JP2004076026A - Electrolytic hard gold-plating liquid and plating method using it - Google Patents

Electrolytic hard gold-plating liquid and plating method using it Download PDF

Info

Publication number
JP2004076026A
JP2004076026A JP2002233648A JP2002233648A JP2004076026A JP 2004076026 A JP2004076026 A JP 2004076026A JP 2002233648 A JP2002233648 A JP 2002233648A JP 2002233648 A JP2002233648 A JP 2002233648A JP 2004076026 A JP2004076026 A JP 2004076026A
Authority
JP
Japan
Prior art keywords
gold
plating
gold plating
plating solution
electrolytic hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002233648A
Other languages
Japanese (ja)
Other versions
JP3989795B2 (en
Inventor
Hiroyuki Yamaguchi
山口 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2002233648A priority Critical patent/JP3989795B2/en
Publication of JP2004076026A publication Critical patent/JP2004076026A/en
Application granted granted Critical
Publication of JP3989795B2 publication Critical patent/JP3989795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic hard gold-plating liquid having a high deposition rate, for forming a gold-plated film of which the contact resistance is not reduced even after a heat treatment such as a reflow treatment, and to provide a plating method. <P>SOLUTION: The electrolytic hard gold-plating liquid employs a soluble gold salt or a gold complex as a gold ion source, includes salts of an organic acid and/or an inorganic acid as a conducting salt, a hardener, and further a fatty alcohol. The aliphatic alcohol includes a saturated fatty alcohol having an alkyl group with a normal chain or a branching chain having 8 or less carbon atoms. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品等のめっきに用いられる電解硬質金めっき液及びめっき方法に関する。
【0002】
【従来の技術】
金めっきは、その優れた電気的特性と耐食性から電子、電気部品等の工業分野において広く利用されている。特に硬質金めっきは、高硬度、低接触抵抗であって耐摩耗性が優れているために、コネクターなどの差込部材、又はスイッチなどの接点材料に使用されている。
【0003】
通常、コネクター等の電子部品の材質は主に銅又は銅合金が使用される。銅や銅合金の電子部品に金めっきを行う場合には、銅のバリア金属としてまずニッケルめっきを行い、その上に金めっきを行っている。
【0004】
電子部品への硬質金めっき方法としては、通常、連続リールめっき、又はフープめっき方法が使用されている。これらの方法による析出速度は、一般的に1μmめっきするのに10秒前後である。
【0005】
近年、電子機器の生産増大に伴い、電子部品の生産性向上が求められており、より析出速度が速い金めっきが望まれている。
【0006】
また、コネクターには、硬質金めっきと半田めっきが施される仕様があり、この場合には硬質金めっきを行った後230℃前後でリフロー処理が入る。このために、コネクターへの金めっきは、金めっき後にリフロー処理等の加熱処理を行ってもめっき皮膜の接触抵抗が低下しにくくめっき皮膜が耐熱安定性を有する金めっきを行うことがますます重要になっている。
【0007】
【発明が解決しようとする課題】
本発明の目的は、析出速度が速く生産性に優れ、リフロー処理等の加熱処理を行ってもめっき皮膜の接触抵抗が低下しない金めっき皮膜を形成することができる電解硬質金めっき液及びめっき方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は上記課題を解決するために種々検討した結果、硬質金めっき液中に脂肪族アルコールを添加することにより、めっきが可能な電流密度範囲の最大値が高くなり、金めっき皮膜の析出速度が向上し、金めっき後に加熱処理を行っても接触抵抗が低下せず安定な接触抵抗を示すめっき皮膜が得られることを見出した。
【0009】
上記課題を解決する本発明は以下に記載するものである。
【0010】
〔1〕 金イオン源として可溶性金塩又は金錯体を用い、伝導塩として有機酸塩及び/又は無機酸塩と、硬質化剤とを含有する電解硬質金めっき液であって、脂肪族アルコールを含有することを特徴とする電解硬質金めっき液。
【0011】
〔2〕 脂肪族アルコールが炭素数8以下の直鎖又は分岐鎖のアルキル基を有する飽和脂肪族アルコールである〔1〕に記載の電解硬質金めっき液。
【0012】
〔3〕 硬質化剤がコバルト及び/又はニッケルの可溶性塩である〔1〕に記載の電解硬質金めっき液。
【0013】
〔4〕 〔1〕に記載の電解硬質金めっき液を用いて電流密度0.1〜60A/dmでめっきする電解硬質金めっき方法。
【0014】
【発明の実施の形態】
本発明で使用することができる脂肪族アルコールは公知のものであれば特に制限されないが、炭素数が8以下の直鎖又は分岐鎖のアルキル基を有する飽和脂肪族アルコールが好ましい。かかるアルコールは工業的にめっきを行うに際して水溶液に容易に溶解し均一に混合することができる。特に、飽和脂肪族アルコールのアルキル基の炭素数は4〜8がより好ましい。
【0015】
本発明において好ましく用いることができる飽和脂肪族アルコールとしては、n−ブチルアルコール、イソブチルアルコール、イソアミルアルコール、1−ヘキシルアルコール、1−へプタノ−ル、2−メチル−3−ヘキサノール、5−メチル−1−ヘキサノール、2−エチル−1−ヘキサノール等を挙げることができる。
【0016】
これらの脂肪族アルコールのめっき液に対する添加量は、めっき液に対する溶解度等により異なるが、下記の範囲内であれば微量でも十分な効果が得られ、好ましく使用することができる。またそれぞれの脂肪族アルコールの溶解度の範囲内で多量に添加しても本発明の効果が損なわれることはない。脂肪族アルコールの添加量は0.05〜100ml/lの範囲が好ましく、0.1〜10ml/lの範囲がより好ましい。
【0017】
脂肪族アルコールを金めっき液に添加すると、水素発生電位をより卑にし、電流効率の低下をまねく水素発生を抑制するとともに、金皮膜の結晶成長をコントロールし、より結晶粒が細かい緻密な金めっき皮膜を形成する。このため、金めっき皮膜の耐熱性が向上し、加熱処理後の接触抵抗が低下しない。
【0018】
本発明の金めっき液の金イオン供給源としては、可溶性の金化合物であれば何の制限もなく使用できる。入手の容易さ、めっき液への溶解性、めっき液中での金イオンの安定性の観点から、シアン化金、シアン化第一金カリウム、亜硫酸金カリウム、チオ硫酸金の金塩から選ばれるものが特に好ましい。
【0019】
また、使用する金化合物に応じて金と錯イオンを形成する錯化剤を添加して金錯体とし、金イオン供給源としてもよい。錯化剤を添加して金錯体とすることにより、金イオンの安定性を制御することができる。錯化剤は公知のものが使用できるが、エチレンジアミン、EDTA等を挙げることができる。
【0020】
金塩又は金錯体のめっき液への添加量は、金イオンとして1〜20g/lが好ましい。
【0021】
伝導塩として添加する有機酸塩及び/又は無機酸塩は、クエン酸、酒石酸等のカルボン酸等の有機酸;リン酸、亜硫酸等の無機酸のアルカリ金属塩が好ましい。またこれらの2種以上を組み合わせて使用してもよい。
伝導塩の添加量は、50〜300g/lとすることが好ましい。
【0022】
また、本発明の金めっき液は、金皮膜の硬質化のために、硬質化剤を含有させる。硬質化剤としては、公知のものを使用できるが、コバルト、ニッケルの可溶性塩を用いることが好ましい。コバルト、ニッケルの可溶性塩としては、硫酸コバルト、硫酸ニッケル、塩化コバルト、塩化ニッケル等を例示できる。これらを硬質化剤として含有する金めっき液は、金めっき皮膜の結晶粒が細かく、結晶成長に伴う転位や原子空隙が生じにくくなり、長期間にわたり、一定の金めっき皮膜の成長を維持することが容易になる。
【0023】
硬質化剤のめっき液への添加量は、コバルト、ニッケル等の金属イオンとして0.05〜5g/lとすることが好ましい。
【0024】
さらに、本発明の硬質金めっき液には上記の必須成分に加えてpH緩衝剤を添加することが好ましい。pH緩衝剤としては、ホウ酸、コハク酸、フタル酸、酒石酸、クエン酸、リン酸、亜硫酸等又はこれらの塩類を挙げることができる。pH緩衝剤はこれらの2種以上を使用してもよい。pH緩衝剤を含有させることにより、金めっき液を使用してもpHが大きく変動することがなく一定に維持することができ、長期間の使用に際して一層好ましいものとなる。pH緩衝剤の含有量は常法による。
【0025】
本発明の硬質電解金めっき液を用いて電解金めっき処理を行う場合、めっき液のpH、液温、電流密度は下記の範囲とすることが好ましい。
金めっき液のpHは、緩衝剤と伝導塩の濃度によってpH4.0〜5.0の範囲とするのが好ましい。この範囲であれば析出する金めっきの外観に異常が発生しない。また、pHが4.0未満になると、電流効率の低下が生じやすい。一方、5.0を越えると、許容電流密度範囲が狭くなり、硬質化剤がめっき膜中に取り込まれにくくなり、その結果、めっき皮膜は硬度が低下し、耐摩耗性が低下しやすい。
【0026】
金めっき液の液温は20〜80℃が好ましい。20℃未満では実質上温度制御が容易でなくめっき処理のばらつきが大きくなるため操業に適さず、80℃を越えると、操業中のめっき液の蒸発による容量減少が大きくめっき液中の各成分の濃度維持が困難になる。
【0027】
電解時の電流密度は0.1〜60A/dmが好ましい。上述のめっき液のpH値、液温、金濃度を考慮し、この範囲の電流密度で析出する金めっきの性状が良好な状態となる。
【0028】
【実施例】
以下、実施例を用いて本発明を更に詳細に説明する。
【0029】
実施例1〜12
シアン化金カリウム(金として15g/l)、クエン酸三カリウム100g/l、リン酸水素二カリウム30g/l、硫酸コバルト(コバルトとして0.5g/l)を含む金めっき液に、表1に示す各種の脂肪族アルコールを添加し、pH4.5に調整した液500mlを温度60℃に維持した状態で、直径6mmのノズルから陰極(被めっき物)に向けて、めっき液を約5m/minで吹きつけながらめっきする構造からなる噴流式金めっき装置を用いて、1μm厚の金めっきを行い、その際に使用可能な最大電流密度範囲、析出速度を調べた。また、電流密度30A/dmにおいてめっきした皮膜の接触抵抗値を測定した。
【0030】
接触抵抗の測定は、白金製プローブを用いた4探針法により行い、MS−980型接触抵抗測定器(ケイエス部品研究所製)にて測定電流1mA、測定荷重10gの条件で測定した。
【0031】
その結果、すべての実施例において、電流密度60A/dmまでめっき可能であり、皮膜外観は良好で、最高析出速度は、6−7sec/μmを示した。また、接触抵抗値は耐熱前15〜17mΩ、230℃で30分間加熱後は22〜29mΩであり、加熱処理後も安定した接触抵抗値を示した。
【0032】
比較例1
比較として、シアン化金カリウム(金として15g/l)、クエン酸三カリウム100g/l、リン酸水素二カリウム30g/l、硫酸コバルト(コバルトとして0.5g/l)のみを含む金めっき液500mlを、水酸化カリウム水溶液でpH4.5に調整した後、温度60℃に維持した状態で、噴流式金めっき装置を用いて、1μm厚の金めっきを行い、その際に使用可能な最大電流密度範囲、析出速度を調べた。また、電流密度30A/dmにおいて得られためっき皮膜の接触抵抗値を測定した。
【0033】
その結果、良好な皮膜外観が得られる最大の電流密度は30A/dmであり、40A/dm以上ではムラ状の不均一な皮膜外観となった。このめっき液の最高析出速度は、10sec/μmを示した。また、このめっき皮膜の接触抵抗値は耐熱前17mΩで実施例と同等だったが、230℃で30分間加熱した後は110mΩと急激に上昇し、電気特性が劣化することを示した。
【0034】
脂肪族アルコールを添加した場合(実施例1〜実施例12)と添加しない場合(比較例1)とを比較すると、使用可能な電流密度範囲、析出速度、加熱処理前後での接触抵抗値の安定性(耐熱性)のいずれにおいても脂肪族アルコールを添加した実施例の方が優れていることが確認された。また、脂肪族アルコールの添加量については、0.1ml/l、1.0ml/lの両方においてその効果が十分且つ同等に発現し、微量でも顕著な効果があることが判明した。
【0035】
【表1】

Figure 2004076026
【0036】
【発明の効果】
本発明の電解硬質金めっき液及びめっき方法によれば、めっき可能な電流密度範囲が広く最大電流密度が高いため、めっき皮膜の析出速度が速く生産性が向上する。さらに、めっき後加熱処理を行っても接触抵抗が低下せず、耐熱安定性が高い金めっき皮膜を形成することができる。
【0037】
本発明は、特にコネクター、接点材料等の電子、電気機器用部品の表面処理に適したものであるが、これに限られるものではなく装飾などの分野においても有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic hard gold plating solution and a plating method used for plating electronic parts and the like.
[0002]
[Prior art]
Gold plating is widely used in industrial fields such as electronics and electrical components due to its excellent electrical properties and corrosion resistance. In particular, hard gold plating is used for a plug-in member such as a connector or a contact material such as a switch because of its high hardness, low contact resistance, and excellent wear resistance.
[0003]
Usually, copper or a copper alloy is mainly used as a material of an electronic component such as a connector. When gold plating is performed on a copper or copper alloy electronic component, nickel plating is first performed as a copper barrier metal, and then gold plating is performed thereon.
[0004]
As a hard gold plating method for an electronic component, a continuous reel plating method or a hoop plating method is usually used. The deposition rate by these methods is generally around 10 seconds for plating 1 μm.
[0005]
In recent years, with the increase in production of electronic devices, there has been a demand for an improvement in the productivity of electronic components, and gold plating with a higher deposition rate has been desired.
[0006]
Further, the connector has a specification in which hard gold plating and solder plating are applied. In this case, reflow treatment is performed at about 230 ° C. after hard gold plating is performed. For this reason, it is increasingly important that the gold plating on the connector does not reduce the contact resistance of the plating film even if heat treatment such as reflow treatment is performed after the gold plating, and the plating film has heat resistance stability. It has become.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrolytic hard gold plating solution and a plating method capable of forming a gold plating film having a high deposition rate and excellent productivity, and having a reduced contact resistance of the plating film even when subjected to a heat treatment such as a reflow treatment. Is to provide.
[0008]
[Means for Solving the Problems]
The present inventor has conducted various studies to solve the above-described problems, and as a result of adding an aliphatic alcohol to the hard gold plating solution, the maximum value of the current density range in which plating can be performed is increased, and deposition of a gold plating film is performed. It has been found that the speed is improved, and even if a heat treatment is performed after gold plating, a plated film exhibiting stable contact resistance without reducing the contact resistance can be obtained.
[0009]
The present invention that solves the above-mentioned problems is described below.
[0010]
[1] An electrolytic hard gold plating solution containing a soluble gold salt or a gold complex as a gold ion source, an organic acid salt and / or an inorganic acid salt as a conductive salt, and a hardening agent, wherein an aliphatic alcohol is used. An electrolytic hard gold plating solution characterized by containing.
[0011]
[2] The electrolytic hard gold plating solution according to [1], wherein the aliphatic alcohol is a saturated aliphatic alcohol having a linear or branched alkyl group having 8 or less carbon atoms.
[0012]
[3] The electrolytic hard gold plating solution according to [1], wherein the hardening agent is a soluble salt of cobalt and / or nickel.
[0013]
[4] An electrolytic hard gold plating method of plating at a current density of 0.1 to 60 A / dm 2 using the electrolytic hard gold plating solution according to [1].
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The aliphatic alcohol that can be used in the present invention is not particularly limited as long as it is a known one, but a saturated aliphatic alcohol having a linear or branched alkyl group having 8 or less carbon atoms is preferable. Such an alcohol can be easily dissolved in an aqueous solution and uniformly mixed when performing industrial plating. Particularly, the alkyl group of the saturated aliphatic alcohol preferably has 4 to 8 carbon atoms.
[0015]
As the saturated aliphatic alcohol which can be preferably used in the present invention, n-butyl alcohol, isobutyl alcohol, isoamyl alcohol, 1-hexyl alcohol, 1-heptanol, 2-methyl-3-hexanol, 5-methyl- Examples thereof include 1-hexanol and 2-ethyl-1-hexanol.
[0016]
The amount of the aliphatic alcohol to be added to the plating solution varies depending on the solubility in the plating solution and the like. The effect of the present invention is not impaired even if a large amount is added within the range of the solubility of each aliphatic alcohol. The addition amount of the aliphatic alcohol is preferably in the range of 0.05 to 100 ml / l, more preferably in the range of 0.1 to 10 ml / l.
[0017]
When an aliphatic alcohol is added to the gold plating solution, the hydrogen generation potential becomes lower, and the generation of hydrogen, which leads to a decrease in current efficiency, is suppressed, and the crystal growth of the gold film is controlled, and the finer grains are finer and denser. Form a film. Therefore, the heat resistance of the gold plating film is improved, and the contact resistance after the heat treatment does not decrease.
[0018]
As a gold ion supply source of the gold plating solution of the present invention, any soluble gold compound can be used without any limitation. From the viewpoints of availability, solubility in the plating solution, and stability of gold ions in the plating solution, selected from gold cyanide, potassium potassium cyanide, potassium potassium sulfite, and gold salts of gold thiosulfate. Those are particularly preferred.
[0019]
Further, a complexing agent which forms complex ions with gold according to the gold compound used may be added to form a gold complex, which may be used as a gold ion supply source. By adding a complexing agent to form a gold complex, the stability of gold ions can be controlled. A known complexing agent can be used, and examples thereof include ethylenediamine and EDTA.
[0020]
The amount of the gold salt or gold complex added to the plating solution is preferably 1 to 20 g / l as gold ions.
[0021]
The organic acid salt and / or inorganic acid salt to be added as a conductive salt is preferably an organic acid such as a carboxylic acid such as citric acid or tartaric acid; or an alkali metal salt of an inorganic acid such as phosphoric acid or sulfurous acid. Also, two or more of these may be used in combination.
The addition amount of the conductive salt is preferably 50 to 300 g / l.
[0022]
Further, the gold plating solution of the present invention contains a hardening agent for hardening the gold film. Known hardening agents can be used, but it is preferable to use soluble salts of cobalt and nickel. Examples of the soluble salts of cobalt and nickel include cobalt sulfate, nickel sulfate, cobalt chloride, nickel chloride and the like. A gold plating solution containing these as a hardening agent has a fine crystal grain of the gold plating film, makes it difficult for dislocations and atomic vacancies to occur due to crystal growth, and maintains a constant growth of the gold plating film for a long time. Becomes easier.
[0023]
The amount of the hardening agent added to the plating solution is preferably 0.05 to 5 g / l as metal ions such as cobalt and nickel.
[0024]
Further, it is preferable to add a pH buffer to the hard gold plating solution of the present invention in addition to the above essential components. Examples of the pH buffer include boric acid, succinic acid, phthalic acid, tartaric acid, citric acid, phosphoric acid, sulfurous acid and the like, and salts thereof. Two or more of these pH buffers may be used. By containing a pH buffer, the pH can be kept constant without a large fluctuation even when a gold plating solution is used, which is more preferable for long-term use. The content of the pH buffer is determined by a conventional method.
[0025]
When performing the electrolytic gold plating treatment using the hard electrolytic gold plating solution of the present invention, it is preferable that the pH, the solution temperature, and the current density of the plating solution be in the following ranges.
The pH of the gold plating solution is preferably in the range of 4.0 to 5.0 depending on the concentrations of the buffer and the conductive salt. Within this range, no abnormality occurs in the appearance of the deposited gold plating. If the pH is less than 4.0, the current efficiency tends to decrease. On the other hand, if it exceeds 5.0, the allowable current density range becomes narrow, and it becomes difficult for the hardening agent to be taken into the plating film. As a result, the plating film tends to have low hardness and low wear resistance.
[0026]
The temperature of the gold plating solution is preferably from 20 to 80C. If the temperature is less than 20 ° C., the temperature control is practically not easy, and the plating process becomes uneven, so that it is not suitable for the operation. If the temperature exceeds 80 ° C., the volume decrease due to the evaporation of the plating solution during the operation is large, and It becomes difficult to maintain the concentration.
[0027]
The current density during electrolysis is preferably 0.1 to 60 A / dm 2 . In consideration of the pH value, the solution temperature, and the gold concentration of the above-mentioned plating solution, the properties of the gold plating deposited at a current density in this range are good.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0029]
Examples 1 to 12
Table 1 shows a gold plating solution containing potassium potassium cyanide (15 g / l as gold), tripotassium citrate 100 g / l, dipotassium hydrogen phosphate 30 g / l, and cobalt sulfate (0.5 g / l as cobalt). The following various aliphatic alcohols were added, and while maintaining 500 ml of the solution adjusted to pH 4.5 at a temperature of 60 ° C., the plating solution was sprayed at about 5 m / min from a nozzle having a diameter of 6 mm toward a cathode (plate). Using a jet-type gold plating apparatus having a structure in which plating is performed while spraying, gold plating having a thickness of 1 μm was performed, and the maximum current density range and deposition rate usable at that time were examined. Further, the contact resistance value of the plated film at a current density of 30 A / dm 2 was measured.
[0030]
The contact resistance was measured by a four-probe method using a platinum probe, and was measured with an MS-980 type contact resistance measuring device (manufactured by KS Components) under the conditions of a measurement current of 1 mA and a measurement load of 10 g.
[0031]
As a result, in all the examples, plating was possible up to a current density of 60 A / dm 2 , the film appearance was good, and the maximum deposition rate was 6-7 sec / μm. In addition, the contact resistance value was 15 to 17 mΩ before heat resistance, and 22 to 29 mΩ after heating at 230 ° C. for 30 minutes, showing a stable contact resistance value even after the heat treatment.
[0032]
Comparative Example 1
For comparison, gold plating solution containing only potassium potassium cyanide (15 g / l as gold), tripotassium citrate 100 g / l, dipotassium hydrogen phosphate 30 g / l, and cobalt sulfate (0.5 g / l as cobalt) only 500 ml Was adjusted to pH 4.5 with an aqueous solution of potassium hydroxide, and then, while maintaining the temperature at 60 ° C., a 1 μm-thick gold plating was performed using a jet-type gold plating apparatus. The range and deposition rate were examined. Further, the contact resistance value of the plating film obtained at a current density of 30 A / dm 2 was measured.
[0033]
As a result, the maximum current density at which a good film appearance was obtained was 30 A / dm 2 , and at 40 A / dm 2 or more, the film appearance became uneven and uneven. The maximum deposition rate of this plating solution was 10 sec / μm. The contact resistance value of this plating film was 17 mΩ before heat resistance, which was equivalent to that of the example. However, after heating at 230 ° C. for 30 minutes, the contact resistance value sharply increased to 110 mΩ, indicating that the electrical characteristics were deteriorated.
[0034]
When the case where the aliphatic alcohol is added (Examples 1 to 12) and the case where it is not added (Comparative Example 1) are compared, the usable current density range, the deposition rate, and the stability of the contact resistance value before and after the heat treatment are compared. It was confirmed that the examples in which the aliphatic alcohol was added were superior in all of the properties (heat resistance). Regarding the amount of the aliphatic alcohol to be added, the effect was sufficiently and equally exhibited at both 0.1 ml / l and 1.0 ml / l.
[0035]
[Table 1]
Figure 2004076026
[0036]
【The invention's effect】
According to the electrolytic hard gold plating solution and the plating method of the present invention, the current density range in which plating is possible is wide and the maximum current density is high, so that the deposition rate of the plating film is high and the productivity is improved. Furthermore, even if a heat treatment is performed after plating, the contact resistance does not decrease and a gold plating film having high heat stability can be formed.
[0037]
INDUSTRIAL APPLICABILITY The present invention is particularly suitable for surface treatment of components for electronic and electric devices such as connectors and contact materials, but is not limited thereto, and is also useful in the field of decoration and the like.

Claims (4)

金イオン源として可溶性金塩又は金錯体を用い、伝導塩として有機酸塩及び/又は無機酸塩と、硬質化剤とを含有する電解硬質金めっき液であって、脂肪族アルコールを含有することを特徴とする電解硬質金めっき液。An electrolytic hard gold plating solution containing a soluble gold salt or a gold complex as a gold ion source, an organic acid salt and / or an inorganic acid salt as a conductive salt, and a hardening agent, and containing an aliphatic alcohol. Electrolytic hard gold plating solution. 脂肪族アルコールが炭素数8以下の直鎖又は分岐鎖のアルキル基を有する飽和脂肪族アルコールである請求項1に記載の電解硬質金めっき液。The electrolytic hard gold plating solution according to claim 1, wherein the aliphatic alcohol is a saturated aliphatic alcohol having a linear or branched alkyl group having 8 or less carbon atoms. 硬質化剤がコバルト及び/又はニッケルの可溶性塩である請求項1に記載の電解硬質金めっき液。The electrolytic hard gold plating solution according to claim 1, wherein the hardening agent is a soluble salt of cobalt and / or nickel. 請求項1に記載の電解硬質金めっき液を用いて電流密度0.1〜60A/dmでめっきする電解硬質金めっき方法。An electrolytic hard gold plating method for plating using the electrolytic hard gold plating solution according to claim 1 at a current density of 0.1 to 60 A / dm 2 .
JP2002233648A 2002-08-09 2002-08-09 Electrolytic hard gold plating solution and plating method using the same Expired - Fee Related JP3989795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233648A JP3989795B2 (en) 2002-08-09 2002-08-09 Electrolytic hard gold plating solution and plating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233648A JP3989795B2 (en) 2002-08-09 2002-08-09 Electrolytic hard gold plating solution and plating method using the same

Publications (2)

Publication Number Publication Date
JP2004076026A true JP2004076026A (en) 2004-03-11
JP3989795B2 JP3989795B2 (en) 2007-10-10

Family

ID=32018727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233648A Expired - Fee Related JP3989795B2 (en) 2002-08-09 2002-08-09 Electrolytic hard gold plating solution and plating method using the same

Country Status (1)

Country Link
JP (1) JP3989795B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023324A (en) * 2005-07-14 2007-02-01 Kanto Chem Co Inc Electroless hard gold plating liquid
JP2007070730A (en) * 2005-09-07 2007-03-22 Rohm & Haas Electronic Materials Llc Metal duplex and method
JP2007092156A (en) * 2005-09-30 2007-04-12 Ne Chemcat Corp Non-cyanogen based gold electroplating bath for forming bump
JP4719822B2 (en) * 2008-06-11 2011-07-06 日本高純度化学株式会社 Electrolytic gold plating solution and gold film obtained using the same
DE112010000791T5 (en) 2009-02-17 2012-07-26 Kanto Kagaku K.K. MIXED-MICROCRYSTALLINE-AMORPHIC GOLD ALLOYING OF ELECTROCHEMICALLY DISPOSED FILM AND BATHING SOLUTION, AND METHOD FOR PRODUCING AN ELECTROCHEMICALLY DISPOSED FILM THEREFOR

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023324A (en) * 2005-07-14 2007-02-01 Kanto Chem Co Inc Electroless hard gold plating liquid
JP2007070730A (en) * 2005-09-07 2007-03-22 Rohm & Haas Electronic Materials Llc Metal duplex and method
JP2007092156A (en) * 2005-09-30 2007-04-12 Ne Chemcat Corp Non-cyanogen based gold electroplating bath for forming bump
KR101319745B1 (en) 2005-09-30 2013-10-17 메타로 테쿠노로지 쟈판 가부시키가이샤 Non-cyanogen type electrolytic gold plating bath for bump forming
JP4719822B2 (en) * 2008-06-11 2011-07-06 日本高純度化学株式会社 Electrolytic gold plating solution and gold film obtained using the same
DE112010000791T5 (en) 2009-02-17 2012-07-26 Kanto Kagaku K.K. MIXED-MICROCRYSTALLINE-AMORPHIC GOLD ALLOYING OF ELECTROCHEMICALLY DISPOSED FILM AND BATHING SOLUTION, AND METHOD FOR PRODUCING AN ELECTROCHEMICALLY DISPOSED FILM THEREFOR

Also Published As

Publication number Publication date
JP3989795B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP4945193B2 (en) Hard gold alloy plating solution
TW200401051A (en) Electroless nickel plating solutions
US5552031A (en) Palladium alloy plating compositions
TWI452179B (en) Gold plating solution
JP6591444B2 (en) Norcyan electrolytic gold plating solution and gold plating method
JP4885954B2 (en) Electroless pure palladium plating solution
JP3989795B2 (en) Electrolytic hard gold plating solution and plating method using the same
JP2019214747A (en) Non-cyanide gold plating electrolytic solution
JP2018009227A (en) Electrolytic palladium silver alloy plated film and electrolytic plating liquid for forming the same
JP2004512429A (en) Lead-free chemical nickel alloy
JP5363142B2 (en) Method for forming tin plating film
JP5025815B1 (en) Hard gold plating solution
JP4230813B2 (en) Gold plating solution
JP3227505B2 (en) Substitution type electroless gold plating solution
JP2004190093A (en) Displacement electroless gold plating bath
JP5602790B2 (en) Electroless plating bath and electroless plating film
JP2014047394A (en) Non-cyanogen system gold-palladium alloy plating solution and plating method
KR20220010038A (en) Tin plating bath and method for depositing tin or tin alloy on the surface of a substrate
KR101392627B1 (en) Electrolytic hard gold plating solution, plating method, and method for manufacturing gold-iron alloy coating
JPH06104902B2 (en) Electroless copper nickel alloy plating method
JP2014139348A (en) Hard gold-based plating solution
JP3741709B1 (en) Method for forming Sn-Ag-Cu ternary alloy thin film
JP5687667B2 (en) Cyanide gold-palladium alloy plating solution and plating method
JP2003096575A (en) Electroless gold plating liquid and electroless gold plating method
JPH11256390A (en) Tin-silver alloy electroplating bath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees