JPH03226555A - Film formation on plastic substrate - Google Patents

Film formation on plastic substrate

Info

Publication number
JPH03226555A
JPH03226555A JP1982390A JP1982390A JPH03226555A JP H03226555 A JPH03226555 A JP H03226555A JP 1982390 A JP1982390 A JP 1982390A JP 1982390 A JP1982390 A JP 1982390A JP H03226555 A JPH03226555 A JP H03226555A
Authority
JP
Japan
Prior art keywords
vapor deposition
film
chamber
ultraviolet rays
plastic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1982390A
Other languages
Japanese (ja)
Inventor
Nobuaki Mitamura
宣明 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1982390A priority Critical patent/JPH03226555A/en
Publication of JPH03226555A publication Critical patent/JPH03226555A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a sound and dense film excellent in adhesive strength and durability by irradiating a plastic substrate with ultraviolet rays and an ion beam before vapor deposition or before vapor deposition and in the course of vapor deposition at the time of forming a film by a vacuum deposition method. CONSTITUTION:For example, an acrylic lens 2, as a substrate, is attached to a rotary dome 4 in a vapor deposition chamber 3 in a vacuum deposition apparatus 1, and a low pressure mercury lamp 7 in the chamber 3 is lighted for >=1min, by which the whole surface of the dome 4 and the whole internal wall of the chamber 3 are diffusedly irradiated with ultraviolet rays. Subsequently, the inside of the chamber 3 is evacuated, and, when a degree of vacuum of <=1X10<-1>Torr is reached, the mercury lamp 7 is extinguished. When the degree of vacuum in the chamber 3 becomes <=1X10<-5>Torr, the mercury lamp 7 is lighted again, and simultaneously, ion beam irradiation from an ion gun 8 and neutralization electron beam irradiation from a neutralizer 9 are carried out for >=1min, respectively. Then, a vapor deposition material 5 of MgF2 is vapor-deposited onto the surface of the lens 2 by an electron beam vapor deposition method by means of an electron gun 6 and formed into a film. Owing to the above- mentioned irradiation with the ultraviolet rays and the ion beam, impurities can be removed from the substrate surface and this substrate surface can be activated, and the purposes can be accomplished.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプラスチック基板に薄膜を形成する方法、特に
薄膜の耐久性および付着力を高めるためのプラスチック
基板への成膜方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of forming a thin film on a plastic substrate, and particularly to a method of forming a thin film on a plastic substrate in order to improve the durability and adhesion of the thin film.

3従来の技術〕 近年、レンズ、ミラー、プリズム等の光学部品の素材と
して無機ガラスに代えてプラスチックが多(用いられる
ようになってきている。その主な理由は軽量かつ低コス
トで製作することができ、また形状の自由度が大きいと
いう利点があるからである。また、かかる利点を有する
ことから、最近では光学部品以外の各種部品にも幅広く
利用されつつある。
3. Prior Art] In recent years, plastics have been increasingly used instead of inorganic glass as materials for optical parts such as lenses, mirrors, and prisms.The main reason for this is that they can be manufactured at low weight and low cost. This is because it has the advantage of being able to form a shape and having a high degree of freedom in shape.Also, due to these advantages, it has recently been widely used for various parts other than optical parts.

ところが、これらプラスチックにて構成した部品は、ガ
ラスや金属に比して耐摩耗性、耐摩擦性が劣るため、何
等かの表面処理を施さないと、実用上多くの問題がある
。特に、プラスチックを光学部品として使用する場合に
は、光学ガラスの場合と同様に光学薄膜を成膜する必要
がある。光学ガラスの場合には、加熱した光学ガラスに
薄膜を蒸着させることができるので、光学ガラスと光学
薄膜との密着性は良好であるが、一方プラスチックの場
合には、基板を加熱させて蒸着を行うことが困難なため
、プラスチック基板に対する薄膜の付着力、密着性が悪
くなり、耐久性が劣るという問題があった。
However, parts made of these plastics have inferior abrasion resistance and friction resistance compared to glass or metal, and therefore pose many practical problems unless some kind of surface treatment is applied. In particular, when plastic is used as an optical component, it is necessary to form an optical thin film as in the case of optical glass. In the case of optical glass, the thin film can be deposited on heated optical glass, so the adhesion between the optical glass and the optical thin film is good; however, in the case of plastic, the deposition can be done by heating the substrate. Since it is difficult to perform this process, there has been a problem that the adhesion and adhesion of the thin film to the plastic substrate are poor, resulting in poor durability.

そこで、かかる問題点を解決するために、Si0ZrO
□、 MgF、等をプラスチック基板と接する層に用い
る方法、有機物質をスピンコード、デイ、プコート等の
手段によりプライマー層として形成し、その上に誘電体
膜を蒸着する方法が提案されている。また、蒸着前にプ
ラスチック基板表面にプラスチ、り処理を施して表面改
質を行う方法が特開昭63−20073号公報に開示さ
れている。さらに、硬く密着性に優れたフン化物被膜を
低温下に形成するために基板表面にイオンビームを照射
する方法が特開昭6111503号公報に開示されてい
る。
Therefore, in order to solve this problem, Si0ZrO
A method of using □, MgF, etc. as a layer in contact with a plastic substrate, and a method of forming an organic material as a primer layer by spin-coating, dipping, plating, etc., and depositing a dielectric film thereon have been proposed. Furthermore, Japanese Patent Laid-Open No. 63-20073 discloses a method of surface modification by subjecting the surface of a plastic substrate to a plastinizing treatment before vapor deposition. Further, Japanese Patent Laid-Open No. 6111503 discloses a method of irradiating the surface of a substrate with an ion beam in order to form a hard fluoride film with excellent adhesion at low temperatures.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の成膜方法では、第1層目に蒸着し得る材
料がSiO2等に限定されるため、光学薄膜を設計する
上で所望の特性を満たすことが極めて困難になるという
共通した問題点があった。また、プライマー層等の有機
材料を使用した前処理法では、液の管理や、作業環境等
に十分な注意を払わなければ、良好な再現性を得ること
ができず、さらに茅着前に複雑な工程があり、コスト面
や歩留り面から不利になる欠点がある。その上、基板表
面のプラズマ処理は、チャンバー内の汚れにより該表面
が逆に汚染される恐れがあるため、良好な手段と言えな
い。さらに、基板表面にイオンビームを照射しながら成
膜する方法においては、特にプラスチック基板の場合、
膜と基板との間の密着性が十分とは言えず、実用に耐え
得るものでなかった。
In the conventional film forming method described above, the materials that can be deposited in the first layer are limited to SiO2, etc., so a common problem is that it is extremely difficult to satisfy desired characteristics when designing an optical thin film. was there. In addition, with pretreatment methods that use organic materials such as a primer layer, good reproducibility cannot be obtained unless sufficient attention is paid to liquid management and the working environment, and furthermore, it is difficult to obtain a There are many steps involved, and there are disadvantages in terms of cost and yield. Moreover, plasma treatment of the substrate surface is not a good method because the surface may be contaminated by contamination within the chamber. Furthermore, in the method of forming a film while irradiating the substrate surface with an ion beam, especially in the case of a plastic substrate,
The adhesion between the film and the substrate was not sufficient and could not be put to practical use.

本発明、上記従来技術の問題点を解消せんとするもので
、プラスチック基板に対し良好な密着性、耐久性を有し
、ガラス素材への成膜と同様の性質を有する薄膜をプラ
スチック基板上に成膜する方法を提供せんとするにある
The present invention aims to solve the above-mentioned problems of the conventional technology by forming a thin film on a plastic substrate, which has good adhesion and durability, and has properties similar to those formed on a glass material. The purpose is to provide a method for forming a film.

〔課題を解決するための手段および作用〕すなわち、本
発明はプラスチック基板に真空蒸着により成膜を行うに
際し、蒸着前または蒸着前から蒸着中に前記プラスチッ
ク基板の表面に紫外線およびイオンビームを照射するこ
とを特徴とするプラスチック基板への成膜方法にある。
[Means and effects for solving the problem] That is, when forming a film on a plastic substrate by vacuum evaporation, the present invention irradiates the surface of the plastic substrate with ultraviolet rays and an ion beam before or during the evaporation. A method for forming a film on a plastic substrate is characterized by the following.

本発明の好適例においては、Otガスを1xlO−5T
orr以下の低い分圧で蕉着室に導入しながら紫外線お
よびイオンビームを照射する。
In a preferred embodiment of the present invention, the Ot gas is 1xlO-5T
Ultraviolet rays and ion beams are irradiated while being introduced into the drying room at a low partial pressure of less than orr.

本発明の方法によれば、プラスチック基板表面に吸着さ
れた機械油や、人体等からの油脂等からなるを機不純物
を、紫外線の高いエネルギーによる分解作用と、紫外線
によって発生したオゾンの強力な酸化作用と、イオンビ
ームの持つスパッタリング作用との相乗効果により極め
て効率良く分解、除去することができる。また、無機物
質からなる不純物はイオンビームのスパッタリング作用
で除去することができる。その上、プラスチック基板表
面を構成する分子の化学結合を紫外線の高いエネルギー
により切断し、切断された分子鎖にカルボニル基、カル
ボキシル基等の官能基を発生させて表面を活性化させる
こともできる。
According to the method of the present invention, mechanical impurities such as machine oil and fats from the human body adsorbed on the surface of plastic substrates are decomposed by the high energy of ultraviolet rays and strong oxidation of ozone generated by ultraviolet rays. The synergistic effect of this action and the sputtering action of the ion beam allows extremely efficient decomposition and removal. Further, impurities made of inorganic substances can be removed by sputtering action of an ion beam. Furthermore, it is also possible to activate the surface by cleaving the chemical bonds of molecules constituting the surface of the plastic substrate using high-energy ultraviolet rays and generating functional groups such as carbonyl groups and carboxyl groups in the cut molecular chains.

さらに、蒸着中に紫外線およびイオンビームを照射した
際には、紫外線の持つ高いエネルギーと、イオンビーム
による適度なイオン衝撃とが相まって蒸着粒子の基板表
面上の移動度を増幅させ、結晶槙成長を促進して膜形成
の初期過程に有効に作用するばかりか、膜形成の全過程
において結合の弱い部分に除去したり、欠陥の多い構造
をたたき直しては密な膜形成を促進せしめることができ
る。
Furthermore, when ultraviolet rays and ion beams are irradiated during vapor deposition, the high energy of the ultraviolet rays and moderate ion bombardment from the ion beam combine to amplify the mobility of the evaporated particles on the substrate surface, resulting in crystalline growth. Not only does it have an effective effect on the initial process of film formation, but it can also promote the formation of a dense film by removing weak bonds and reworking structures with many defects during the entire process of film formation. .

したがって、本発明によれば、プラスチック基板表面か
ら健全な膜形成を妨げる不純物を除去することができる
ばかりでなく、プラスチック基板を活性化するので、蒸
着材料の種類によらず、蒸着粒子の基板への結合力が増
大し、かつ健全で緻密な膜形成が行われ、結果的にプラ
スチック基板と膜との密着性および耐久性が優れたもの
になる。
Therefore, according to the present invention, it is possible not only to remove impurities that prevent healthy film formation from the surface of a plastic substrate, but also to activate the plastic substrate, so that irrespective of the type of evaporation material, it is possible to remove evaporation particles from the substrate. The bonding strength of the plastic substrate increases, and a healthy and dense film is formed, resulting in excellent adhesion and durability between the plastic substrate and the film.

〔実施例〕 以下、本発明の実施例を図面を参照して詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係るプラスチック1&板へ成膜方法を
実施するのに用いる装置(真空蒸着装置)1を示す。
FIG. 1 shows an apparatus (vacuum evaporation apparatus) 1 used for carrying out the method of forming films on plastics 1 and plates according to the present invention.

第1図において、2は表面に薄膜を蒸着すべきプラスチ
ック基板で、図示例(第1実施例)では成形されたアク
リルレンズである。このアクリルレンズ2は真空蒸着装
置1における真空蒸着チャンバー3内に配置された回転
ドーム4に取り付けである。5は蒸着材料で第1実施例
ではMgF、を用いる。6は蒸着材料5を加熱蒸発させ
るための電子銃である。7は低圧水銀灯で、ドーム4の
全面に紫外線を照射することができる。8はイオン銃で
、ドーム4の全面にイオンビームを照射することができ
る。9はイオン銃8から照射されたイオンビームを電気
的に中和して絶縁基板のチャーシア、プを防ぐための電
子ビームを発生させる電子銃(以下ニュートラライザ−
と称する)である。
In FIG. 1, reference numeral 2 denotes a plastic substrate on which a thin film is to be deposited, and in the illustrated example (first embodiment), it is a molded acrylic lens. This acrylic lens 2 is attached to a rotating dome 4 placed in a vacuum deposition chamber 3 in a vacuum deposition apparatus 1. 5 is a vapor deposition material, and MgF is used in the first embodiment. 6 is an electron gun for heating and vaporizing the vapor deposition material 5; 7 is a low-pressure mercury lamp, which can irradiate the entire surface of the dome 4 with ultraviolet rays. Reference numeral 8 denotes an ion gun, which can irradiate the entire surface of the dome 4 with an ion beam. Reference numeral 9 denotes an electron gun (hereinafter referred to as a neutralizer) that generates an electron beam to electrically neutralize the ion beam irradiated from the ion gun 8 and prevent char shear and damage to the insulating substrate.
).

次に、MgP、の薄膜をアクリルレンズ2上に第1図の
装置1により成膜する方法を説明する。
Next, a method for forming a thin film of MgP on the acrylic lens 2 using the apparatus 1 shown in FIG. 1 will be described.

まず、アクリルレンズ2を回転ドーム4に取り付け、低
圧水銀灯7を点灯する。この低圧水銀灯7から発生した
紫外線は拡散して回転ドーム4の全面ならびに真空蒸着
チャンバー3の内壁全体を照射する。低圧水銀灯7は真
空蒸着チャンバー3内に3灯配備され、その各出力は5
00Wである。
First, the acrylic lens 2 is attached to the rotating dome 4, and the low-pressure mercury lamp 7 is turned on. The ultraviolet rays generated from the low-pressure mercury lamp 7 are diffused and irradiate the entire surface of the rotating dome 4 and the entire inner wall of the vacuum deposition chamber 3. Three low-pressure mercury lamps 7 are installed in the vacuum evaporation chamber 3, each with an output of 5.
It is 00W.

これら低圧水銀灯7を1分以上点灯した後、真空茶着チ
ャンバー3内を排気する。該真空y着チャンバー内の真
空度がI Xl0−5Torr以下になった時、低圧水
銀灯7を消灯する。
After lighting these low-pressure mercury lamps 7 for one minute or more, the inside of the vacuum browning chamber 3 is evacuated. When the degree of vacuum in the vacuum deposition chamber becomes less than IXl0-5 Torr, the low-pressure mercury lamp 7 is turned off.

低圧水銀灯7の照射後、真空蒸着チャンバー3内の真空
度がI X 10−5Torr以下になった際に、低圧
水銀灯7を再び点灯し、同時にイオン銃8からイオンビ
ームを、またニュートラライザ−9から中和電子ビーム
をそれぞれ1分以上照射する。イオン銃8から発生した
イオンビームは回転ドーム4の全面に拡散照射される。
After irradiation with the low-pressure mercury lamp 7, when the degree of vacuum in the vacuum evaporation chamber 3 becomes less than I x 10-5 Torr, the low-pressure mercury lamp 7 is turned on again, and at the same time, the ion beam is emitted from the ion gun 8 and the neutralizer 9 irradiate each with a neutralizing electron beam for at least 1 minute. The ion beam generated from the ion gun 8 is diffusely irradiated onto the entire surface of the rotating dome 4.

イオン銃8は熱陰極電子面11(Kaufman)型で
あり、イオン源としてArガスを用いる。また、イオン
の加速電圧を500v以下、加速を流を60mA以下に
設定し、さらにアクリルレンズ2の面上での電流密度が
7.5#A/c4以下になるように調整されている。ニ
ュトラライザ−9の1tfL値は、アクリルレンズ2の
面がチャージアップしないよう5A以上に設定されてい
る。
The ion gun 8 is a hot cathode electron surface 11 (Kaufman) type, and uses Ar gas as an ion source. Further, the ion acceleration voltage is set to 500 V or less, the acceleration current is set to 60 mA or less, and the current density on the surface of the acrylic lens 2 is adjusted to be 7.5 #A/c4 or less. The 1tfL value of the neutralizer 9 is set to 5A or more so that the surface of the acrylic lens 2 is not charged up.

このようにして紫外線およびイオンビームを照射した後
、MgF、の蒸着材料5を電子銃6による電子ビーム蒸
着法でアクリルレンズ2の表面上に蒸着し、成膜させる
After irradiating ultraviolet rays and ion beams in this manner, a vapor deposition material 5 of MgF is vapor-deposited on the surface of the acrylic lens 2 by an electron beam vapor deposition method using an electron gun 6 to form a film.

上記工程により成膜したアクリルレンズ2上のMgFz
llの性能を調べるため、引掻試験、テープ剥層試験を
MgF、成膜面に対して行い、十分実用化に耐えること
を確認した。さらに、−30°C〜80℃の各条件下で
200時間の耐久試験を行った後、上記と同様な試験を
行っても、全く問題は生じなかった。
MgFz on the acrylic lens 2 formed by the above process
In order to investigate the performance of 11, scratch tests and tape peeling tests were conducted on the MgF film-formed surface, and it was confirmed that it was sufficiently durable for practical use. Furthermore, after carrying out a 200 hour durability test under various conditions of -30°C to 80°C, no problems occurred even when the same tests as above were carried out.

かかる効果を生ずるメカニズムについて以下詳細に説明
する。
The mechanism that produces this effect will be explained in detail below.

まず、大気中で低圧水銀灯7を点灯して紫外線をアクリ
ルレンズ2に照射することにより、アクリルレンズ2の
表面に付着している有機不純物を直接分解または活性化
して酸化作用を起こし易く、同時に紫外線の作用で発生
したオゾン(0,)から分層した活性化酸素(0)の酸
化作用で有機不純物をH,O,Co、、 No8等の単
純な分子までに分解変化させる。これら低分子化した有
機不純物の一部が後段の排気工程で除去されるが、残り
の大部分の不純物がアクリルレンズ2の表面に残る。次
に、真空中でイオンビームを照射することにより、イオ
ンのスパッタリング作用が生してアクリルレンズ2の表
面に残留する低分子化した有機不純物および紫外線の作
用では除去できない有機不純物までも完全に除去する。
First, by lighting the low-pressure mercury lamp 7 in the atmosphere and irradiating the acrylic lens 2 with ultraviolet rays, organic impurities adhering to the surface of the acrylic lens 2 are directly decomposed or activated to easily cause oxidation, and at the same time, the ultraviolet rays The oxidizing action of activated oxygen (0) separated from the ozone (0,) generated by the action decomposes organic impurities into simple molecules such as H, O, Co, No. 8, etc. Although some of these organic impurities reduced in molecular weight are removed in the subsequent exhaust process, most of the remaining impurities remain on the surface of the acrylic lens 2. Next, by irradiating with an ion beam in a vacuum, the sputtering action of ions occurs, completely removing organic impurities that have become low molecular weight and remain on the surface of the acrylic lens 2, as well as organic impurities that cannot be removed by the action of ultraviolet light. do.

さらに、真空中でイオンビームと同時に照射された紫外
線が0□に吸収される二と;く容易に基板に達し、また
基板表面上の不純物が完全に除去されているため効果的
に基板に作用してアクリル基板表面の化学結合を切断し
、切断された分子鎖にカルボニル基、カルボキシル基等
を発生させて非常に極性の高い表面に改質する。上述し
たように紫外線およびイオンビームを蒸着前にプラスチ
ック基板に照射すると、プラスチック基板表面の不純物
(有機物、無機物)を完全に除去するクリーニング効果
と、プラスチック基板表面を活性化して極性の高い表面
に変える表面改質効果とが同時に達成される。
Furthermore, the ultraviolet rays that are irradiated simultaneously with the ion beam in a vacuum are absorbed by the 0□ and reach the substrate much more easily, and since impurities on the substrate surface are completely removed, they can effectively act on the substrate. The chemical bonds on the surface of the acrylic substrate are cut, and carbonyl groups, carboxyl groups, etc. are generated in the cut molecular chains, modifying the surface to be highly polar. As mentioned above, when a plastic substrate is irradiated with ultraviolet rays and an ion beam before vapor deposition, it has a cleaning effect that completely removes impurities (organic and inorganic substances) on the surface of the plastic substrate, and activates the surface of the plastic substrate, turning it into a highly polar surface. A surface modification effect is achieved at the same time.

したがって、第1実施例の成膜方法によれば、十分実用
化に耐える高密着性、高耐久性を有する膜を成膜するこ
とができる。
Therefore, according to the film forming method of the first embodiment, it is possible to form a film having high adhesion and high durability sufficient for practical use.

本発明の第2実施例においては、蒸着材料5としてSi
O!を用い、紫外線光a7として2個の低圧水銀灯(5
00W)と1個のキセノンショートアークランプ(10
0OW)を用いる。SiO□を蒸着する前処理として、
低圧水銀灯およびショートアークランプを点灯して紫外
線を、またイオン銃からイオンビームを第1実施例と同
様の条件で照射する。しかる後、アクリルレンズ2個の
にS】0.を電子ビーム蒸着法で成膜する。
In the second embodiment of the present invention, Si is used as the vapor deposition material 5.
O! and two low-pressure mercury lamps (5
00W) and one xenon short arc lamp (10
0OW) is used. As a pretreatment for depositing SiO□,
A low-pressure mercury lamp and a short arc lamp are turned on to irradiate ultraviolet rays and an ion beam from an ion gun under the same conditions as in the first embodiment. After that, the two acrylic lenses S]0. is deposited using electron beam evaporation.

本実施例の膜を第1実施例と同様の試験方法により試験
して耐久性を調べたところ、第1実施例と同様の結果が
得られた。
The membrane of this example was tested for durability using the same test method as in the first example, and the same results as in the first example were obtained.

本発明の第3実施例においては、第1実施例と同様の条
件で蒸着前に低圧水銀灯7から紫外線を、イオン銃8か
らイオンビームをそれぞれ照射し、さらに蒸着中も照射
し続ける、いわゆるアシスト蒸着を行う、プラスチック
基板としてはアクリルレンズを用い、蒸着材料5として
A]z03.ZrOlMgF、を使用し、これにより1
層目がAhOt、2層目がZr0. 3層目力<MgF
、よりなる3層構造の反射防止膜を電子ビーム蒸着法で
成膜する。
In the third embodiment of the present invention, under the same conditions as in the first embodiment, ultraviolet rays are irradiated from the low-pressure mercury lamp 7 and ion beams are irradiated from the ion gun 8 before vapor deposition, and the irradiation is continued during vapor deposition, so-called assist. An acrylic lens is used as the plastic substrate on which the vapor deposition is performed, and A]z03. as the vapor deposition material 5. ZrOlMgF, thereby 1
The layer is AhOt, the second layer is Zr0. 3rd layer force <MgF
An antireflection film having a three-layer structure consisting of , is formed by electron beam evaporation.

本実施例で得た膜の光学特性は450〜650nmの波
長で0.8%以下の反射率を示し、ガラスレンズ上の膜
と同等レベルであった。また、引掻試験、テープ剥離試
験等による耐久性に関しても、多層膜でありながら、第
1実施例と同様に十分に実用化に耐える結果が得られた
The optical properties of the film obtained in this example showed a reflectance of 0.8% or less at wavelengths of 450 to 650 nm, which was at the same level as the film on a glass lens. In addition, in terms of durability in scratch tests, tape peel tests, etc., although it is a multilayer film, the results showed that it was sufficiently durable for practical use, similar to the first example.

第3実施例における結果は、第1実施例と同様の表面ク
リーニング効果と表面改質効果との相乗作用とさらに紫
外線の持つ高いエネルギーとイオンビームによる適度な
イオン衝撃とが相まって蒸着粒子の基板表面上での移動
度を増幅させ、かつ核成長を促進させて膜形成の初期過
程に有効に作用のみならず、膜形成の全過程において結
合の弱い部分を除去したり、欠陥の多い構造をたたき直
す作用により、緻密な膜形成を促進するという極めて大
きなアシスト効果に基づくことによるものである。した
がって、咳例の成膜方法によれば、十分実用化に耐える
高密着性、高耐久性を有する膜を成膜することができる
The result in the third example was that the synergistic effect of the surface cleaning effect and the surface modification effect similar to that in the first example was combined with the high energy of ultraviolet rays and moderate ion bombardment by the ion beam. It not only effectively acts on the initial process of film formation by amplifying the mobility at the top and promoting nuclear growth, but also removes weak bonds and attacks structures with many defects during the entire process of film formation. This is based on the extremely large assisting effect of promoting the formation of a dense film through the healing action. Therefore, according to the film forming method for the cough example, it is possible to form a film having high adhesion and high durability that is sufficient for practical use.

本発明の第4実施例においては、第3実施例と同様の条
件で成膜前および成膜中に低圧水銀灯7から紫外線を、
イオン銃8からイオンビームをそれぞれ照射するが、さ
らに成膜直前から成膜中にかけて鵠ガスを1 、  O
x 10−5Torr以下の低い分圧で導入してアシス
ト蒸着を行う。本例では、1層目にSiO□を形成し、
以後奇数層目に5iftを、偶数層目にT10.を蒸着
して合計6層より膜構成のハーフミラ−を成膜する。
In the fourth embodiment of the present invention, ultraviolet rays are emitted from the low-pressure mercury lamp 7 before and during film formation under the same conditions as in the third embodiment.
The ion beams are irradiated from the ion gun 8, and in addition, from just before the film formation to during the film formation, a gas of 1 and 0 is applied.
Assisted vapor deposition is performed by introducing at a low partial pressure of x 10-5 Torr or less. In this example, SiO□ is formed as the first layer,
After that, apply 5ift to odd-numbered layers and T10 to even-numbered layers. A half mirror having a film structure of six layers in total is formed by vapor deposition.

本実施例の膜の光学特性は、通常のガラス基板に成膜し
たものと等しく、耐久性試験後の特性変化(すなわち波
長ノット)もほとんどない。また、引掻試験、テープ剥
離試験等による耐久性に関して、初期性能、耐久性能と
も前述した実施例と同様実用化に十分耐える結果が得ら
れる。
The optical properties of the film of this example are the same as those formed on a normal glass substrate, and there is almost no change in properties (ie, wavelength knot) after the durability test. In addition, regarding durability by scratch tests, tape peel tests, etc., both initial performance and durability performance are similar to those of the above-mentioned examples, and results sufficient for practical use are obtained.

かかる結果は、第3実施例と同様な効果のほかに、02
ガスを導入することによりオゾン(0,)の発生を促進
し、特に有機不純物の分解、除去効果を高め、0層分子
が膜形成に作用して内部応力を緩和させることによるも
のである。
These results show that in addition to the same effects as in the third embodiment, 02
This is because the introduction of gas promotes the generation of ozone (0,), particularly enhances the effect of decomposing and removing organic impurities, and the 0 layer molecules act on film formation to relieve internal stress.

次に、本発明の効果を比較するため、低圧水銀灯7およ
びイオン銃8を使用することなしに第1実施例と同様に
り、p、をアクリルレンズ2に蒸着した。このようにし
て得た膜の耐久性を第1実施例と同様の方法に調べたと
ころ、引掻試験、テープ剥離試験において膜に傷や剥離
が発生した。
Next, in order to compare the effects of the present invention, p was vapor-deposited on the acrylic lens 2 in the same manner as in the first example without using the low-pressure mercury lamp 7 and the ion gun 8. When the durability of the film thus obtained was examined in the same manner as in the first example, scratches and peeling occurred in the film in the scratch test and tape peel test.

3発明の効果〕 以上述べたごとく、本発明の成膜方法によれば、プラス
チ/り基板表面から不純物を除去し、該プラスチ、り基
板を活性化または改質するので、蒸着材料の種類によら
ず茅着粒子の基板への結合力が増大しかつ健全で緻密な
膜が形成され、プラスチ、り基板と膜との密着性および
耐久性を優れたものにすることができる。その結果、1
111目の蒸着材料とは関係なくガラス素材への成膜と
同等の高密着性、高耐久性を有する膜をプラスチック基
板上に成膜することができる。
3 Effects of the Invention] As described above, according to the film forming method of the present invention, impurities are removed from the surface of the plasti/response substrate and the plastics/response substrate is activated or modified. The bonding force of the particles to the substrate is increased without any distortion, and a healthy and dense film is formed, resulting in excellent adhesion and durability between the plastic substrate and the film. As a result, 1
Regardless of the 111th vapor deposition material, it is possible to form a film on a plastic substrate that has the same high adhesion and durability as a film formed on a glass material.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の方法を実施するために用いる装置の説明図
である。 ■・・・真空蒸着装置 2・・・プラスチック基板 3・・・真空蒸着チャンバー 4・・・回転ドーム 5・・・蒸着材料 6・・・電子銃 7・・・低圧水銀灯 8・・・イオン銃 9・・・ニュートラライザ−
The figure is an explanatory diagram of an apparatus used to carry out the method of the present invention. ■...Vacuum evaporation device 2...Plastic substrate 3...Vacuum evaporation chamber 4...Rotating dome 5...Evaporation material 6...Electron gun 7...Low pressure mercury lamp 8...Ion gun 9... Neutralizer

Claims (2)

【特許請求の範囲】[Claims] (1)プラスチック基板に真空蒸着により成膜を行うに
際し、蒸着前または蒸着前から蒸着中に前記プラスチッ
ク基板の表面に紫外線およびイオンビームを照射するこ
とを特徴とするプラスチック基板への成膜方法。
(1) A method for forming a film on a plastic substrate, which comprises irradiating the surface of the plastic substrate with ultraviolet rays and an ion beam before or during the vapor deposition when forming a film on the plastic substrate by vacuum evaporation.
(2)前記紫外線およびイオンビームの照射を、O_2
ガスを1x10^−^5Torr以下の低い分圧で蒸着
室に導入しながら行う請求項1記載のプラスチック基板
への成膜方法。
(2) Irradiation with the ultraviolet rays and ion beam at O_2
2. The method of forming a film on a plastic substrate according to claim 1, wherein the gas is introduced into the deposition chamber at a low partial pressure of 1×10^-^5 Torr or less.
JP1982390A 1990-01-30 1990-01-30 Film formation on plastic substrate Pending JPH03226555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982390A JPH03226555A (en) 1990-01-30 1990-01-30 Film formation on plastic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982390A JPH03226555A (en) 1990-01-30 1990-01-30 Film formation on plastic substrate

Publications (1)

Publication Number Publication Date
JPH03226555A true JPH03226555A (en) 1991-10-07

Family

ID=12010031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982390A Pending JPH03226555A (en) 1990-01-30 1990-01-30 Film formation on plastic substrate

Country Status (1)

Country Link
JP (1) JPH03226555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032520A1 (en) * 1995-04-14 1996-10-17 Spectra-Physics Lasers, Inc. Method for producing dielectric coatings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032520A1 (en) * 1995-04-14 1996-10-17 Spectra-Physics Lasers, Inc. Method for producing dielectric coatings

Similar Documents

Publication Publication Date Title
US5965629A (en) Process for modifying surfaces of materials, and materials having surfaces modified thereby
EP0822995B1 (en) Modification of surfaces of polymers
EP1943197B1 (en) Substrate processing method
WO2005075371A1 (en) Method for cleaning a substrate
JPH02278203A (en) Optical reflecting plate
CN103235353A (en) Processing method for enabling deep ultraviolet film having optical stability
JPH03226555A (en) Film formation on plastic substrate
US6162512A (en) Process for modifying surfaces of nitride, and nitride having surfaces modified thereby
JPH03162561A (en) Film formation to plastic substrate
JP3394130B2 (en) Method for manufacturing organic electroluminescence element and apparatus for manufacturing organic electroluminescence element
JP3608504B2 (en) Manufacturing method of optical component for infrared laser
JPH08146208A (en) Reflecting mirror and its production
JPH0856895A (en) Optical system of endoscope
JPS6361224A (en) Color correction coating method for near parabolic optical transmission body array
JP5374176B2 (en) Transparent body and method for producing the same
JPH0961603A (en) Formation of antireflection film
JPH08136703A (en) Film formation of antireflection film
JPH0375355A (en) Film forming device
JPH05283346A (en) Semiconductor manufacturing device
JPH095502A (en) Formation of anti-reflection film
JPH04352102A (en) Antireflection film for plastic optical member and formation thereof
JPH06230202A (en) Formation of thin film
JPH0230747A (en) Formation of film on plastic substrate
JPH0816264B2 (en) Electron beam assisted deposition system
JPH0978226A (en) Treatment of substrate surface