JPH03226590A - Formation of magnetic thin film by plating - Google Patents

Formation of magnetic thin film by plating

Info

Publication number
JPH03226590A
JPH03226590A JP2114990A JP2114990A JPH03226590A JP H03226590 A JPH03226590 A JP H03226590A JP 2114990 A JP2114990 A JP 2114990A JP 2114990 A JP2114990 A JP 2114990A JP H03226590 A JPH03226590 A JP H03226590A
Authority
JP
Japan
Prior art keywords
pulse
thin film
magnetic thin
plating
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2114990A
Other languages
Japanese (ja)
Inventor
Kazuto Kamei
一人 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2114990A priority Critical patent/JPH03226590A/en
Publication of JPH03226590A publication Critical patent/JPH03226590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain an excellent soft magnetic thin film by specifying the current density at the pulse rise time, current density at the pulse suspension time and pulse duration time and further specifying the ratio of the pulse duration time to suspension time. CONSTITUTION:The magnetic thin film of an Fe-P-based alloy is formed by plating. In this case, a pulse power supply method is adopted. The current density IH at the pulse rise time in pulse power supply is controlled to 25mA/ cm<2=IH<=200mA/cm<2>. The current density IL at the pulse suspension time is adjusted to 0<=IL<=50mA/cm<2>. The pulse duration time tH is set at 10ms<=tH<=200 ms. The ratio of the pulse duration time tH to pulse suspension time tL is controlled to 0.1<=tH/tL<=10, and electrolysis is carried out. Consequently, a ferromagnetic thin film of an Fe-P-based alloy having a large area is obtained at a high film forming rate.

Description

【発明の詳細な説明】 11上旦旦■旦■ 本発明は磁性薄膜のめっき方法、より詳細には、磁気ヘ
ッド、磁気シールド及び磁気センサなどの材料として優
れた軟磁性を有するFe−P系合金の磁性薄膜のめっき
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for plating a magnetic thin film, and more specifically, to a method for plating a magnetic thin film, and more particularly, to a Fe-P system having excellent soft magnetism as a material for magnetic heads, magnetic shields, magnetic sensors, etc. This invention relates to a method for plating magnetic thin films of alloys.

従迷四目り術 従来、この種の磁性薄膜のめっき方法としては、溶湯急
冷法やスパッタリング法などがあり、Fe−P系合金で
は、Pの濃度が20原子%近傍において、非晶質化し易
い、上記方法によって非晶質化されたFe−P系合金の
磁性薄膜は、強磁性を有し飽和磁化が大きい反面保磁力
が小さいという優れた軟磁性を示す。このため、磁気ヘ
ッド及び磁気シールドなどの軟磁性材料として有望視さ
れている。
Conventional plating methods for this type of magnetic thin film include the molten metal quenching method and the sputtering method. A magnetic thin film of an Fe--P alloy that is easily amorphized by the above-mentioned method exhibits excellent soft magnetism, with ferromagnetism and high saturation magnetization, but low coercive force. Therefore, it is viewed as a promising soft magnetic material for magnetic heads, magnetic shields, and the like.

このようなFe−P系合金の磁性薄膜を前記軟磁性材料
として活用するには、磁性薄膜を効率的かつ広範な面に
形成せしめる製造技術の確立が必要不可欠である。
In order to utilize such a magnetic thin film of an Fe--P alloy as the soft magnetic material, it is essential to establish a manufacturing technology that allows the magnetic thin film to be efficiently formed over a wide range of surfaces.

ところが、溶湯急冷法においては、原材料であるFeや
Pの溶融体を通常の平衡状態が成立しないように急速に
冷却することが技術的に困難であるため、広範な面に磁
性薄膜を得ることができない。
However, in the molten metal quenching method, it is technically difficult to rapidly cool the molten material of Fe or P, which is the raw material, so that the normal equilibrium state is not established, so it is difficult to obtain a magnetic thin film on a wide range of surfaces. I can't.

また、スパッタリング法においても、成膜速度が小さく
かつ広範な面に磁性薄膜を得ることができない。
Furthermore, even in the sputtering method, the film formation rate is low and it is not possible to obtain a magnetic thin film over a wide area.

そこで本発明者は、成膜速度及び形成面積ともに大きな
めっき面が得られる電気めっき方法に着目した。従来F
e−P系における電気めっき方法は形成される磁性薄膜
構造の学術的解明や化成処理用下地めっきとしての用途
についてのみ検討されていた(日本金属学会秋期大会−
穀講演概要(1988、111に報告の「パルス電流に
よるFe−P非晶質合金の電着(213)J)。この報
告は、硫酸第1鉄アンモニウム、硫酸アンモニウム、ホ
スホン酸からなる電解液と、パルス通電を用いて電解め
っきを行なうことにより、非晶質性の磁性薄膜が得られ
たというものである。上記報告を参考にしてFe−P系
合金の電気めっき方法を鋭意検討した結果、非晶質膜を
形成せしめるに必要かつ十分な条件を特定するに至り、
昭和63年12月26日出願の特願昭63−31930
7号においてその方法を先に提案した。
Therefore, the present inventor focused on an electroplating method that can obtain a large plated surface with both a large film forming rate and a large forming area. Conventional F
The electroplating method in the e-P system has been studied only for academic elucidation of the magnetic thin film structure formed and for its use as a base plating for chemical conversion treatment (Japan Institute of Metals Autumn Meeting -
Summary of the Lecture by Koku (1988, 111, "Electrodeposition of Fe-P Amorphous Alloys by Pulsed Current (213) J)". It is said that an amorphous magnetic thin film was obtained by electrolytic plating using pulsed energization.As a result of intensive study of the electroplating method for Fe-P alloys with reference to the above report, it was found that a non-crystalline magnetic thin film was obtained. We have identified the necessary and sufficient conditions to form a crystalline film,
Patent application 1986-31930 filed on December 26, 1988
We first proposed this method in issue 7.

発明が解決しようとする課題 しかしながら上記した従来の磁性薄膜のめっき方法にお
いては、以下のような課題があった。
Problems to be Solved by the Invention However, the conventional magnetic thin film plating method described above has the following problems.

■通電方法として直流定電流通電を用いる場合には、磁
性薄膜を非晶質化する電解液の濃度組成において、Fe
”のイオンモル濃度[Fe”]とPのイオンモル濃度[
P]との比[Fe2′″]/[P]が0.5以上1.2
以下と狭い範囲に限定される。
■When using DC constant current energization as the energization method, Fe
The ionic molar concentration of ``Fe''] and the ionic molar concentration of P [Fe'']
[Fe2''']/[P] is 0.5 or more and 1.2
Limited to the following narrow range.

■また、直流定電流では、電解めっき時における通電可
能な電流密度の上限がloomA程度であり、成膜速度
に限界がみられる。
(2) In addition, with constant DC current, the upper limit of the current density that can be applied during electrolytic plating is about loomA, and there is a limit to the film formation rate.

■上記報告の[パルス電流によるFe−P非晶質合金の
電@(213)Jの場合には、パルス通電において、パ
ルス持続時間が1msに固定されていたため、パルス持
続時間と非晶質化との関係が確定されず、得られた非晶
質性磁性薄膜の磁気特性については不明である。
■ In the case of the above report [electrification of Fe-P amorphous alloy @ (213) J by pulsed current, the pulse duration was fixed at 1 ms, so the pulse duration and amorphization The relationship between the two is not determined, and the magnetic properties of the obtained amorphous magnetic thin film are unknown.

■従来例では、磁性薄膜の軟磁性を計る基準となる保磁
力の値が、高性能の軟磁性材料が示す保磁力の値より著
しく大きい。
(2) In the conventional example, the value of coercive force, which is a standard for measuring the soft magnetism of a magnetic thin film, is significantly larger than the value of coercive force exhibited by high-performance soft magnetic materials.

本発明は上記した課題に鑑み発明されたものであって、
パルス通電を用いることによって、成膜速度及び形成面
積ともに大きな生産効率のよい軟G1性に優れたFe−
P系合金の磁性薄膜のめつき方法を提供することを目的
としている。
The present invention was invented in view of the above-mentioned problems, and
By using pulsed energization, Fe-
The object of the present invention is to provide a method for plating a magnetic thin film of a P-based alloy.

課題を解決するための 上記した目的を達成するために本発明に係る磁i生薄嗅
のめつき方法は、Fe−P系合金の磁性薄膜のめっき方
法において、パルス通電方式を採用−1該パルス通電に
おけるパルス立ち上り時の電A密度IHを25mA/c
m2≦1.≦200mA/ cm2とし、パルス休止時
の電流密度■、をO≦1.≦50mA/cm2とし、ま
たパルス持続時間IHを10ms≦tH≦200msに
設定するとともにパルス持続時間tHとパルス休止時間
t、との比tH/lLを0.1≦tH/lL≦10に設
定して電解めっきを行なうことを特徴としている。
In order to achieve the above-mentioned object for solving the problems, the method for plating a magnetic thin film according to the present invention adopts a pulse energization method in a method for plating a magnetic thin film of an Fe-P alloy. The current A density IH at the pulse rise in pulse energization is 25 mA/c.
m2≦1. ≦200mA/cm2, and the current density during pulse rest is O≦1. ≦50 mA/cm2, the pulse duration IH is set to 10 ms≦tH≦200 ms, and the ratio tH/lL of the pulse duration tH to the pulse pause time t is set to 0.1≦tH/lL≦10. It is characterized by performing electrolytic plating.

作置 第1図〜第4図はFe−P系合金の磁性薄膜のめっき方
法において、パルス通電方式を採用して電解めっきを行
なうことによって得られた結果を示している。
FIGS. 1 to 4 show the results obtained by electrolytic plating using a pulse energization method in a method of plating magnetic thin films of Fe--P alloys.

第1図、第2図において、Oは結晶質、(は部分的に非
晶質、・は完全な非晶質が得られたことを示している。
In FIGS. 1 and 2, O indicates a crystalline state, (() indicates a partially amorphous state, and * indicates that a completely amorphous state was obtained.

ここで、得られた磁性薄膜の結晶性の評価方法としては
、X線回折を用いてその非晶質化の確認を行なった。
Here, as a method for evaluating the crystallinity of the obtained magnetic thin film, X-ray diffraction was used to confirm its amorphization.

まず、第1図は、パルス通電における設定条件として、
パルス持続時間tHとパルス休止時間tLとの比tH/
lLをtH/1L=1に固定した場合の各パルス持続時
間tH及びパルス立ち上り時の電流密度工□と析出相と
の相関関係を示している。但し、パルス立ち上り時の電
流密度■。
First, Figure 1 shows the setting conditions for pulse energization.
The ratio of pulse duration tH to pulse rest time tL tH/
It shows the correlation between each pulse duration tH and the current density at the pulse rise time and the precipitated phase when 1L is fixed at tH/1L=1. However, the current density at the pulse rise ■.

は、パルス休止時の電流密度ILの値によって可変的で
あるが、今回はIL=Oに固定した。この図より明らか
なように、パルス立ち上り時の電流密度1.が25mA
/cm2≦1.≦150 mA/ cm2でパルス持続
時間tHが10ms≦tH≦200msの範囲において
磁性薄膜は完全に非晶質化された。
is variable depending on the value of the current density IL at the time of pulse rest, but this time it was fixed to IL=O. As is clear from this figure, the current density at the rise of the pulse is 1. is 25mA
/cm2≦1. The magnetic thin film was completely amorphous when the pulse duration tH was 10 ms≦tH≦200 ms at ≦150 mA/cm2.

また、第2図は、パルス持続時間IHをt。=100m
sに固定した場合の各t H/ t L及びパルス立ち
上り時の電流密度工□と析出相との相関関係を示してい
る。但し、パルス立ち上り時の電流密度1.は、パルス
休止時の電流密度工、の値によって可変的であるが、今
回はIL=0に固定した。この図より明らかなように、
パルス立ち上り時の電流密度■8が25mA/cm”≦
IN≦150mA/ cm2でt o / t Lが0
.1≦to/tL≦10の範囲において磁性薄膜は完全
に非晶質化された。
Moreover, FIG. 2 shows the pulse duration IH as t. =100m
It shows the correlation between each t H/t L and the current density at the rise of the pulse and the precipitated phase when fixed at s. However, the current density at the time of pulse rise is 1. Although it is variable depending on the value of the current density during pulse rest, this time it was fixed at IL=0. As is clear from this figure,
Current density at pulse rise■8 is 25mA/cm”≦
t o / t L is 0 when IN≦150mA/cm2
.. The magnetic thin film was completely amorphous in the range of 1≦to/tL≦10.

次に、第3図はパルス通電における設定条件として、t
H/lLをtH/1L=t、o 、パルス通電時の電流
密度I)lをI H= loomA/cm”に固定した
場合の各パルス持続時間1.及びFe”のイオンモルI
l[Fe2″″]とPモル濃度[P]との比[Fe”]
/[P]と析出相との相関関係を示している。この図よ
り明らかなように、パルス持続時間tHが10ms≦t
H≦200msにおいては、図中斜線部すなわち、非晶
質性磁性薄膜が得られためっき浴組成[Fe2“] /
 [P]の範囲が著しく拡大した。
Next, FIG. 3 shows the setting conditions for pulse energization, t
H/1L = tH/1L = t, o, current density during pulsed current I) Each pulse duration when l is fixed at IH = roomA/cm", and ion mole I of Fe"
Ratio of l[Fe2″″] to P molar concentration [P] [Fe”]
It shows the correlation between /[P] and the precipitated phase. As is clear from this figure, the pulse duration tH is 10ms≦t
When H≦200ms, the shaded area in the figure, that is, the plating bath composition [Fe2''] / where an amorphous magnetic thin film was obtained.
The range of [P] was significantly expanded.

また、第4図は、パルス持続時間toをtH=loom
s 、パルス立き上り時の電流密度IHを工□= 10
0mA/cm”に固定した場合の各tH/lL及び[F
e”] / [P]と析出相との相関関係を示している
。この図より明らかなように、to/lLが0.1≦t
H/lL≦10では、図中斜線部すなわち、非品性磁性
薄膜が得られためっき浴組成[Fe”] / [P]の
範囲が著しく拡大した。
In addition, FIG. 4 shows that the pulse duration to is tH=room
s, the current density IH at the pulse rise = 10
Each tH/lL and [F
e"] / [P] and the precipitated phase. As is clear from this figure, to/lL is 0.1≦t
When H/lL≦10, the shaded area in the figure, that is, the range of plating bath composition [Fe'']/[P] in which a non-quality magnetic thin film was obtained, was significantly expanded.

このように、上記した条件でのパルス通電方式を採用す
ることによって、直流定電流通電方式の場合に比較して
より広い範囲のめっき浴組成で磁性薄膜の非晶質化がな
された。
As described above, by employing the pulse energization method under the above conditions, the magnetic thin film was made amorphous over a wider range of plating bath compositions than in the case of the DC constant current energization method.

上記したように、Fe−P系合金の磁性薄膜のめっき方
法において、パルス通電方式を採用し、該パルス通電に
おけるパルス立ち上り時の電流密度IHを25mA/c
m2≦1.≦200mA/ cm2とし、パルス休止時
の電流密度■、を0≦IL≦50mA/ cm2とし、
パルス持続時間tHを10’ms≦1.5200msに
設定するとともに、tH/lLを0.1≦tH/lL≦
10に設定して電解めっきを行なうことにより、成膜速
度及び形成面積ともに大きな、軟磁性に優れたFe−P
系合金の磁性薄膜が金属基板上に形成される。
As mentioned above, in the method of plating magnetic thin films of Fe-P alloys, a pulse energization method is adopted, and the current density IH at the pulse rise in the pulse energization is set to 25 mA/c.
m2≦1. ≦200mA/cm2, and the current density during pulse rest is 0≦IL≦50mA/cm2,
Set the pulse duration tH to 10'ms≦1.5200ms, and set tH/lL to 0.1≦tH/lL≦
By performing electrolytic plating with a setting of
A magnetic thin film of a based alloy is formed on a metal substrate.

!旋1巳a」立1例 以下本発明に係る磁性薄膜のめっき方法の実施例及び比
較例を説明する。
! EXAMPLES Example 1 Below, examples and comparative examples of the magnetic thin film plating method according to the present invention will be described.

まず500mI2のアクリル製角型めっきセルに電解液
として、Fe”源である硫酸第1鉄(Fe504・7H
201とPの供給源である次亜リン酸ナトリウム(Na
HzPOz ・Hail とを加え下記の第1表、第2
表に記載の設定条件に従って濃度組成を調整した0次に
金属基板として、純銅冷延板(幅40mm、長さ160
mm 、厚さ0.4mm1を用意し、この純銅冷延板の
一方の端部(幅40mm、長さ40mm1 を被めっき
領域として残し残部を絶縁テープで被覆し、これを陰極
とした。一方陽極としては、上記純銅冷延板と間様の銅
板に白金板を国定し、白金板の端部(幅40mm、長さ
40闘) を被めっき領域としで残して残部を絶縁テー
プで被覆したものを用いた。そして、上記二つの電極を
電解液に浸漬し、この電解液を磁気回転子によって、毎
分500〜600回転で撹拌しながら、第5図に示した
ような電流パターン(矩形波)を有する直流パルスを通
電して電解を行なった。このパルス通電における各条件
としては、下記の第1表、第2表に記載の設定条件に従
った。
First, ferrous sulfate (Fe504.7H
Sodium hypophosphite (Na
Add HzPOz ・Hail and write in Tables 1 and 2 below.
A pure copper cold-rolled plate (width 40 mm, length 160
One end (width 40 mm, length 40 mm) of this pure copper cold-rolled plate was prepared as a plating area, and the remaining part was covered with insulating tape, and this was used as a cathode. In this case, a platinum plate was placed on the pure copper cold-rolled plate and the copper plate between the gaps, and the edge of the platinum plate (width 40 mm, length 40 mm) was left as the plating area, and the rest was covered with insulating tape. Then, the above two electrodes were immersed in an electrolytic solution, and while the electrolytic solution was stirred at 500 to 600 revolutions per minute by a magnetic rotor, a current pattern (rectangular waveform) as shown in Fig. 5 was applied. ) Electrolysis was carried out by applying a direct current pulse having the following characteristics.The conditions for this pulsed current application were in accordance with the setting conditions listed in Tables 1 and 2 below.

(以下余白) すなわち、上記各設定条件とは、第1表、第2表に記載
したように、第1表の1〜11は比較例として本発明の
範囲外の条件でめっきを行なった場合で、パルス立ち上
り時の電流密度工、をI s < 25mA/cm2あ
るいはI s >150mA/ cm2とし、またパル
ス休止時の電流密度ILを工、=0とし、パルス持続時
間tHをt、<10msあるいはt H> 200ms
とし、tH/lLを1./1.<01あるいはt、/l
L>10とし、また、[Fe”] / [P]をO1≦
[F e ”] / [P]≦100の範囲で行なった
。表中*印は本発明の範囲外の条件の箇所を具体的に示
したものである。
(Left below) In other words, each of the above setting conditions is as described in Tables 1 and 2, and 1 to 11 in Table 1 are comparative examples where plating was performed under conditions outside the scope of the present invention. Then, the current density at the pulse rise is set to I s < 25 mA/cm2 or I s > 150 mA/cm2, the current density at the pulse rest is set to 0, and the pulse duration t is set to t, < 10 ms. Or t H > 200ms
and tH/lL is 1. /1. <01 or t, /l
L>10, and [Fe”] / [P] is O1≦
The test was carried out within the range of [F e ''] / [P]≦100. In the table, * marks specifically indicate conditions outside the scope of the present invention.

第2表の12〜24は本発明の範囲内の条件でめっきを
行なったものである。
Items 12 to 24 in Table 2 were plated under conditions within the scope of the present invention.

上記方法によって得られたFe−P系合金の6R性薄膜
の特性を調べるため、保磁力は簡易型保持カメ−ターで
測定し、磁性薄膜の結晶性についではX線回折によって
非晶質化の確認を行なった。
In order to investigate the characteristics of the 6R thin film of Fe-P alloy obtained by the above method, the coercive force was measured using a simple holding camera, and the crystallinity of the magnetic thin film was determined by X-ray diffraction. I checked.

そして、各表中に保磁力が050e以下を示すものにつ
いて良好な磁性薄膜が得られたとしで○を記し、保磁力
が0.50eより大きいものについては所望の軟磁性が
得られなかったとして×を記した。
In each table, those with a coercive force of 0.50e or less are marked with a circle, indicating that a good magnetic thin film was obtained, and those with a coercive force of greater than 0.50e are marked with a circle, indicating that the desired soft magnetism was not obtained. × is marked.

第1表、第2表より本実施例及び比較例における結果を
検討すると、第1表に示した比較例においては、得られ
た磁性薄膜中に部分的に非晶質が形成されただけである
。このため保磁力は著しく高くなり所望の磁性薄膜は得
られなかった。
Examining the results of this example and comparative examples from Tables 1 and 2, it is found that in the comparative examples shown in Table 1, amorphous was only partially formed in the obtained magnetic thin film. be. As a result, the coercive force became extremely high, and a desired magnetic thin film could not be obtained.

一方、第2表に示した本実施例においては、得られた磁
性薄膜は完全に非晶質化されるため、保磁力は小さくな
り良好な軟磁性を示した。
On the other hand, in this example shown in Table 2, the obtained magnetic thin film was completely amorphous, so the coercive force was small and good soft magnetism was exhibited.

このように、本実施例による磁性薄膜のめっき方法によ
り、成膜速度及び形成面積の大きな強磁性のFe−P系
合金の磁性薄膜を得ることができ、さらにこの磁性薄膜
は保磁力が低く優れた軟磁性を示すものであった。
As described above, by the magnetic thin film plating method according to this example, it is possible to obtain a magnetic thin film of a ferromagnetic Fe-P alloy that has a large deposition rate and a large formation area, and furthermore, this magnetic thin film has a low coercive force and is excellent. It exhibited soft magnetism.

尚、上記実施例において電解液中のF e2 +源とし
て、硫酸第1鉄fFeS047H201を用いたけれど
もこれに限定されるものではなく、塩化第1鉄fFe1
26H201、硝酸第1鉄fFe (NO−12・6H
201等の2価の鉄イオンを含む化合物を代りに用いて
もなんら差し支えない。
Although ferrous sulfate fFeS047H201 was used as the Fe2 + source in the electrolytic solution in the above example, the present invention is not limited to this, and ferrous chloride fFe1
26H201, ferrous nitrate fFe (NO-12・6H
There is no problem in using a compound containing divalent iron ions such as 201 instead.

P供給源として、上記実施例では次亜リン酸ナトリウム
(NaH2P02H20)を用いたけれどもこれに限定
されるものではなく、リン酸fhOs・nHzo ; 
nは整数)リン酸塩(M、PO2,MH2PO4,M2
P04: Mはリン酸と塩を形成する金属)、亜リン酸
(H2PH03、HFO2、H2PJzOsl 、亜リ
ン酸塩(MaPH(h、 MPO□M2PJaOs :
 Mはリン酸と塩を形成する金属)、次亜リン酸(HP
H20゜)または次亜リン酸塩(MPH20−;Mはリ
ン酸と塩を形成する金属)の1種または2種以上を混合
して用いてもなんら差し支えない。
Although sodium hypophosphite (NaH2P02H20) was used as a P source in the above example, it is not limited to this, and phosphoric acid fhOs·nHzo;
n is an integer) phosphate (M, PO2, MH2PO4, M2
P04: M is a metal that forms a salt with phosphoric acid), phosphorous acid (H2PH03, HFO2, H2PJzOsl, phosphite (MaPH (h, MPO□M2PJaOs:
M is a metal that forms a salt with phosphoric acid), hypophosphorous acid (HP
There is no problem in using one type or a mixture of two or more of H20°) or hypophosphite (MPH20-; M is a metal that forms a salt with phosphoric acid).

但し、2種以上を混合して用いる場合には、本発明では
用いるリン1度としては全リン濃度を意味するものとす
る。
However, in the case of using a mixture of two or more types, the 1 degree phosphorus used in the present invention refers to the total phosphorus concentration.

2!Lと従果 以上の説明により明らかなように、本発明に係る磁性薄
膜のめっき方法によれば、Fe−P系合金の磁性薄膜の
めっき方法において、パルス通電方式を採用し、該パル
ス通電におけるパルス立ち上り時の電流密度IHを25
mA/cm2≦1.≦200mA/cm2とし、パルス
休止時の電流密度ILを0≦1、≦50mA/ cm”
とし、またパルス持続時間tHを10ms≦tH≦20
0msに設定するとともにパルス持続時間t14とパル
ス休止時間1Lとの比tH/j+、を0.1≦tH/t
L≦10に設定して電解めっきを行なうことにより、成
膜速度及び形成面積の大きな強磁性のFe−P系合金の
磁性薄膜を得ることができ、さらにこの磁性薄膜は保磁
力が低く優れた軟磁性を示すものであった。
2! As is clear from the above explanation, according to the method for plating a magnetic thin film according to the present invention, a pulse energization method is adopted in the method for plating a magnetic thin film of Fe-P alloy, and in the pulse energization, Current density IH at pulse rise is 25
mA/cm2≦1. ≦200mA/cm2, and the current density IL during pulse rest is 0≦1, ≦50mA/cm”
and the pulse duration tH is 10ms≦tH≦20.
Set to 0ms, and set the ratio tH/j+ of pulse duration t14 to pulse rest time 1L to 0.1≦tH/t.
By performing electrolytic plating with L≦10, it is possible to obtain a magnetic thin film of a ferromagnetic Fe-P alloy with a large deposition rate and large formation area, and furthermore, this magnetic thin film has an excellent low coercive force. It exhibited soft magnetism.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はパルス持続時間t。とパルス立ち上り時の電流
密度工□と析出相との関係を示すグラフ、第2図はパル
ス持続時間とパルス休止時間との比tH/lLとパルス
立ち上り時の電流密度1、と析出相との関係を示すグラ
フ、第3図はパルス持続時間tHと[Fe”] / [
P]と析出相との関係を示すグラフ、第4図はt H/
 t Lと[Fe”]/[P] と析出相との関係を示
すグラフ、第5図は本実施例に用いた直流パルスの電流
パターンを示す波形図である。 ・・・パルス立ち上り時の電流密度 ・・・パルス休止時の電流密度 ・・・パルス持続時間 ・・・パルス休止時間
FIG. 1 shows the pulse duration t. Figure 2 is a graph showing the relationship between the current density □ at the pulse rise and the precipitated phase. A graph showing the relationship, Figure 3, shows the relationship between pulse duration tH and [Fe”] / [
A graph showing the relationship between P] and the precipitated phase, Figure 4 is t H/
A graph showing the relationship between t L, [Fe'']/[P] and the precipitated phase, and FIG. 5 is a waveform diagram showing the current pattern of the DC pulse used in this example. Current density...Current density at pulse rest...Pulse duration...Pulse rest time

Claims (1)

【特許請求の範囲】[Claims]  Fe−P系合金の磁性薄膜のめっき方法において、パ
ルス通電方式を採用し、該パルス通電におけるパルス立
ち上り時の電流密度I_Hを25mA/cm^2≦I_
H≦200mA/cm^2とし、パルス休止時の電流密
度I_Lを0≦I_L≦50mA/cm^2とし、また
パルス持続時間t_Hを10ms≦t_H≦200ms
に設定するとともにパルス持続時間t_Hとパルス休止
時間t_Lとの比t_H/t_Lを0.1≦t_H/t
_L≦10に設定して電解めっきを行なうことを特徴と
する磁性薄膜のめっき方法。
In the method of plating magnetic thin films of Fe-P alloys, a pulse energization method is adopted, and the current density I_H at the rise of the pulse in the pulse energization is set to 25 mA/cm^2≦I_
H≦200mA/cm^2, current density I_L during pulse rest is 0≦I_L≦50mA/cm^2, and pulse duration t_H is 10ms≦t_H≦200ms.
and set the ratio t_H/t_L of pulse duration t_H to pulse rest time t_L to 0.1≦t_H/t.
A method for plating a magnetic thin film, characterized in that electrolytic plating is performed by setting _L≦10.
JP2114990A 1990-01-30 1990-01-30 Formation of magnetic thin film by plating Pending JPH03226590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2114990A JPH03226590A (en) 1990-01-30 1990-01-30 Formation of magnetic thin film by plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114990A JPH03226590A (en) 1990-01-30 1990-01-30 Formation of magnetic thin film by plating

Publications (1)

Publication Number Publication Date
JPH03226590A true JPH03226590A (en) 1991-10-07

Family

ID=12046852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114990A Pending JPH03226590A (en) 1990-01-30 1990-01-30 Formation of magnetic thin film by plating

Country Status (1)

Country Link
JP (1) JPH03226590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404097B2 (en) * 2004-02-04 2013-03-26 The Boeing Company Process for plating a metal object with a wear-resistant coating and method of coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404097B2 (en) * 2004-02-04 2013-03-26 The Boeing Company Process for plating a metal object with a wear-resistant coating and method of coating

Similar Documents

Publication Publication Date Title
US8177926B2 (en) Amorphous Fe100-a-bPaMb alloy foil and method for its preparation
TW200401051A (en) Electroless nickel plating solutions
JP2010518252A5 (en)
EP2753731A1 (en) Electrodeposition of hard magnetic coatings
EP0293107A2 (en) An aqueous electrolytic cobalt-iron plating bath and a method of electrodeposition using same
US3518170A (en) Electrodeposition of iron group metals
JPH03226590A (en) Formation of magnetic thin film by plating
US4159926A (en) Nickel plating
US7135103B2 (en) Preparation of soft magnetic thin film
JP3201763B2 (en) Soft magnetic thin film
US3271276A (en) Electrodeposition of quaternary magnetic alloy of iron, nickel, antimony and phosphorus
JPS6310235B2 (en)
US3578571A (en) Method of electrodepositing a magnetic alloy and electrolyte therefor
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
JP4423377B2 (en) Method for producing soft magnetic thin film and soft magnetic thin film
US3073762A (en) Electrodeposition of cobalt phosphorus alloys
JPH0729734A (en) Magnetic thin film and manufacture thereof
US3202590A (en) Electrodeposition of cobalt-phosphorus alloys
JPH03226588A (en) Formation of magnetic film by plating
JPH0230790A (en) Method for electrodepositing alloy
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JP2004076026A (en) Electrolytic hard gold-plating liquid and plating method using it
JPH0649681A (en) Formation of iron-phosphorus-carbon amorphous thin film
US3506547A (en) Nickel-iron electrolytes containing hydrolyzing metal ions and process of electro-depositing ferromagnetic films
JPH02258995A (en) Formation and treatment of thin magnetic iron-phosphorus alloy film