JPH03226344A - Manufacture of cylinder block of aluminum alloy - Google Patents

Manufacture of cylinder block of aluminum alloy

Info

Publication number
JPH03226344A
JPH03226344A JP2116790A JP2116790A JPH03226344A JP H03226344 A JPH03226344 A JP H03226344A JP 2116790 A JP2116790 A JP 2116790A JP 2116790 A JP2116790 A JP 2116790A JP H03226344 A JPH03226344 A JP H03226344A
Authority
JP
Japan
Prior art keywords
cylinder block
bearing
main bearing
high temperature
axial force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2116790A
Other languages
Japanese (ja)
Inventor
Yukihiro Sugimoto
幸弘 杉本
Katsuya Nishiguchi
勝也 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2116790A priority Critical patent/JPH03226344A/en
Publication of JPH03226344A publication Critical patent/JPH03226344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

PURPOSE:To prevent a bearing metal ranging from a cold temperature to a high temperature from seizing by clamping a bearing cap to a cylinder block body made from aluminum alloy and executing rough working, maintaining of high temperature, reclamping, finish working in sequence. CONSTITUTION:In a cylinder block 1 for an aluminum alloy engine wherein bearing members 4, 6 of a main bearing hole 3 is cost in after the bearing cap 5 is clamped by a bolt 7 through a prescribed thrust, rough working of the inner peripheral surface of a main bearing hole, maintaining of the cylinder block body 2 at a high temperature, reclamping of the bearing cap 5, finish working for making the inner peripheral surface of the main bearing hole 3 round are performed in sequence. The out-of-roundness of the main bearing hole 3 ranging from a low temperature to a high temperature can be secured and the bearing metal can be prevented from seizing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミ合金製シリンダブロックの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an aluminum alloy cylinder block.

(従来の技術) エンジンのシリンダブロックを鋳鉄製でなくアルミ合金
製(アルミニウム合金製のこと)としてその軽量化を図
る場合、主軸受部の剛性不足及び熱膨張による寸法変化
6の問題がある。
(Prior Art) When the cylinder block of an engine is made of aluminum alloy (aluminum alloy) instead of cast iron to reduce its weight, there are problems of insufficient rigidity of the main bearing portion and dimensional change due to thermal expansion6.

これに対し、アルミ合金製シリンダブロック本体の主軸
受部に剛性が高く且つクランク軸と路間し熱膨張率を有
する軸受部材を鋳ぐるむとともに、上記軸受部材と同じ
材質の軸受キャップを上記シリンダブロック本体にボル
トにて締付け、主軸受部を補強するという技術は一般に
知られている(実開昭58−136609号公、報参照
)。
In contrast, a bearing member with high rigidity and a coefficient of thermal expansion is cast in the main bearing part of the cylinder block body made of aluminum alloy, and is connected to the crankshaft, and a bearing cap made of the same material as the bearing member is attached to the cylinder block. The technique of reinforcing the main bearing portion by tightening bolts to the main body is generally known (see Utility Model Application Publication No. 136609/1983).

(発明が解決しようとする課題) しかし、上記軸受部材か鋳ぐるまれだシリンダブロック
の場合、エンジンを実際に運転すると、主軸受孔は第3
図に示すように当初の破線の略真円の状態Aから実線の
状態Bに変形し、この真円度の低下により、振動ないし
は騒音の増大や軸受メタルの焼き付きを招き易くなる。
(Problem to be Solved by the Invention) However, in the case of the above-mentioned bearing member or cast cylinder block, when the engine is actually operated, the main bearing hole is located in the third
As shown in the figure, it deforms from the initial state A, which is a substantially perfect circle indicated by the broken line, to the state B indicated by the solid line, and this decrease in roundness tends to cause an increase in vibration or noise and seizure of the bearing metal.

本発明者は、かかる問題の原因を検討し以下のことを見
出たしたものである。
The present inventor investigated the cause of this problem and discovered the following.

第4図に示すように上記主軸受の温度はエンジン運転中
に150℃前後になり、その結果、シリンダブロックの
アルミニウム部分は熱膨張するとともに、その強度か低
下(軟化)して塑性変形を起こす。
As shown in Figure 4, the temperature of the main bearing reaches around 150°C during engine operation, and as a result, the aluminum part of the cylinder block thermally expands and its strength decreases (softens), causing plastic deformation. .

さらに、上記軸受キャップをシリンダブロック本体に締
付けているボルトの軸力の変化をみた場合、主軸受の温
度か上昇すると、上記アルミニウム部分の熱膨張に伴っ
て上記軸力が上昇するか、この軸力の上昇に伴ってアル
ミニウム部分が塑性変形を起こすためにこの塑性変形に
対応して軸力がaだけ低下することになる。従って、エ
ンジンの運転停止により主軸受の温度が常温に戻っても
、軸力はアルミニウム部分に塑性変形を生じただけ当初
の値よりも低くなる。
Furthermore, when we look at changes in the axial force of the bolts that fasten the bearing cap to the cylinder block body, we find that when the temperature of the main bearing increases, the axial force increases due to the thermal expansion of the aluminum part, or this shaft Since the aluminum portion undergoes plastic deformation as the force increases, the axial force decreases by a in response to this plastic deformation. Therefore, even if the temperature of the main bearing returns to normal temperature due to engine shutdown, the axial force will be lower than its original value due to plastic deformation of the aluminum portion.

一方、軸受部材を鋳くるんでいるアルミニウム部分の鋳
(るみ応力をみれば、主軸受の温度か上譬すると、軸受
部材とアルミニウム部分の熱膨張差に対応して鋳ぐるみ
応力が低下する。そして、エンジン運転中の高温保持に
よりアルミニウム部分の残留応力が部分的に永久に解放
されることにより、鋳ぐるみ応力かさらにβだけ低下す
る。従って、エンジ・ンの運転停止により主軸受が常温
に戻っても、鋳ぐるみ応力は上記残留応力の減少分だけ
当初の値よりも低くなる。
On the other hand, if we look at the stress caused by the casting of the aluminum part that encases the bearing member, the temperature of the main bearing will decrease in response to the difference in thermal expansion between the bearing member and the aluminum part. By keeping the high temperature during engine operation, the residual stress in the aluminum part is partially permanently released, and the stress in the casting further decreases by β.Therefore, when the engine is stopped, the main bearing returns to normal temperature. However, the casting stress will be lower than the original value by the amount of the reduction in the residual stress.

結局、主軸受孔は、上述のアルミニウム部分の強度低下
による塑性変形と、ボルト軸力の増大による塑性変形と
、鋳ぐるみ応力の部分的な永久解放との影響を受けて、
その真円度が悪化することになる。
In the end, the main bearing hole is affected by the above-mentioned plastic deformation due to the decrease in strength of the aluminum part, plastic deformation due to the increase in bolt axial force, and partial permanent release of the casting stress.
The roundness will deteriorate.

そこで、本発明は、エンジン運転時の熱負荷による主軸
受孔の真円度の低下を抑えて、振動ないしは騒音の増大
や軸受メタルの焼き付きの発生を防止することかできる
方法を提供しようとするものである。
Therefore, the present invention aims to provide a method that can suppress the deterioration of the roundness of the main bearing hole due to the heat load during engine operation, thereby preventing an increase in vibration or noise and the occurrence of seizure of the bearing metal. It is something.

(課題を解決するための手段) 本発明は、このような課題に対して、軸受キャップを締
付けて主軸受孔内周面に荒加工を施したシリンダブロッ
クに一旦熱負荷を与えることにより、アルミニウム部分
に塑性変形を与えるとともに、鋳ぐるみ応力の部分的解
放を起こさせた後に、軸受キャップの再締付けと、主軸
受孔内周面の仕上げ加工とを順に行なうものである。
(Means for Solving the Problems) The present invention solves these problems by temporarily applying a thermal load to a cylinder block whose bearing cap has been tightened and the inner peripheral surface of the main bearing hole has been rough-machined. After applying plastic deformation to the part and partially releasing the stress in the casting, the bearing cap is retightened and the inner circumferential surface of the main bearing hole is finished in this order.

具体的には、本発明にかかるアルミ合金製シリンダブク
ックの製造方法は、主軸受孔の一部を構成する軸受部材
か鋳ぐるまれでなるアルミニウム合金製のエンジン用シ
リンダブロック本体に、上記軸受部十オとによって主軸
受孔を形成する軸受キャップをボルトにより所定の軸力
で締付けた後、上記主軸受孔の内角面を荒加工する工程
と、上記軸受キャップが締め付けられているシリンダブ
ロック本体を高温に保持する工程と、上記軸受キャップ
をシリンダブロック本体に所定の軸力て再締付けする工
程と、上記主軸受孔の内周面を真円になるように仕上げ
加工する工程とを順に行なうことを特徴とするものであ
る。
Specifically, the method for manufacturing an aluminum alloy cylinder block according to the present invention includes adding the above-mentioned bearing to an aluminum alloy engine cylinder block main body made of a bearing member forming a part of the main bearing hole or cast. After tightening the bearing cap that forms the main bearing hole with parts 10 and 10 with bolts with a predetermined axial force, the process of rough machining the inner corner surface of the main bearing hole, and the cylinder block body to which the bearing cap is tightened. The steps of maintaining the bearing cap at a high temperature, re-tightening the bearing cap to the cylinder block body with a predetermined axial force, and finishing the inner circumferential surface of the main bearing hole so that it becomes a perfect circle are carried out in this order. It is characterized by this.

この場&、上記軸受部材にはアルミ合金よりも強度が高
い鋳鉄を適用することかできる。そして、軸受キャップ
は荒加工前も再締付けの際と同じ軸力、つまりエンジン
使用時の軸力てシリンダブロック本体に締付けるのが好
ましい。また、上記高温保持工程における温度はエンジ
ン運転中の主軸受の温度、例えば150度前後に設定す
るのか好ましい。
In this case, cast iron, which has higher strength than aluminum alloy, can be used for the above-mentioned bearing member. It is preferable that the bearing cap be tightened to the cylinder block body before rough machining with the same axial force as when re-tightening, that is, with the axial force during engine use. Further, it is preferable that the temperature in the high temperature holding step is set to the temperature of the main bearing during engine operation, for example, around 150 degrees.

(作用) 上記製造方法において、シリンダブロック本体には、軸
受キャップが所定の軸力て締付けられた状態で高温に保
持されるから、アルミニウム部分の強度低下による塑性
変形と、ボルト軸力の増大による塑性変形と、鋳ぐるみ
応力の部分的な永久解放とが生じ、また、ボルトの締付
は軸力が低下した状態となる。そして、上記状態てのボ
ルトの再締付けは、上記軸力の低下を解消することにな
るものであり、この再締付は後の仕上げ加工により、主
軸受孔は冷却状態において真円度が確保されることにな
るものである。
(Function) In the above manufacturing method, since the cylinder block body is held at high temperature with the bearing cap tightened with a predetermined axial force, plastic deformation occurs due to a decrease in the strength of the aluminum part and due to an increase in the bolt axial force. Plastic deformation and partial permanent release of the casting stress occur, and the bolt is tightened in a state where the axial force is reduced. Re-tightening the bolt in the above state will eliminate the decrease in axial force mentioned above, and this re-tightening will ensure the roundness of the main bearing hole in the cooled state by finishing processing later. This is what will be done.

そうして、上記アルミニウム部分は一旦熱的負荷を受け
て塑性変形をし所謂加工硬化を起こしているから、エン
ジンの運転により高温になって熱膨張によりボルトの軸
力か高くなっても、この軸力に耐えるようになるため塑
性変形が抑えられ従って軸力の低下はほとんとない。
Once the aluminum part is subjected to thermal load, it undergoes plastic deformation and so-called work hardening, so even if the bolt's axial force increases due to thermal expansion caused by the high temperature caused by engine operation, this Since it can withstand axial force, plastic deformation is suppressed, and therefore there is almost no decrease in axial force.

また、鋳ぐるみ応力に関しても、アルミニウム部分は先
に熱的負f奇を受は残留応力か既に部分的に解放されて
いるから、このエンジン運転に伴って高温になっても残
留応力の解放はなく従って鋳ぐるみ応力の永久低下も生
じない。
In addition, regarding the stress in the casting, the aluminum part first experiences negative thermal stress, but the residual stress has already been partially released, so even if the temperature increases due to engine operation, the residual stress will not be released. Therefore, no permanent decrease in casting stress occurs.

また、上述の高温保持は、シリンダブロック本体の熱処
理も兼ねることかできるものである。すなわち、この高
温保持によりシリンダブロック本体のT5処理(焼もど
しによる人工時効処理)を兼ねることかでき、寸法安定
化処理にもなる。
Further, the above-mentioned high temperature maintenance can also serve as heat treatment of the cylinder block body. That is, this high-temperature holding can also serve as T5 treatment (artificial aging treatment by tempering) of the cylinder block body, and also serves as dimensional stabilization treatment.

ここで、上記軸受キャップ締付は工程において、その締
付は軸力をエンジン使用時の軸力に設定するのか好まし
いのは、低く設定した場合、次の荒加工で主軸受孔を真
円に近い状態にしても、後からの再締付けにより真円度
が大きく狂い、仕上げ加しての削り代か多くなる不具合
かあるからである。そして、このように削り代が多くな
るということは、軸受部材は肉厚か大きく変わって剛性
ないしは強度のバランスが崩れ、上記高温保持工程で塑
性変形及び残留応力の部分的解放を行なっているにも拘
らず、エンジンの運転により高温になると再度変形をし
て真円度か低下することになるものである。
Here, when tightening the bearing cap mentioned above, do you set the axial force to the axial force when the engine is in use?It is preferable to set the tightening to a low value, so that the main bearing hole will be a perfect circle in the next rough machining. This is because even if the condition is close to that, retightening later will cause the roundness to be greatly distorted, and there will be a problem in which there will be a large amount of machining allowance for finishing. This increase in machining allowance means that the bearing member's wall thickness has changed significantly, resulting in an imbalance in rigidity or strength, and plastic deformation and residual stress are partially released in the high-temperature holding process. However, when the temperature rises due to engine operation, it deforms again and its roundness deteriorates.

また、荒加工を高温保持工程前に行なうのは、再締付は
後に行なうと、上述の仕上げ加工で削り代か多くなる場
合と同様に、軸受部材の肉厚の変化による真円度の低下
を生じ易くなる問題かあるためである。
Also, if rough machining is performed before the high temperature holding process, if retightening is performed later, the roundness will decrease due to changes in the wall thickness of the bearing member. This is because there is a problem that makes it more likely to occur.

(発明の効果) 従って、本発明によれば、シリンダブロック本体に軸受
キャップを綿付けて、荒加工、高温保持、再締付け、仕
上げ加工を順に行なうようにしたから、エンジンの運転
により主軸受部分が高温になっても、アルミニウム部分
の塑性変形ないしは軸力の低下や鋳くるみ応力の永久解
放か抑えられ、このことによって主軸受孔の真円度の低
下を防止することができるものであり、主軸受孔に低温
から高温に至るまで所定の真円度を確保し、振動tいし
は騒音の増大や軸受メタルの焼き付きの発生を防止する
ことができる。
(Effects of the Invention) Therefore, according to the present invention, a bearing cap is attached to the cylinder block body, and rough machining, high temperature maintenance, retightening, and finishing machining are performed in this order. Even at high temperatures, the plastic deformation of the aluminum part, the decrease in axial force, and the permanent release of cast walnut stress can be suppressed, thereby preventing the deterioration of the roundness of the main bearing hole. A predetermined roundness can be ensured in the main bearing hole from low to high temperatures, and an increase in vibration or noise and seizure of the bearing metal can be prevented.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図に示すエンジンのシリンダブロック1において、
2は主軸受孔3の上半周部を構成する鉄系の上軸受部材
4か鋳くるまれているアルミ合金製のシリンダブロック
本体、5は上記上軸受部材4と相俟って主軸受孔3を構
成する鉄系の下軸受部付6か鋳くるまれているアルミ合
金製の軸受キャップである。上記軸受キャップ5はシリ
ンダブロック本体2に鉄系のボルト7で綿付けられてい
0 上記アルミ合金としてはJIS  ADC12を用い、
上下の軸受部材4.6には鋳鉄FCD45Fを用いてい
る。
In the engine cylinder block 1 shown in FIG.
Reference numeral 2 denotes a cylinder block body made of aluminum alloy in which an iron-based upper bearing member 4 constituting the upper half circumference of the main bearing hole 3 is cast, and 5 represents the main bearing hole 3 together with the upper bearing member 4. This is an aluminum alloy bearing cap in which the iron-based lower bearing part 6 is cast. The bearing cap 5 is attached to the cylinder block body 2 with iron-based bolts 7. JIS ADC12 is used as the aluminum alloy.
Cast iron FCD45F is used for the upper and lower bearing members 4.6.

上記シリンダブロック1の製造工程は以下の通りである
The manufacturing process of the cylinder block 1 is as follows.

軸受キャップ締付は一主軸受孔荒加工−高温保持一放冷
一軸受キャップ再締付は一生軸受孔仕上げ加工 上記各工程について説明する。
Tightening of the bearing cap includes: - Rough machining of the main bearing hole - Holding at high temperature - Cooling - Retightening of the bearing cap - Finishing of the bearing hole The above steps will be explained.

軸受キャップ締付は 軸受キャップ5をボルト7によりシリンダブロック本体
2に所定軸力で締付ける。この場合の軸力はエンジン使
用時の軸力である。
To tighten the bearing cap, the bearing cap 5 is tightened to the cylinder block body 2 with a bolt 7 with a predetermined axial force. The axial force in this case is the axial force when the engine is in use.

主軸受孔荒加工 主軸受孔3の内周面に仕上げ用の削り代を残して荒加工
を施す。つまり、主軸受孔3を真円に近い状態にする。
Rough machining of the main bearing hole 3 Rough machining is performed on the inner circumferential surface of the main bearing hole 3, leaving a machining allowance for finishing. In other words, the main bearing hole 3 is made almost perfectly circular.

一高温保持 軸受キャップ5が締め付けられているシリンダブロック
本体2を高温に保持する。これは加熱炉において行なう
ことかでき、温度はエンジン運転中に到達する温度、つ
まり150℃であり、保持時間は2時間である。
1. The cylinder block body 2 to which the high temperature maintenance bearing cap 5 is tightened is maintained at a high temperature. This can be carried out in a heating furnace, the temperature being that reached during engine operation, ie 150° C., and the holding time being 2 hours.

/lLi、冷 この放冷は次の再締付は作業を可能にするためである。/lLi, cold This cooling is to enable the next retightening operation.

一軸受キャップ再締付け− 軸受キャップ5をボルト7によりシリンダブロック本体
2に所定軸力で再度締付ける。この場合の軸力は先の綿
付は時と同し軸力、つまりエンジン使用時の軸力である
1. Retightening the bearing cap - Retighten the bearing cap 5 to the cylinder block body 2 with the bolt 7 with a predetermined axial force. The axial force in this case is the same as the axial force when the engine is used, that is, the axial force when the engine is used.

一生軸受孔仕上げ加圧− 主軸受孔3が真円になるようその内周面に仕上げ加工を
施す。この場合の真円度は最大シー差4μmとする。
Finishing pressurization of the bearing hole for life - Finishing is performed on the inner circumferential surface of the main bearing hole 3 so that it becomes a perfect circle. In this case, the roundness is set to a maximum sea difference of 4 μm.

第2図には、上記高温保持工程から実際にエンジンを運
転した場合までの主軸受温度、ボルト軸力及び鋳ぐるみ
応力の変化か示されている。
FIG. 2 shows changes in main bearing temperature, bolt axial force, and casting stress from the high temperature holding step to when the engine is actually operated.

ます、高温保持によるボルト軸力及び鋳ぐるみ応力の変
化は、従来のエンジン運転に伴う変化(第4図参照)と
実質的に同じであるか、軸受メタル再締付け、仕上げ加
工後のエンジン運転にけう変化は異なる。
First, the changes in bolt axial force and casting stress caused by high-temperature holding are essentially the same as those associated with conventional engine operation (see Figure 4), or the changes in bolt axial force and casting stress due to high temperature maintenance are essentially the same as those associated with conventional engine operation (see Figure 4). The changes are different.

すなわち、第2図における各記号は以下の通りのもので
ある。
That is, each symbol in FIG. 2 is as follows.

く高温保持に伴うボルト軸力〉 上昇a;;軸受温度の上昇に伴ってシリンダブロック1
のアルミニウム部分が熱膨張したことによるもの。
Bolt axial force due to high temperature maintenance〉 Increase a;; As the bearing temperature increases, cylinder block 1
This is due to thermal expansion of the aluminum part.

低下bニアルミニウム部分が熱による強度低下と上記ボ
ルト軸力の上昇とにより塑性変形を起こしたことによる
もの。
Decrease b This is due to plastic deformation of the aluminum part due to a decrease in strength due to heat and an increase in the bolt axial force mentioned above.

低下C;主軸受温度の下降に伴ってアルミニウム部分が
収縮したことによるもの。
Decrease C: This is due to shrinkage of the aluminum part as the main bearing temperature decreases.

く高温保持に伴う鋳ぐるみ応力〉 低下a;;軸受温度の上昇に伴うものであり、軸受部材
4.6とアルミニウム部分との熱膨張差によるもの。
Casting stress due to high temperature maintenance> Decrease a: This is due to the rise in bearing temperature and is due to the difference in thermal expansion between the bearing member 4.6 and the aluminum part.

低下b;;温保持によりアルミニウム部分の残留応力が
部分的に永久に解放されていくことによるもの。
Decrease b; Caused by partial permanent release of residual stress in the aluminum part due to temperature retention.

上昇C;生軸軸受温度下降に伴って回復したことによる
もの。
Increase C: This is due to recovery as the raw shaft bearing temperature decreased.

以上か高温保持による変化であり、ボルト軸力及び鋳ぐ
るみ応力は高温保持前の軸力よりも低下している。
The above is a change due to high temperature holding, and the bolt axial force and casting stress are lower than the axial force before high temperature holding.

く高温保持後のボルト軸力〉 上昇d;軸受キャップ5の再締付けによるもの。Bolt axial force after holding at high temperature> Rise d: Due to retightening of the bearing cap 5.

上昇e:エンジン運転による主軸受温度の上昇に伴って
アルミニウム部分が熱膨張したことによるもの。
Increase e: This is due to thermal expansion of the aluminum part as the main bearing temperature increases due to engine operation.

低下f、アルミニウム部分の塑性変形によるものである
か、アルミニウム部分は先の高温保持により一見塑性変
形して加工硬化を起こしており、このfの低下量は非常
に少ない。
This decrease in f may be due to plastic deformation of the aluminum part, or the aluminum part appears to be plastically deformed and work hardened due to the previous high temperature holding, and the amount of decrease in f is very small.

低ドg;エンジンの運転停止による主軸受温度の下降に
(’f−ってアルミニウム部分が収縮したためのもので
あり、この低下量は上記上昇eに対応するものであって
、再締付けによる軸力から比べると、軸力の低下はほと
んどないといえる。
Low de g; This is due to a drop in main bearing temperature due to engine shutdown ('f-' is due to shrinkage of the aluminum part, and this amount of decrease corresponds to the increase e mentioned above, and the shaft temperature due to retightening. Compared to the force, it can be said that there is almost no decrease in the axial force.

く高温保持後の鋳ぐるみ応力〉 低下d;エンジン運転による主軸受温度の上昇に伴うも
のであり、軸受部材4.6とアルミニウム部分との熱膨
張差によるもの。
Casting stress after holding at high temperature> Decrease d: This is due to the increase in main bearing temperature due to engine operation, and is due to the difference in thermal expansion between the bearing member 4.6 and the aluminum part.

上昇e:エンジンの運転停止による主軸受温度の下降に
伴って回復したことによるもの。
Increase e: This is due to recovery due to the drop in main bearing temperature due to engine shutdown.

すなわち、アルミニウム部分は先の高温保持により残留
応力の解放か生じているから、エンジンの運転によって
高温になっても鋳くるみ応力の低下はない。
In other words, since the residual stress in the aluminum part has been released due to the previous high temperature holding, the stress in the cast walnut does not decrease even if the temperature increases due to engine operation.

従って、上述の如く、アルミニウム部分の塑性変形及び
軸力の低下がほとんどなく、且つ鋳ぐるみ応力の低下が
ないため、エンジン運転に伴う主軸受孔3の真円度の低
下はほとんどなく、真円度は誤差8μm程度であった。
Therefore, as mentioned above, there is almost no plastic deformation of the aluminum part and no decrease in axial force, and there is no decrease in casting stress, so there is almost no decrease in the roundness of the main bearing hole 3 due to engine operation, and the main bearing hole 3 is completely round. The error was about 8 μm.

因みに、従来例(第4図)の場合、エンジン運転後の真
円度は誤差32μm程度であった。
Incidentally, in the case of the conventional example (FIG. 4), the roundness error after engine operation was approximately 32 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるシリンダブロックの主
軸受部分を示す断面図、第2図は実施例における主軸受
温度、ボルト軸力及び鋳ぐるみ応力の変化を示す特性図
、第3図は従来例における真円度の変化を示す説明図、
第4図は従来例における第2図と同様の図である。 1・・・・・シリンダブロック 2・・・・・シリンダブロック本体 3・・・・・・主軸受孔 4・・・上軸受部材 5・・・・軸受キャップ 6・・・・下軸受部材 7・・・・ボルト 第 図
Fig. 1 is a sectional view showing the main bearing portion of a cylinder block in an embodiment of the present invention, Fig. 2 is a characteristic diagram showing changes in main bearing temperature, bolt axial force, and casting stress in the embodiment, and Fig. 3 is a An explanatory diagram showing changes in roundness in a conventional example,
FIG. 4 is a diagram similar to FIG. 2 in the conventional example. 1... Cylinder block 2... Cylinder block body 3... Main bearing hole 4... Upper bearing member 5... Bearing cap 6... Lower bearing member 7 ...Bolt diagram

Claims (1)

【特許請求の範囲】[Claims] (1)主軸受孔の一部を構成する軸受部材が鋳ぐるまれ
てなるアルミニウム合金製のエンジン用シリンダブロッ
ク本体に、上記軸受部材とによって主軸受孔を形成する
軸受キャップをボルトにより所定の軸力で締付けた後、
上記主軸受孔の内周面を荒加工する工程と、上記軸受キ
ャップが締め付けられているシリンダブロック本体を高
温に保持する工程と、上記軸受キャップをシリンダブロ
ック本体に所定の軸力で再締付けする工程と、上記主軸
受孔の内周面を真円になるように仕上げ加工する工程と
を順に行なうことを特徴とするアルミ合金製シリンダブ
ロックの製造方法。
(1) A bearing cap, which forms the main bearing hole with the bearing member, is attached to a specified shaft by bolts to an aluminum alloy engine cylinder block body in which a bearing member forming a part of the main bearing hole is cast. After tightening with force,
A process of rough machining the inner circumferential surface of the main bearing hole, a process of maintaining the cylinder block body to which the bearing cap is tightened at a high temperature, and a process of re-tightening the bearing cap to the cylinder block body with a predetermined axial force. A method for manufacturing an aluminum alloy cylinder block, comprising sequentially carrying out a step and a step of finishing the inner circumferential surface of the main bearing hole so that it becomes a perfect circle.
JP2116790A 1990-01-30 1990-01-30 Manufacture of cylinder block of aluminum alloy Pending JPH03226344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2116790A JPH03226344A (en) 1990-01-30 1990-01-30 Manufacture of cylinder block of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116790A JPH03226344A (en) 1990-01-30 1990-01-30 Manufacture of cylinder block of aluminum alloy

Publications (1)

Publication Number Publication Date
JPH03226344A true JPH03226344A (en) 1991-10-07

Family

ID=12047359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116790A Pending JPH03226344A (en) 1990-01-30 1990-01-30 Manufacture of cylinder block of aluminum alloy

Country Status (1)

Country Link
JP (1) JPH03226344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010164A3 (en) * 2010-07-21 2012-04-19 Neumayer Tekfor Holding Gmbh Bearing unit and motor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010164A3 (en) * 2010-07-21 2012-04-19 Neumayer Tekfor Holding Gmbh Bearing unit and motor element

Similar Documents

Publication Publication Date Title
JPS6031579B2 (en) Method of manufacturing aluminum alloy piston with reinforced iron ring
JPH0418929B2 (en)
EP0472171B1 (en) Ceramic rotor and metal shaft assembly
US5615726A (en) Casting mold
JPH03226344A (en) Manufacture of cylinder block of aluminum alloy
JPH0360794B2 (en)
US5201115A (en) Method of manufacturing cylinder block of an engine
JP2000120866A (en) Piston ring
JP6984289B2 (en) Casting and packaging members and their manufacturing methods
JPH01307507A (en) Ductile cast iron crankshaft
JPH066162Y2 (en) Mounting structure for the interior of the steam turbine
JP3314600B2 (en) Expandable hollow camshaft
JPH053724Y2 (en)
JP2004036511A (en) Cylinder block for internal combustion engine and its machining method
JPH08277904A (en) Oil pump cover
US20230084759A1 (en) Layer sintered valve seat ring, process for its production, combinations therewith and their use
JPS62130725A (en) Production of hollow assembly cam shaft
JPS61157743A (en) Liner type cylinder of multi-cylinder engine
JPH03141847A (en) Cylinder block for internal combustion engine
JP2783153B2 (en) Cast iron crankshaft
JPS5939460A (en) Composite structural body and its production
JPS61255246A (en) Cylinder liner for internal-combustion engine
JPH0658044B2 (en) Turbine rotor and method for producing the same
JP2576960Y2 (en) Crankshaft for multi-cylinder engine
JPH09329008A (en) Valve spring retainer for internal combustion engine and working method therefor