in contact with the rotating shaft body to fuse both the inner and outer tubes, and this is cooled and hardened to make the inner surface smooth and to continuously produce a tube body with spiral protrusions on the outer surface. A method for manufacturing a corrugated pipe with a smooth inner surface has been proposed.

後者の公報によれば、表面に螺旋状の山部と谷部を有す
ると共に、平坦な内壁を形成してなる合成樹脂管を製造
する方、去てあって、前記山部の杉状に適合する帯状型
体(又は芯材)を用い、この型体を成形用回転軸に螺旋
状に捲回すると共に、半溶融状の帯状成形材を前記型体
上に被さる状態で螺旋状に捲回し、この捲回により隣合
う帯状成形材の両端部を谷部において重合溶着すると共
に、該山部頂部をスリット状に切断して、このスリット
条痕から型体を抜き取った後、前記スリット条痕を閉塞
すべく前記山部の頂部に、゛帯状成形材と同質の合成樹
脂からなる帯状材を溶着一体化するようにした合成樹脂
管の製造方法が提案されている。この方法によれば芯材
(型体)を用いるため中空状の山部は保形され、谷部は
帯状体が半溶融状態であるため接合が容易で、山部の内
側が中空状に管体が構成されるものである。
According to the latter publication, a method for manufacturing a synthetic resin pipe having spiral peaks and valleys on the surface and forming a flat inner wall, is made so that it conforms to the cedar-like shape of the peaks. Using a strip-shaped molding material (or core material), this molding material is spirally wound around a rotating shaft for molding, and a semi-molten strip-shaped molding material is spirally wound so as to cover the molding material. By this winding, both ends of the adjacent band-shaped molded material are polymerized and welded at the troughs, and the tops of the peaks are cut into slits, and the mold body is extracted from the slit marks, and then the slit marks are removed. A method of manufacturing a synthetic resin pipe has been proposed in which a belt-shaped material made of the same synthetic resin as the belt-shaped molded material is integrally welded to the top of the peak in order to close the pipe. According to this method, since the core material (mould) is used, the hollow peaks retain their shape, and the valleys are easy to join because the band is in a semi-molten state, and the inside of the peaks are hollow pipes. It is what the body is made up of.

(ハ)発明が解決しようとする課題 しかしながら、上記した両提案例でも次のようなそれぞ
れの問題点があった。
(c) Problems to be Solved by the Invention However, both of the above-mentioned proposed examples have the following problems.

前者の方法は仮想円筒状回転軸体の外周面に設けた螺旋
突条で樹脂テープに螺旋状の凹凸を成形して外管を形成
する第1の工程と、仮想円筒状回転軸体の内部より樹脂
テープを外管の裏面に押圧して内管を形成する第2の工
程とからなり、これらの工程によって内面平滑な管体を
製造する方法であるので、 l)設備が大型化するうえ、各管径、山形、山のピッチ
が異なる管体を製造する場合は−サイズ毎に系列を必要
とする。この場合、設備の交換に要する時間中は製造を
停止する必要があり、又仮想円筒状回転軸体を交換する
方法も考えられるが大巾な工数と時間を要するという問
題がある。
The former method involves a first step of forming an outer pipe by forming spiral irregularities on a resin tape using a spiral protrusion provided on the outer circumferential surface of the virtual cylindrical shaft of rotation, and a first step of forming an outer pipe by forming spiral protrusions on the outer circumferential surface of the virtual cylindrical shaft of rotation. This method consists of a second step of pressing a resin tape onto the back surface of the outer tube to form an inner tube, and as this method produces a tube body with a smooth inner surface through these steps, l) the equipment becomes larger and When manufacturing tubes with different diameters, ridge shapes, and ridge pitches, a series is required for each size. In this case, it is necessary to stop manufacturing during the time required to replace the equipment, and a method of replacing the virtual cylindrical rotating shaft body may be considered, but there is a problem in that it requires a large amount of man-hours and time.

2)螺旋突条部が中空であるため耐圧電としては、耐圧
強度が不充分でありかつ施工時の突条への衝撃が加わっ
た場合に破損し易いという問題もある。
2) Since the spiral protrusion is hollow, the pressure resistance is insufficient for piezoelectricity, and there is also the problem that it is easily damaged when an impact is applied to the protrusion during construction.

後者の方法においては、 1)提案例の場合、帯状体を芯材(型体)と共に軸芯に
捲回して、帯状体の両端部を重合溶着後、冷却が進んだ
帯状体の山部の頂部をスリット状に切断して、その切開
部より芯材を無理抜きし、その後、山部の開口面を池の
帯状材で蓋をすることになるため、山部をカプト又はス
リットした帯状部が二つに割れ開口した帯状片が当接せ
ずかつ山部の頂部が水平面を維持することが難しく第1
7図(A)(B)の様になり切口が互いに面一を形成す
ることが困難である(望ましい状態を第13図に示す)
。これらは、 ■芯材をスリット部より無理抜きするので帯状片を拡開
すること ■口字状の中空部が切開されることにより応力のバラン
スが崩れ残留歪が発生すること■軸芯が冷却されている
ので軸芯に近い山、谷部の帯状体下部と、山部の頂部と
の温度差によりて樹脂の収縮率の差が歪を生ずること ■帯状体の空間部に芯材が内蔵中は、保形が保たれてい
るが、切断刃でスリットし、芯材を抜き出したときは、
螺旋突条のため進行方向に対してねじれ応カガ働き、第
18図のように開口側壁Kが後方へ倒れる傾向になるこ
となどの現象(問題)がある。
In the latter method, 1) In the case of the proposed example, the strip is wound around the shaft together with the core material (mould), and both ends of the strip are polymerized and welded, and then the peaks of the strip that have been cooled are The top part is cut into a slit shape, the core material is forcefully extracted from the cut part, and the opening surface of the peak part is then covered with a strip of pond material, so the peak part is capped or slit. First, it is difficult for the two open strips to touch each other and for the top of the peak to maintain a horizontal surface.
As shown in Figure 7 (A) and (B), it is difficult to form the cuts flush with each other (the desirable state is shown in Figure 13).
. These are as follows: - The core material is forcibly removed from the slit, so the strip is expanded. - The opening of the hollow part in the shape of the opening breaks the stress balance, causing residual strain. - The shaft core is cooled. Because of this, the difference in shrinkage rate of the resin will cause distortion due to the temperature difference between the lower part of the band at the peaks and troughs near the axis and the top of the peak. ■The core material is built into the space of the band. The inside retains its shape, but when it is slit with a cutting blade and the core material is extracted,
Because of the spiral protrusions, there is a phenomenon (problem) that the opening side wall K tends to fall backwards as shown in FIG. 18 due to torsional reaction in the direction of travel.

これらの現象は室温、成形温度によって異なるので開口
面を面一にするためその管理に多大の注意を要する。
Since these phenomena vary depending on room temperature and molding temperature, great care is required in managing them in order to make the opening surfaces flush.

2)山部の頂開口片が当接せず、又1)で述べたように
開口片が互いにくい違った状態にあるので、上記の蓋体
となる帯状材が開口を均一に閉塞することができにくく
、分離する危険性がある(第19図(A)(B)参照)
2) Since the opening pieces at the top of the mountain do not come into contact with each other, and as mentioned in 1), the opening pieces are in different states, making it difficult for each other, so the belt-shaped material that becomes the lid body uniformly closes the openings. It is difficult to separate, and there is a risk of separation (see Figure 19 (A) and (B)).
.

3)山部の頂部をカットし、芯材を抜き取った山部は冷
却が進み保形されているので同質の合成樹脂からなる帯
状体の溶着一体化は、押圧ローラー等の手段を用いても
困難で1)で述べた現象において完全溶融一体化には相
当な注意と管理が必要である。
3) After cutting the top of the peak and removing the core material, the peak has cooled and retained its shape, so it is not possible to weld and integrate the strips made of the same synthetic resin using a pressure roller or other means. Due to the difficult phenomenon described in 1), complete melting and integration requires considerable care and management.

4)この種の螺旋管の扁平耐圧強度は、山部のピッチに
よって強弱変化する一方、山部の高さ、肉厚によっても
変化する。ことに扁平強度を高めるに当たっては山部の
高さに加えて、山部の頂部の肉厚と山部と山部を連結す
る管体の壁面の肉厚を増すことによって高められる。こ
のようなことから切開し几山部の頂部と蓋体J)帯状材
の溶融−体化は重要な意味を有する。
4) The flat compressive strength of this type of helical tube changes depending on the pitch of the ridges, and also changes depending on the height and wall thickness of the ridges. In particular, flat strength can be increased by increasing the height of the ridges, as well as the thickness of the tops of the ridges and the wall thickness of the tube connecting the ridges. For this reason, the melting of the top part of the ridged portion and the lid member J) into a melted body has an important meaning.

5)従って、扁平耐圧強度を飛躍的に増加させるには山
部の中空部を合成樹脂や金属等で忠実に形成すればよい
が、従来から存在するコンクリート管(いわゆるヒユー
ム管等)土管との経済性比較や、金属体入りは長期使用
(30〜50年)時の発錆による腐食劣化の問題があり
、コンクリート管は、薬品、溶剤等により侵食され存置
ガスの発生や製造上の管長さに制約があり施工性に問題
がある。
5) Therefore, in order to dramatically increase flat compressive strength, it is possible to faithfully form the hollow part of the mountain part with synthetic resin, metal, etc., but it is necessary to form the hollow part of the mountain part faithfully with synthetic resin, metal, etc. Comparing economic efficiency, metal pipes have the problem of corrosion and deterioration due to rusting during long-term use (30 to 50 years), and concrete pipes are corroded by chemicals, solvents, etc., resulting in the generation of residual gas and the length of the pipe during manufacturing. There are restrictions and there are problems with construction.

6)この種の山部か中空形状を有する管体は、耐圧扁平
強度上からみると理想的な目付当りの強度が得られるが
、運搬、施工時にその取扱いを慎重に実施しないと、積
上、積下し時の山部へ衝撃が加わった場合破損し易い。
6) This type of tube with a mountain or hollow shape can provide the ideal strength per unit weight when viewed from the perspective of pressure resistance and flat strength, but if it is not handled carefully during transportation and construction, it will accumulate. , If a shock is applied to the mountain part during unloading, it is likely to be damaged.

7)一方現在の社会はプラスチックス公害問題が叫ばれ
ている。即ち、プラスチックス製品は、フィルム、ビニ
ールハウス等のシート、飼料、洗剤ビン、袋、包装材等
の容器、その池電気部品、生活用品等の分野において大
量に消費され、二ζらの廃プラスチックス■処理につい
て1よ、焼却しfこり、埋立地に放棄する等の対策を講
じているが、前者は火力が強力なこともあり焼却炉の損
消か大きく廃煙による大気汚染、後者は埋立地にも限界
かあり不当投棄等の問題をひきおこしている。
7) On the other hand, in today's society, the problem of plastic pollution is being talked about. In other words, plastic products are consumed in large quantities in the fields of films, sheets for plastic greenhouses, feed, containers such as detergent bottles, bags, packaging materials, electric parts, household goods, etc., and two types of waste plastics are used. Regarding disposal 1. Countermeasures are taken such as incinerating the waste and discarding it in a landfill, but the former has a powerful firepower, so the incinerator is likely to be damaged, and the latter causes air pollution due to waste smoke. Landfills also have their limits, causing problems such as illegal dumping.

(ニ)課題を解決するための手段及びその作用本発明は
プラスチックス帯状体を螺旋状に捲回しつつ、長平方向
に沿って中空部分を区画して形成した内管部及びその表
面に一体の螺旋凸状部からなり、この螺旋凸状部が、そ
の最外周部分を切裂いて形成され、上記中空部分に予め
挿入され螺旋凸状部の保形を行った後の連続芯材を取り
出した連続切裂部分を備えてなる管主体と、上記連続切
裂部分を介して上記中空部分に溶融状態のプラスチック
スを主成分とする流動物を充填固化させて形成された充
填層と、からなるプラスチックス螺旋巻き管である。
(d) Means for Solving the Problems and Their Effects The present invention provides an inner tube portion formed by winding a plastic strip in a spiral shape and partitioning a hollow portion along the longitudinal direction, and an inner tube portion integrally formed on the surface of the inner tube portion. Consisting of a spiral convex part, this spiral convex part was formed by cutting the outermost part thereof, and the continuous core material was taken out after being inserted into the hollow part in advance and maintaining the shape of the spiral convex part. It consists of a pipe main body comprising a continuous cut part, and a filling layer formed by filling and solidifying a fluid mainly composed of molten plastics into the hollow part through the continuous cut part. It is a spirally wound plastic tube.

すなわち、本発明は、管主体に形成される中空部分に、
芯材を取り出した切裂部分を介して流動物を充填固化さ
せることによって、帯状体の接合変強化故に弱くなっf
二螺旋凸状部を強化及び保形し、それによって耐圧強度
形状保持性等がすぐれた高品質の螺旋巻き管が提供でき
る。
That is, in the present invention, in the hollow portion formed in the main body of the pipe,
By filling and solidifying the fluid through the cut portion from which the core material was taken out, the bonding of the strip is strengthened and weakened.
By strengthening and retaining the shape of the two helical convex portions, it is possible to provide a high quality spirally wound tube with excellent pressure resistance, shape retention, etc.

本発明において、充填層を形成するために用いられる流
動物は、溶融状態のプラスチックスを主成分としている
が、そのプラスチックスとしては、特に限定されないが
、いわゆる“廃プラスチックス“の使用が好ましい。
In the present invention, the fluid used to form the packed bed is mainly composed of plastics in a molten state, but the plastics are not particularly limited, but it is preferable to use so-called "waste plastics". .

この廃プラスチックスとしては、農業用ハウスに用いた
ビニールフィルム、ポリエチレンフィルムの廃材や、バ
ッテリーケース、洗剤ビン、容器、運搬用コンテナ、プ
ラスチック屋根材、床材、事務用器具、日用雑貨、電気
器具、部品、果実用ネット袋、包装容器等のあらゆる熱
可塑性合成樹脂の廃材が使用可能である。これらのフィ
ルム状体、成形物は破砕機、粉砕機、微粉砕機を用いて
粗、微粒化される。これらは再生原料としいわれ、少々
の塵埃や汚れ等の付着があってもよい。一方、流動物の
副成分としては、熱可塑性合成樹脂以外■非溶融性粗粒
体か使用でき、その具体例としては、セメント、砂、石
炭滓、鉄粉、ガラス等の無機質材か好ましいが、モミガ
ラ、木材の切り粉や木材、FRPの砕断破砕したちので
あってもよい。
This waste plastic includes waste vinyl film and polyethylene film used in agricultural greenhouses, battery cases, detergent bottles, containers, shipping containers, plastic roofing materials, flooring materials, office equipment, household goods, and electrical appliances. Any thermoplastic synthetic resin waste materials such as utensils, parts, fruit net bags, packaging containers, etc. can be used. These film-like bodies and molded products are coarsely and finely pulverized using a crusher, a pulverizer, or a pulverizer. These are called recycled raw materials, and may have some dust, dirt, etc. attached to them. On the other hand, as a subcomponent of the fluid, non-melting coarse particles other than thermoplastic synthetic resins can be used, and specific examples include inorganic materials such as cement, sand, coal slag, iron powder, and glass. , rice husk, wood chips, wood, and crushed FRP may be used.

廃プラスチックスと熱可塑性樹脂以外の粗粒体の混合は
、通常ドラム式タンブラ−1撹拌式ブレンダーが用いら
れる。これら両者の配合割合は何れかを選択して使用す
ればよいが、例えば廃プラスチックスが30〜50%が
好ましく、結局粗粒体が溶融状態の樹脂により混練され
粘弾性を帯び、充填用混練押出機の金型より棒状に押出
される程度になることとが望まれるわけである。混練用
押出機としては深溝型スクリューを有する単軸押出機や
スクリューが2本咬み合う構造となった二軸押出機が好
適である。
A drum-type tumbler-1 stirring blender is usually used to mix waste plastics and coarse particles other than thermoplastic resins. The blending ratio of these two may be selected and used, but for example, waste plastics is preferably 30 to 50%, and the coarse particles are kneaded with the molten resin and become viscoelastic, and are used for filling. It is desired that the product be extruded into a rod shape from the mold of the extruder. As the extruder for kneading, a single screw extruder having a deep groove type screw or a twin screw extruder having a structure in which two screws engage are suitable.

本発明は、別の観点からすれば、次のプラスチックス螺
旋巻き管の製造方法(イ)及びその装置(ロ)を提供で
きる。
From another point of view, the present invention can provide the following method (a) and apparatus (b) for manufacturing a spirally wound plastic tube.

■略円筒状のマンドレルの周囲に、押出機から溶融状態
のプラスチックス帯状体をその断面が中空状になるよう
に、かつ一部を重ね合すように供給して螺旋状に捲回し
、これによって内管部とこの内管部の外側の螺旋凸状部
とを一体に形成し、その際溶融状態のプラスチックス帯
状体で形成される中空部分に連続芯材を挿入して螺旋凸
状部の保形を行い、その後螺旋凸状部の最外周部分を切
裂いてその連続芯材を取り出し、次いで、その切裂部分
から上記中空部分に溶融状態のプラスチックスを主成分
とする流動物を充填し、固化させることを特徴とするプ
ラスチックス螺旋巻き管の製造方法。
■A molten plastic strip is fed from an extruder around a roughly cylindrical mandrel so that its cross section is hollow and some overlap, and is wound spirally. The inner tube part and the spiral convex part on the outside of the inner tube part are integrally formed by the process, and at this time, a continuous core material is inserted into the hollow part formed by the molten plastic strip to form the spiral convex part. After that, the outermost peripheral part of the spiral convex part is cut to take out the continuous core material, and then a fluid mainly composed of molten plastic is poured into the hollow part from the cut part. A method for manufacturing a spirally wound plastic tube, which comprises filling and solidifying the tube.

■溶融状態のプラスチックス帯状体をその断面が尼曲状
になるよう押し出す押出材と、この押出材からの帯状体
を螺旋状に捲回しつつ、その帯状体の裏面に帯状体の長
芋方向に沿って中空部分を区画形成し、先に捲回した帯
状体の部分に対して後から捲回する帯状体の部分の一部
を重ね合せ表面に螺旋凸状部を有する螺旋巻き管を連結
して形成する回転マンドレルと、エンドレスの芯材と、
上記回転マンドレル上に螺旋巻き管が2回転以上保持さ
れて後に、螺旋凸状部の最外周部分を切裂くカッターと
、上記芯材を、先に捲回しfこ帯状体に対して後から、
捲回する帯状体を重ね合わせる際に、上記中空部分に挿
入し、しかる後螺旋凸状部の切裂部分から取り出すべく
案内する案内ローラと、芯材が取り出された切裂部分か
ら上記中空部分に溶融状態のプラスチックスを主成分と
する流動物を充填する流動物充填手段とからなるプラス
チックス螺旋巻き管の製造装置。
■ An extruded material that extrudes a molten plastic strip so that its cross section becomes curved, and the strip from this extruded material is wound spirally, and the back side of the strip is rolled in the direction of the strip. A hollow portion is formed along the length, and a part of the band-like body to be wound later is overlapped with the previously-wound part of the band-like body, and a spirally wound tube having a spiral convex portion on the surface is connected. A rotating mandrel, an endless core material,
After the spirally wound tube is held on the rotating mandrel for two or more rotations, a cutter for cutting off the outermost peripheral part of the spiral convex portion, and a cutter for cutting the outermost peripheral part of the spiral convex portion, and a cutter for cutting the core material first and then wrapping it around the strip-shaped body,
A guide roller that is inserted into the hollow portion when the rolled strips are overlapped and then guided to be taken out from the cut portion of the spiral convex portion; and a fluid filling means for filling a fluid mainly composed of molten plastic into a plastic spirally wound tube.

(ホ)実施例 以下、図に示す実施例に基づいて本発明を詳述する。な
お、これによって本発明が限定されるものではない。
(e) Examples Hereinafter, the present invention will be described in detail based on examples shown in the drawings. Note that the present invention is not limited to this.

まず第1図において、プラスチックス螺旋巻き管51は
、中空部52を螺旋状に有する管工法53と、その中空
部52に流動状態の混合材を充填して形成された充填層
54とから主としてなり、前者の管工法53は、更に具
体的には、プラスチックス帯状体lを螺旋状に捲回しつ
つ、その帯状体lの内部にその帯状体1の長手方向に沿
って上記中空部52を区画して形成しL内管部55及び
その表面に一体の螺旋凸状部56からなる。
First, in FIG. 1, the plastic spirally wound pipe 51 is mainly made of a pipe construction method 53 having a hollow part 52 in a spiral shape, and a filling layer 54 formed by filling the hollow part 52 with a mixed material in a fluid state. More specifically, in the former pipe construction method 53, the hollow portion 52 is formed inside the plastic strip 1 along the longitudinal direction of the strip 1 while spirally winding the plastic strip 1. It is divided into an L inner tube section 55 and a spiral convex section 56 integral with its surface.

而して螺旋凸状部56では、帯状体!の最外周部分を切
裂いて形成した連続切裂部分としての切溝Cを介して上
記中空部52に流動状態の混合材が充填されて上記充填
層54が形成され、しかる後上記切溝Cを被うように蓋
板部2が接合されている。なお、上記切溝Cは後述する
ごとく、プラスチックス螺旋巻き管の製造時に保形のた
めに用いられる芯材29を取り出すためのものである。
In the spiral convex portion 56, a band-shaped body! The mixed material in a fluid state is filled into the hollow portion 52 through the continuous cutting groove C formed by cutting the outermost peripheral portion of the groove C to form the filling layer 54, and then the filling layer 54 is formed. A cover plate part 2 is joined to cover the area. As will be described later, the above-mentioned kerf C is for taking out the core material 29 used for shape retention during the manufacture of the spirally wound plastic tube.

次に、以上の構成のプラスチックス螺旋巻き管51の製
造方法及び製造装置Sを詳述する。
Next, the manufacturing method and manufacturing apparatus S of the plastic spirally wound tube 51 having the above configuration will be described in detail.

第2図乃至第5図に示したこの実施例装置Sは、プラス
チックス螺旋巻き管(以下、管口径及び補強条の螺旋ピ
ッチが変更可能な合成樹脂管と称することもある)の製
造に適用したものを示しており、図において11は本体
ボックスであって、該ボックスll内からその面板12
を介して突出状に支軸13が設けられると共に、この支
軸!3を中心とする仮想円柱面に沿うごとく数本の成形
軸(又;よ回転マンドレル)14か配置5孔でいる。
This embodiment apparatus S shown in FIGS. 2 to 5 is applied to the production of plastic spirally wound pipes (hereinafter also referred to as synthetic resin pipes in which the pipe diameter and the helical pitch of the reinforcing strips can be changed). In the figure, 11 is a main body box, and the face plate 12 is removed from inside the box ll.
A support shaft 13 is provided in a protruding manner through the support shaft! Several molding shafts (or rotating mandrels) 14 are arranged along an imaginary cylindrical surface centered at 3 and 5 holes.

上記各成形軸14;よ、それぞれ自在継手17を介して
互いに連結される短軸15と長袖16とにより構成され
るもので、前記自在継手17をして短軸15に対し長軸
16をやや屈曲させることにより、長軸16が前記支軸
13に対しやや傾斜するように(すなわち、平行になら
ないように)している。また前記各短軸15は、特に第
3図に示す本体ボックスll内において、伸縮並びに屈
曲可能な連結軸19等を介して駆動手段18に連動結合
され、この駆動手段18により各成形軸14が同一方向
に一斉駆動するようになっている。
Each of the above-mentioned molded shafts 14 is composed of a short shaft 15 and a long sleeve 16 that are connected to each other via a universal joint 17. By bending, the long axis 16 is made to be slightly inclined (that is, not parallel) to the support shaft 13. Further, each of the short shafts 15 is interlocked and connected to a driving means 18 via an extendable and bendable connecting shaft 19, etc., especially in the main body box 11 shown in FIG. They are designed to be driven all at once in the same direction.

また、前記支軸13には、その軸上で移動可能なコマ部
材20.21.22が挿嵌されるもので、各コマ部材2
0.21.22に短軸15及び長軸16をそれぞれ連接
杆23,24.25を介して揺動可能に枢着することに
より、前記成形軸14を支軸13上に拡径並びに縮径可
能に支持すべくしている。なお各コマ部材20.21.
22は、前記支軸13に沿うように配設した作動軸26
の回動操作により軸方向に移動すべく構成され、また遊
端側のコマ部材22:よ支軸13上に軸方向のみ移動可
能に挿嵌した受部材22゛にスプライン嵌合するもので
、該コマ部材22を受部材22゛上で周方向位置を変え
ることにより、各成形軸14の支軸13に対する傾斜角
を変更すべく構成されている。
Further, the support shaft 13 is fitted with a piece member 20, 21, 22 that is movable on the axis, and each piece member 2
By pivotally mounting the short shaft 15 and the long shaft 16 to the 0.21.22 via connecting rods 23 and 24.25, respectively, the forming shaft 14 can be expanded and contracted on the support shaft 13. I'm trying to support you as much as possible. Note that each piece member 20.21.
22 is an operating shaft 26 disposed along the support shaft 13.
It is configured to be moved in the axial direction by the rotational operation of , and is spline-fitted to the receiving member 22 which is fitted onto the free end side piece member 22 and the support shaft 13 so as to be movable only in the axial direction, By changing the circumferential position of the piece member 22 on the receiving member 22', the inclination angle of each forming shaft 14 with respect to the support shaft 13 can be changed.

上記した実施例装置Sでは、成型される合成樹脂管の管
径と補強条の螺旋ピンチとを可変とするために複数本の
成形軸14を用いたものであるが、管径及び螺旋ピッチ
を可変としない場合には、般的な成形軸を使用すればよ
い。ここで云う一般的な成形軸とは従来公知のものて、
例えば−本の成形用主軸を用い、その外周に筒状保持器
により多数のコロ軸を傾斜状に配設支持させて構成した
成形軸などいかなる構造のものであってもよい。
In the above-mentioned embodiment device S, a plurality of forming shafts 14 are used in order to vary the diameter of the synthetic resin pipe to be molded and the helical pinch of the reinforcing strip. If it is not variable, a general molded shaft may be used. The general molded shaft mentioned here is a conventionally known one,
For example, the molding shaft may have any structure, such as a molding shaft constructed by using a main molding shaft and having a large number of roller shafts arranged and supported in an inclined manner on the outer circumference by a cylindrical cage.

しかして、上記各成形軸14に亙るように巻回される条
素材、つまり帯状体lとしては、例えばポリエチレン樹
脂、ポリプロピレン樹脂のごときポリオレフィン系の合
成樹脂、あるいは塩化ビニールW脂などが用いられる乙
ので、押出成形手段27の成形用ダイ28からの所要の
形状、例えば平板状に押出成形すると共に、半溶融状態
で上記各成形軸14側に供給して、各成形軸i4上間に
亙るよう螺旋状に巻回する。そしてこの各成形軸14上
で後記する成形用芯型29により第3図及び第7図に示
すごとく断面コ字状部分1aと、該コ字状部分lλの一
側方下端部から延びる板状の長辺部分1bと、他側方下
端部から延びる板状の短辺部分1cとが一連に成形され
るのである。なお、この条素材1としては通常全体を硬
質合成樹脂により形成するものであるが、前記コ字状部
分laと短辺部分1cを硬質とし、長辺部分1bを軟質
合成樹脂としてもよく、また全体を軟質合成樹脂により
形成してもよいのである。
Therefore, the strip material wound around each of the molding shafts 14, that is, the strip l, is made of, for example, polyolefin-based synthetic resin such as polyethylene resin or polypropylene resin, or vinyl chloride W resin. Therefore, it is extruded into a desired shape, for example, a flat plate, from the molding die 28 of the extrusion molding means 27, and is supplied in a semi-molten state to the above-mentioned molding shafts 14 so as to extend between the upper parts of each molding shaft i4. Wrap in a spiral. Then, as shown in FIGS. 3 and 7, a molding core 29 (to be described later) is formed on each molding shaft 14 to form a U-shaped section 1a and a plate-shaped section extending from the lower end of one side of the U-shaped portion lλ. The long side portion 1b and the plate-shaped short side portion 1c extending from the lower end on the other side are formed in series. The strip material 1 is usually made entirely of a hard synthetic resin, but the U-shaped portion la and the short side portion 1c may be made of hard material, and the long side portion 1b may be made of a soft synthetic resin. The entire structure may be made of soft synthetic resin.

一方、前記各成形軸14に亙るよう可撓性をもつ無端状
の成形用芯型29が予め螺旋状に巻き付けられている。
On the other hand, a flexible endless molding core 29 is wound in advance in a spiral shape so as to extend around each of the molding shafts 14 .

この成形用芯型29は、例えば条素材1から成形される
コ字状部分1aと略同じ断面形状とじた一本の可撓性ベ
ルト材D)らなる乙ので、該ベルト材を各成形軸14に
亙るよう予め螺旋状に巻き付すると共に、巻回終端を巻
回始端にまで弛み状に延長して、その両端を繋ぎ無端状
としたものである。なお前記芯型29の頂部には、後記
するカッター34の進入を許す7字状等の条溝30が形
成され、また必要に応じて第5図に示すごとく条素材l
が巻回時に進入する始端部にガイドローラー31を設け
て、芯型29の進入位置を規制するようにしている。
This molding core mold 29 is made of a single flexible belt material D) having approximately the same cross-sectional shape as the U-shaped portion 1a molded from the strip material 1, for example. 14 in advance, the winding end is extended loosely to the winding start end, and both ends are connected to form an endless shape. Incidentally, a groove 30 such as a 7-shaped groove is formed on the top of the core mold 29 to allow the entry of a cutter 34, which will be described later.
A guide roller 31 is provided at the starting end where the core 29 enters during winding to regulate the entry position of the core 29.

また、上記した成形用芯型29と同様、必要に応じて、
各成形軸14に亙り、かつ螺旋状に巻回された該芯型2
9の間に位置するよう無端状の押え型32が螺旋状に巻
き付けられている。この押え型32は条素材!を螺旋状
の芯型29間に押え込むためのもので、前記芯型29と
同様可撓性を備え、かつ巻回終端を巻回始端にまで延長
して、その両端を繋ぎ無端状としたものであるが、この
押え型32は前記芯型29上で条素材1が成形されて後
、その上から巻き付けるものである。図中33は押え型
32:、)進入を案内するガイドローラーてめろ。
In addition, as with the molding core mold 29 described above, if necessary,
The core mold 2 is wound spirally around each forming shaft 14.
An endless presser mold 32 is wound spirally so as to be located between the two ends. This presser die 32 is a strip material! It is for pressing between the spiral core molds 29, and has flexibility like the core mold 29, and extends the end of the winding to the start of the winding, and connects both ends to form an endless shape. However, after the strip material 1 is formed on the core die 29, this presser die 32 is wound onto it. In the figure, 33 is a presser die 32: ).

斯くて、上記しf二ごとく各成形軸■4上で成形用芯型
29と押え型32とを用い、条素材lを螺旋状に巻回し
て、管壁Aの内面を平坦とし、V壁A外周に螺旋状の補
強条Bを備えた合成樹脂管を成形し、次いで後述するご
とく、前記補強条Bの頂部に切溝Cを連続的に形成して
、その切溝Cから芯型29を抜き取り、その直後に切溝
Cを拡開して流動状態の混合材を過充填し、しかる後、
この切溝Cを閉鎖すべく構成するのであって、前記合成
樹脂管の螺旋進み方向前方にカッター34を配設すると
共に、このカッター34より螺旋進み方向前方に、切溝
の拡開手段57と、流動状態の混合材を過充填する混合
材充填手段58と、押出成形手段35の成形用ダイ36
とを順次配設し、最終的に前記補強条Bの項部に半溶融
状の帯状素材2を供給添設し、前記切溝Cを閉鎖するの
である。
Thus, as described in F2 above, the strip material I is spirally wound using the molding core mold 29 and the presser mold 32 on each molding shaft 4 to flatten the inner surface of the tube wall A and form a V wall. A synthetic resin pipe with a spiral reinforcing strip B on the outer periphery of A is molded, and then, as described later, a kerf C is continuously formed at the top of the reinforcing strip B, and a core mold 29 is formed from the kerf C. Immediately after that, the kerf C is expanded and overfilled with a fluidized mixture, and then,
The kerf C is configured to be closed, and a cutter 34 is disposed in front of the synthetic resin pipe in the helical advancing direction, and a kerf expanding means 57 is provided in front of the cutter 34 in the helical advancing direction. , a mixture filling means 58 for overfilling the mixture in a fluid state, and a molding die 36 of the extrusion molding means 35.
Finally, a semi-molten strip material 2 is supplied and attached to the neck portion of the reinforcing strip B, and the kerf C is closed.

而して切屑の拡開手段57は、第6図において、断面略
逆三角彩の拡開部vr59と、この部材に回転可能に支
持された1対の回転子60・61と、上記拡開部材59
から上方へ延びるネジllll62と、このネジ軸に螺
合され、その螺合位置により拡開部材59の上下位置を
調整可能なナツト63とから主としてなる。なお、64
は装置本体の水平アーム、65はそのアームに前後移動
可能に支持され、かつ上記ネジ軸62を貫通すると共に
ナツト63を支持する前後調整部材、66はこの部材の
位置決め用把手である。
The chip expanding means 57, as shown in FIG. Member 59
It mainly consists of a screw llll62 extending upward from the screw shaft, and a nut 63 that is screwed onto this screw shaft and can adjust the vertical position of the expansion member 59 depending on the screwed position. In addition, 64
65 is a horizontal arm of the main body of the apparatus; 65 is a longitudinal adjustment member that is supported by the arm so as to be movable back and forth, passes through the screw shaft 62 and supports the nut 63; and 66 is a handle for positioning this member.

次に混合材充填手段58は、第2押出機67から延びる
充填ノズル68から主としてなる。
Next, the mixture filling means 58 mainly consists of a filling nozzle 68 extending from the second extruder 67.

なお、上記蓋板部としての帯状素材2としては、通常条
素材lと同質の硬貨合成樹脂を用いるのであるが、これ
に代え、条素材1として軟質ポリエチレン樹脂のごとき
軟質合成樹脂を、また帯状素材2として硬質ポリエチレ
ン樹脂のごとき硬質合成樹脂を用い、可撓性を損なうこ
となく、耐摩擦性を高め得るようにしてもよい。
In addition, as the strip material 2 as the lid plate portion, a coin synthetic resin of the same quality as the strip material 1 is usually used, but instead of this, a soft synthetic resin such as a soft polyethylene resin is used as the strip material 1, and a strip material A hard synthetic resin such as a hard polyethylene resin may be used as the material 2 to improve friction resistance without impairing flexibility.

次に、上記した製造装置Sの作動について説明する(特
に第6図祭照)。
Next, the operation of the manufacturing apparatus S described above will be explained (particularly as shown in FIG. 6).

先ず、押出成彩手段27のダイ28から平板状に押出供
給されろ半溶融状の条素材lは、−斉に駆動回転する各
成形軸14上間に亙るよう巻き付けられる。このとき前
記各成形軸14上には、予め成形用芯型29が巻付けら
れているので、この条素材lは芯型29をしてコ字状部
分1λと長辺部分1bと短辺部分1cとを形作るように
成形が行われるのであり、また上記各成形軸14がやや
傾斜していることから、前記条素材lは螺旋状に巻付け
られると共に、先行する条素材lの長辺部分lb上に、
後続する条素材lのコ字状部分1a及び短辺部分1cが
重なって一体的に溶着され、管壁Aの内面が平坦で、そ
の外周に螺旋状の補強条Bを備えた合成樹脂管が順次成
形される。殊に、前記コ字状部分1aにより螺旋状の補
強条Bが形成され、また互いに重合する長短辺部分1b
、ICに上り管壁Aが形成されるものであって、この管
壁Aの内面は平坦となるのである。
First, the semi-molten strip material 1 extruded from the die 28 of the extrusion coloring means 27 in a flat plate shape is wound so as to extend between the forming shafts 14 which are driven and rotated in unison. At this time, since a core mold 29 for molding has been wound on each of the molding shafts 14 in advance, this strip material l is formed into a core mold 29 with a U-shaped portion 1λ, a long side portion 1b, and a short side portion. 1c, and since each forming axis 14 is slightly inclined, the strip material 1 is wound spirally, and the long side portion of the preceding strip material 1 on lb.
The U-shaped portion 1a and short side portion 1c of the subsequent strip material 1 are overlapped and integrally welded to form a synthetic resin tube with a flat inner surface of the tube wall A and a spiral reinforcing strip B on the outer periphery. Molded sequentially. In particular, the U-shaped portion 1a forms a spiral reinforcing strip B, and the long and short side portions 1b overlap with each other.
, a tube wall A is formed on the IC, and the inner surface of this tube wall A is flat.

一方、上記のように順次成形される合成樹脂管の補強条
B間外周には、押え型32か供給されるしので、これに
より互いに重合する長短辺部分1b  lcを圧着して
、その重合状態を高め、その溶着をより一層確実に行わ
せるものである。
On the other hand, a presser die 32 is supplied to the outer periphery between the reinforcing strips B of the synthetic resin pipe that is sequentially molded as described above, so that the long and short side portions 1b and lc that overlap each other are pressed together, and the overlapping state is This increases the welding process and makes the welding more reliable.

次いで、前記各成形軸14上で連続的に成形される合成
樹脂管の補強条B頂部にカッター34を突刺して、該補
強条Bの頂部に切溝Cを連続的に形成した後、該切溝C
を介して芯型29が補強条B内から抜き取られて、巻回
始端部に戻されるのである。このとき前記カッター34
は芯型29のV字状条溝30まで刃先が突入するもので
、その切断を完全に行うことができる。なお前記補強条
Bは、芯型29を抜き取るときに形部れしない程度にま
で冷却しておく。
Next, a cutter 34 is inserted into the top of the reinforcing strip B of the synthetic resin pipe that is continuously molded on each molding shaft 14 to continuously form a cut groove C on the top of the reinforcing strip B. Cut groove C
The core mold 29 is pulled out from within the reinforcing strip B and returned to the winding start end. At this time, the cutter 34
In this case, the cutting edge penetrates into the V-shaped groove 30 of the core mold 29, and the cutting can be performed completely. Note that the reinforcing strip B is cooled to such an extent that the shape does not shift when the core mold 29 is extracted.

次いで、芯型29が抜き取られL切溝Cは、抜き取り直
後に、拡開手段57によりて更に拡開され、この拡開さ
れた切溝Cから充填ノズル68によって流動状態の混合
材が過充填される(切溝Cからやや溢れる程度に充填さ
れろ)。
Next, the core mold 29 is extracted, and the L cut groove C is further expanded by the expanding means 57 immediately after the core die 29 is extracted, and the fluidized mixture is overfilled from the expanded cut groove C by the filling nozzle 68. (fill so that it slightly overflows from the kerf C).

この後、押出成形手段35のダイ36から半溶融状の帯
状素材2を補強条Bの項部に供給添設し、補強条BIJ
i部の切溝Cを中空部から溢れた混合材と共に開繊する
のである。この帯状素材2は条素材lと同質の合成樹脂
からなるもので、補強条Bの頂部幅と同程度の板状に形
成されたものである。
After that, the semi-molten strip material 2 is supplied from the die 36 of the extrusion molding means 35 to the neck part of the reinforcing strip B, and the reinforcing strip BIJ
The kerf C in the i part is opened together with the mixed material overflowing from the hollow part. This strip material 2 is made of the same synthetic resin as the strip material 1, and is formed into a plate shape having the same width as the top of the reinforcing strip B.

また上記切溝Cは、芯型29の抜き取り時に拡開され、
更に拡開手段57により大きく拡開されるので、その後
において完全に閉合せず、検量いた状態となるおそれが
あるが、その切溝C内に半溶融状の前記帯状素材2が進
入して一部があふれることになる。かくしてその一部は
、前記切溝Cにより分断された補強条Bの分断部に介在
し、補強条Bの頂部を強固に接合する接着剤的役割を果
すのである。もちろんこの接合効果は螺旋管への雨水の
侵入、漏洩をなくす効果をもたす。更に重要な点である
が、中空部に混合材が充填されたことにより、螺旋凸条
部の形くずれが防止され、しかも全体としての耐圧扁平
強度が飛やく的に向上する。また廃棄されてきた安価な
廃プラスチックスを有効利用しているので、社会に貢献
できる。
Further, the cut groove C is expanded when the core mold 29 is extracted,
Furthermore, since it is widened by the widening means 57, there is a possibility that it will not be completely closed after that and will be in a calibrated state, but the semi-molten band material 2 will enter into the kerf C and it will not close completely. The department will be overflowing. In this way, a part of the reinforcing strip B is interposed in the divided portion of the reinforcing strip B divided by the kerf C, and plays the role of an adhesive to firmly join the top portions of the reinforcing strip B. Of course, this joining effect has the effect of eliminating rainwater intrusion and leakage into the spiral pipe. More importantly, filling the hollow portion with the mixed material prevents the spiral protrusions from deforming, and furthermore, the pressure resistance and flatness strength as a whole is dramatically improved. Also, since it makes effective use of cheap waste plastics that have been discarded, it can contribute to society.

更にこのように安価な廃プラスチックスを中空部内に充
填できるので、それだけで大きな耐圧強度が得られ、第
9図のごとく、条素材を極度に薄くすることが可能とな
り高価な新生原料の使用を節約できると共に、更に耐圧
強度を要求される場合は、節約した目付分の合成樹脂を
谷部分への厚味に加えることにより極めて高い強度が得
られる。
Furthermore, since the hollow parts can be filled with cheap waste plastics, great pressure resistance can be obtained, and as shown in Figure 9, it is possible to make the strip material extremely thin, which eliminates the use of expensive new raw materials. If you are able to save money and require even more pressure resistance strength, extremely high strength can be obtained by adding synthetic resin equivalent to the saved area weight to the valley portions.

上記のごとく、条素材の螺旋凸条部分の各側壁の厚味を
薄くできるので、拡開手段による開口動作が容易にでき
る。
As described above, since the thickness of each side wall of the spiral convex strip portion of the strip material can be made thin, the opening operation by the expanding means can be easily performed.

また、廃プラスチックスを充填するノズルは、その先端
が帯状体の螺旋凸条部に接触するので、耐熱性、耐摩耗
性、滑性を育する材料で表面処理するのが好ましく、例
えばテフロン樹脂被覆がより好ましい。
In addition, since the tip of the nozzle used to fill the waste plastic comes into contact with the spiral convex strip of the strip, it is preferable to treat the surface with a material that improves heat resistance, abrasion resistance, and lubricity, such as Teflon resin. Coating is more preferred.

更に、拡開手段27における回転子60・61は中空部
の内面、つまり開口側壁にの内面に回転接触し、なめら
かに切溝Cを拡開できる。
Further, the rotors 60 and 61 in the expanding means 27 come into rotational contact with the inner surface of the hollow portion, that is, the inner surface of the opening side wall, and can smoothly expand the kerf C.

ここで参考までに、第2〜5図に示した実施例装置Sに
よって得られた第1図のごときプラスチフス螺旋巻き管
51の耐王強覚測定効果を挙°デる。
Here, for reference, the effect of measuring the resistance to strong sense of the plastic spirally wound tube 51 as shown in FIG. 1 obtained by the embodiment apparatus S shown in FIGS. 2 to 5 will be listed.

■耐圧試験方法 長さ500xmのプラスチックス螺旋巻き管54のカッ
トサンプルを23℃±2℃で4時間以上保持し、平行板
載荷法に準じ、圧縮速度10xx1分で圧縮背型を加え
、管内径の5%及び10%鉛直歪時の荷重を一1定した
。なお、圧縮強度はIR当りに換算して表わす。
■Pressure test method A cut sample of a spirally wound plastic tube 54 with a length of 500 x m was held at 23°C ± 2°C for more than 4 hours, and a compression back mold was applied at a compression speed of 10 x 1 minute according to the parallel plate loading method. The load at 5% and 10% vertical strain was kept constant. Note that the compressive strength is expressed in terms of IR.

■結果 表1に示すとおりである。■Results As shown in Table 1.

■以上のように従来例に比較して本発明の耐圧強度は充
分に強いことがわかる。
(2) As described above, it can be seen that the pressure resistance of the present invention is sufficiently strong compared to the conventional example.

■上記と同条件でプラスチック粉砕屑を70vt%、プ
ラスチックス以外の粗ri体混合オ料を3゜wt%とし
て成形したが、(1)と強度がほぼ同じで強度が向上し
ていることが確認できた。
■ Molding was carried out under the same conditions as above, with 70 vt% of crushed plastic waste and 3°wt% of raw materials mixed with crude materials other than plastics, but the strength was almost the same as in (1) and it was found that the strength was improved. It could be confirmed.

以上の実施例とは異なり、第14図のごとく、帯状素材
2Aを螺旋状に一部を重ねて溶着させながら筒状に捲回
して各切溝を閉塞させることもでき、更に第15図のご
とくこのような構造を重ねてもよい。
Unlike the above embodiments, as shown in FIG. 14, the strip material 2A can be wound into a tube while partially overlapping and welding in a spiral shape to close each groove, and furthermore, as shown in FIG. Such structures may be stacked on top of each other.

すなわち、第3の押出II(図示省略)より、少なくと
も2山を結ぶ幅の広い条素材24を、山部間に連続的に
捲回被覆すると外面が平滑な管が得られる。このような
管は耐圧性と共に長手方向に剛性を必要とする耐圧推進
管として好適に使用することができる(第14図参照)
。又、更にこれらの方法を繰り返すことにより第15図
のように2層2A、2B、更に必要によって3層の復層
管を製造することができる。又、この場合首部の空間内
に廃プラスチックスを充填することも可能である。
That is, in the third extrusion II (not shown), by continuously winding and covering the wide strip material 24 connecting at least two peaks between the peaks, a tube with a smooth outer surface can be obtained. Such a tube can be suitably used as a pressure-resistant propulsion tube that requires both pressure resistance and longitudinal rigidity (see Figure 14).
. Furthermore, by repeating these methods, it is possible to manufacture a double-layered pipe with two layers 2A and 2B, and further three layers if necessary, as shown in FIG. In this case, it is also possible to fill the neck space with waste plastics.

tお、上記のようにして成形された合成樹脂管は、図示
例では条素材1汝び帯状素け2の各接合境界を明示して
いるが、実際には全て同質の材料が熱溶着されて一体化
している。更に合成樹脂管の螺旋凸状部の形状をより正
確に整えるために第6図のごとく押圧部材(又は押圧ロ
ーラ)69を付設してもよい。
In the illustrated example, the synthetic resin pipe molded as described above clearly shows the joining boundaries of the strip material 1 and the strip material 2, but in reality, all of the same materials are heat welded. are integrated. Furthermore, in order to more accurately shape the spiral convex portion of the synthetic resin pipe, a pressing member (or pressing roller) 69 may be provided as shown in FIG.

(へ)発明の効果 本発明によれば、管主体に形成される中空部分に、芯材
を取り出した切裂部分を介して流動物を充填固化させる
ことによって、切り裂いたために弱くなった螺旋凸状部
を強化及び保形し、それによって耐圧強度性、形状保持
性等がすぐれた高品質の螺旋巻き管が提供できる。
(F) Effects of the Invention According to the present invention, by filling and solidifying the fluid into the hollow part formed in the main body of the pipe through the cut part from which the core material has been taken out, the spiral convexity weakened due to the cut is removed. By strengthening and retaining the shape of the shaped portion, a high-quality spirally wound tube with excellent pressure resistance, shape retention, etc. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るプラスチックス螺旋巻き管の一実
施例を示すカット片の一部断面を含む側面図、第2図は
上記螺旋巻き管の製造装置の平面図、第3図はその一部
を省略した縦断正面図、第4図は補助成形ローラ配置部
分の一部断面を含む平面図、第5図は同じく一部断面を
含む側面図、第6図は成形工程説明図、第7図は成形軸
上で成形された条素材縦断面図、第8図は異なる形状の
条素材縦断面図、第9図は成形軸と、条素材、芯型29
、拡開手段57などの供給方向との関係を説明する構成
説明図、第1θ図はプラスチックス螺旋巻き管の要部断
面の構成を強調して示す要部拡大断面図、第11図は条
素材の押出しノズルの正面図、第12図及び第13図は
プラスチックス螺旋巻き管の要部断面の他の構成例を示
す要部拡大断面説明図、第14図及び第15図はそれぞ
れ他の実施例を示す要部拡大断面図、第16図(A)は
、プラスチックス螺旋巻き管従来例を示す一部断面図を
含む側面図、第16図(B)はその要部拡大断面図、第
17図(A)(B)は螺旋凸状部に切裂部分を備えた場
合の要部断面構造説明図、第18図は切裂部分の傾きと
進行方向との関連を示す要部断面構造説明図、第19図
(A)(B)は第17図(A)(B)で示すごとき切裂
部分が閉塞した場合の要部構造説明図である。 1・・・・・・プラスチックス帯状体、14・・・・・
成形軸、29・・・・・・芯材、31・・・・・・ガイ
ドローラー、34・・・・・カッター、51・・・・・
・プラスチックス螺旋巻き管、52・・・・・・中空部
、53・・・・・・管主体、54・・・・・・充填層、
56・・・・・・螺旋凸条部、57・・・・・・切溝の
拡開手段、 58・・・・・・混合材充填手段、 B・・・・・・補強条、C・・・・・切溝、S・・・・
・・プラスチックス螺旋巻き管の製造装置。 第1図 第7図 第8図 第9図 第10図 第11図 第12図 第13図 第14図 第15図 第16図 (A) 第16図 <8) II 17図 (A) 第17図 (B) 第18図 mtLWluう乃向 第19図 (A)
FIG. 1 is a side view including a partial cross section of a cut piece showing an embodiment of the spirally wound plastic tube according to the present invention, FIG. 2 is a plan view of the apparatus for manufacturing the spirally wound tube, and FIG. 3 is the same. 4 is a plan view including a partial cross section of the auxiliary forming roller arrangement portion; FIG. 5 is a side view also including a partial cross section; FIG. 6 is an explanatory view of the forming process; Figure 7 is a longitudinal sectional view of the strip material formed on the forming shaft, Figure 8 is a longitudinal sectional view of the strip material of different shapes, and Figure 9 is the forming shaft, the strip material, and the core mold 29.
, a configuration explanatory diagram illustrating the relationship with the supply direction of the expanding means 57, etc., FIG. A front view of a material extrusion nozzle, FIGS. 12 and 13 are enlarged cross-sectional explanatory views of main parts showing other configuration examples of main part cross sections of plastics spirally wound pipes, and FIGS. 14 and 15 respectively show other configurations. 16(A) is a side view including a partial sectional view showing a conventional example of a plastic spirally wound pipe; FIG. 16(B) is an enlarged sectional view of the essential parts; Fig. 17 (A) and (B) are explanatory diagrams of the main part cross-sectional structure when the spiral convex part is provided with a cut part, and Fig. 18 is a main part cross-section showing the relationship between the inclination of the cut part and the direction of movement. Structural explanatory diagrams, FIGS. 19(A) and 19(B) are explanatory diagrams of the main part structure when the torn part as shown in FIGS. 17(A) and (B) is closed. 1... Plastic strip, 14...
Molding shaft, 29...Core material, 31...Guide roller, 34...Cutter, 51...
・Plastic spirally wound pipe, 52...Hollow part, 53...Pipe main body, 54...Filled layer,
56... Spiral convex strip, 57... Cut groove expansion means, 58... Mixed material filling means, B... Reinforcement strip, C. ...kerf, S...
...Manufacturing equipment for plastic spirally wound tubes. Figure 1 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 (A) Figure 16<8) II Figure 17 (A) Figure 17 Figure (B) Figure 18 mtLWluUnomukai Figure 19 (A)

Claims (1)

【特許請求の範囲】 1、プラスチックス帯状体を螺旋状に捲回しつつ、長手
方向に沿って中空部分を区画して形成した内管部及びそ
の表面に一体の螺旋凸状部からなり、この螺旋凸状部が
、その最外周部分を切裂いて形成され、上記中空部分に
予め挿入され螺旋凸状部の保形を行った後の連続芯材を
取り出した連続切裂部分を備えてなる管主体と、 上記連続切裂部分を介して上記中空部分に溶融状態のプ
ラスチックスを主成分とする流動物を充填固化させて形
成された充填層と、 からなるプラスチックス螺旋巻き管。 2、管主体が、更に、螺旋凸状部の最外周部分に、流動
物の充填後の連続切裂部分を閉塞すべく被着された蓋板
体を備えてなる請求項1に記載のプラスチックス螺旋巻
き管。 3、流動物が、溶融状態のプラスチックスと、プラスチ
ックス以外の材料からなる非溶融性粗粒体とを混合して
なる流動性混合物である請求項1に記載のプラスチック
ス螺旋巻き管。 4、略円筒状のマンドレルの周囲に、押出機から溶融状
態のプラスチックス帯状体をその断面が中空状になるよ
うに、かつ一部を重ね合すように供給して螺旋状に捲回
し、これによって内管部とこの内管部の外側の螺旋凸状
部とを一体に形成し、その際溶融状態のプラスチックス
帯状体で形成される中空部分に連続芯材を挿入して螺旋
凸状部の保形を行い、その後螺旋凸状部の最外周部分を
切裂いてその連続芯材を取り出し、次いで、その切裂部
分から上記中空部分に溶融状態のプラスチックスを主成
分とする流動物を充填し、固化させることを特徴とする
プラスチックス螺旋巻き管の製造方法。 5、中空部分への流動物の充填が過充填である請求項4
に記載の製造方法。 6、切裂部分から中空部分に流動物を充填するに際して
、予め、切裂部分を拡げる請求項4に記載の製造方法。 7、溶融状態のプラスチックス帯状体をその断面が尼曲
状になるよう押し出す押出材と、この押出材からの帯状
体を螺旋状に捲回しつつ、その帯状体の裏面に帯状体の
長手方向に沿って中空部分を区画形成し、先に捲回した
帯状体の部分に対して後から捲回する帯状体の部分の一
部を重ね合せ表面に螺旋凸状部を有する螺旋巻き管を連
結して形成する回転マンドレルと、エンドレスの芯材と
、上記回転マンドレル上に螺旋巻き管が2回転以上保持
されて後に、螺旋凸状部の最外周部分を切裂くカッター
と、上記芯材を、先に捲回した帯状体に対して後から、
捲回する帯状体を重ね合わせる際に、上記中空部分に挿
入し、しかる後螺旋凸状部の切裂部分から取り出すべく
案内する案内ローラと、芯材が取り出された切裂部分か
ら上記中空部分に溶融状態のプラスチックスを主成分と
する流動物を充填する流動物充填手段とからなるプラス
チックス螺旋巻き管の製造装置。
[Scope of Claims] 1. Consisting of an inner tube portion formed by winding a plastic strip in a spiral shape and partitioning a hollow portion along the longitudinal direction, and a spiral convex portion integrated on the surface of the inner tube portion; The spiral convex part is formed by cutting the outermost peripheral part thereof, and includes a continuous cut part from which the continuous core material is taken out after being inserted into the hollow part in advance and maintaining the shape of the spiral convex part. A spirally wound plastic tube comprising: a tube main body; and a filling layer formed by filling and solidifying a fluid mainly composed of molten plastics into the hollow portion through the continuous cut portion. 2. The plastic according to claim 1, wherein the tube main body further comprises a lid plate attached to the outermost peripheral portion of the spiral convex portion to close the continuous cut portion after filling with the fluid. Spiral-wound tube. 3. The spirally wound plastic tube according to claim 1, wherein the fluid is a fluid mixture of molten plastic and non-melting coarse particles made of a material other than plastic. 4. A molten plastic strip is fed from an extruder around a substantially cylindrical mandrel so that its cross section is hollow, and some parts overlap, and the material is wound spirally. As a result, the inner tube part and the spiral convex part on the outside of the inner tube part are integrally formed, and at this time, a continuous core material is inserted into the hollow part formed by the molten plastic strip to form the spiral convex part. After that, the outermost peripheral part of the spiral convex part is cut to take out the continuous core material, and then a fluid mainly composed of molten plastics is injected from the cut part into the hollow part. 1. A method for manufacturing a spirally wound plastic tube, characterized by filling and solidifying the plastics spirally wound tube. 5. Claim 4, wherein the filling of the fluid into the hollow portion is overfilling.
The manufacturing method described in. 6. The manufacturing method according to claim 4, wherein the torn part is expanded in advance when filling the hollow part with the fluid from the torn part. 7. An extruded material that extrudes a molten plastic strip so that its cross section becomes curved, and while winding the strip from this extruded material in a spiral shape, the back side of the strip is coated in the longitudinal direction of the strip. A hollow part is formed along the , and a part of the band-shaped body to be wound later is overlapped with the part of the band-shaped body wound earlier, and a spirally wound tube having a spiral convex portion on the surface is connected. a rotating mandrel formed by forming a rotating mandrel, an endless core material, a cutter that cuts the outermost portion of the spiral convex portion after the spirally wound tube is held on the rotating mandrel for two or more rotations, and the core material, After the belt-shaped body that was wound earlier,
A guide roller that is inserted into the hollow portion when the rolled strips are overlapped and then guided to be taken out from the cut portion of the spiral convex portion; and a fluid filling means for filling a fluid mainly composed of molten plastic into a plastic spirally wound tube.
JP2459790A 1990-01-31 1990-01-31 Plastics spiral wound tube, its manufacturing method and manufacturing apparatus Expired - Lifetime JPH0733059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2459790A JPH0733059B2 (en) 1990-01-31 1990-01-31 Plastics spiral wound tube, its manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2459790A JPH0733059B2 (en) 1990-01-31 1990-01-31 Plastics spiral wound tube, its manufacturing method and manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6070927A Division JPH06315978A (en) 1994-04-08 1994-04-08 Plastic spiral pipe and production thereof

Publications (2)

Publication Number Publication Date
JPH03227216A true JPH03227216A (en) 1991-10-08
JPH0733059B2 JPH0733059B2 (en) 1995-04-12

Family

ID=12142564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2459790A Expired - Lifetime JPH0733059B2 (en) 1990-01-31 1990-01-31 Plastics spiral wound tube, its manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH0733059B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030022653A (en) * 2001-08-14 2003-03-17 주식회사 강원프라코 Composite underground drain pipe with high strength
KR100458849B1 (en) * 2003-03-26 2004-12-03 주식회사 서원 Poly ethylene compound using for a drainpipe manufacture possible to adhere to each butts of the drainpipe and a dreinvpipe manufactured thereof
JP2010125336A (en) * 2008-11-26 2010-06-10 Covidien Ag Apparatus for manufacturing extruded coiled tube for medical purpose
CN112793117A (en) * 2020-12-24 2021-05-14 安徽杰蓝特新材料有限公司 High-modulus impact-resistant hollow wall winding pipe and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030022653A (en) * 2001-08-14 2003-03-17 주식회사 강원프라코 Composite underground drain pipe with high strength
KR100458849B1 (en) * 2003-03-26 2004-12-03 주식회사 서원 Poly ethylene compound using for a drainpipe manufacture possible to adhere to each butts of the drainpipe and a dreinvpipe manufactured thereof
JP2010125336A (en) * 2008-11-26 2010-06-10 Covidien Ag Apparatus for manufacturing extruded coiled tube for medical purpose
CN112793117A (en) * 2020-12-24 2021-05-14 安徽杰蓝特新材料有限公司 High-modulus impact-resistant hollow wall winding pipe and preparation method thereof

Also Published As

Publication number Publication date
JPH0733059B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US5658519A (en) Reinforced plastic piling and method and apparatus for making same
US4081302A (en) Method for making tubular resin elements such as pipes
WO2007006215A1 (en) Method and apparatus for making plastic drainage pipe reinforced by steel strips and the plastic drainage pipe reinforced by steel
CN104390070A (en) Thermoformed continuously wound composite material reinforced structure-wall pipe, and manufacturing equipment and manufacturing method thereof
US4011354A (en) Method and apparatus for making tubular resin elements such as pipes
JPH03227216A (en) Plastic spiral winding pipe, manufacture thereof and manufacturing equipment
CA2548983C (en) Device and method for manufacturing wrapped tubes
JPH06315978A (en) Plastic spiral pipe and production thereof
EP0593449A1 (en) Plastic pipe with a wall made up of a plastic-filler layer.
CN105773988A (en) Enhanced winding pipe and manufacturing method and device of enhanced winding pipe
CN104279379A (en) Continuously wound reinforced corrugated pipe and manufacturing method thereof
EP0816050A1 (en) Process and equipment for manufacturing pipes from recycled thermoplastic resins
KR101297199B1 (en) Drainpipe and filling the wall using waste plastics manufacturing device
CN1434759A (en) Spiral pipe using waste plastic material and manufacturing apparatus thereof
AU2007215670B2 (en) Apparatus and method for manufacturing pipe with multi-layer wall
KR100332633B1 (en) Plastic pipe of multiple layers using plastic salvage and its manufacturing method and apparatus
KR100436852B1 (en) Method and apparatus for manufacturing a plastic pipe of triple layers using plastic salvage
EP0069249A1 (en) Tube package
CN1308129C (en) Moulding method and appts.
CN210240810U (en) High-wear-resistance composite reinforced polyethylene structure wall winding pipe
KR101604397B1 (en) Fuel-saving device for manufacturing a filling wall with a sewer pipe waste plastics
CA1080925A (en) Helical rib reinforced laminate
KR100496550B1 (en) Method for making pipe with hollow and equipment of making the same
KR200211173Y1 (en) Plastic pipe of triple layers using plastic salvage
KR101260269B1 (en) Apparatus and method for manufacturing pipe having reinforcement band using reclaimed plastic and pipe manufactured thereby