JPH03225340A - Resist material - Google Patents

Resist material

Info

Publication number
JPH03225340A
JPH03225340A JP2081590A JP2081590A JPH03225340A JP H03225340 A JPH03225340 A JP H03225340A JP 2081590 A JP2081590 A JP 2081590A JP 2081590 A JP2081590 A JP 2081590A JP H03225340 A JPH03225340 A JP H03225340A
Authority
JP
Japan
Prior art keywords
novolak resin
formalin
sensitivity
resin
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2081590A
Other languages
Japanese (ja)
Inventor
Tsutomu Noguchi
勉 野口
Hidemi Tomita
冨田 秀実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2081590A priority Critical patent/JPH03225340A/en
Priority to GB9102023A priority patent/GB2240549B/en
Priority to DE19914102946 priority patent/DE4102946A1/en
Publication of JPH03225340A publication Critical patent/JPH03225340A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance sensitivity to far ultraviolet rays and to revolve fine patterns with good rectangularity by synthesizing a novolak resin in the presence of excess formalin and combining a diazo compound with the hydroxyl groups. CONSTITUTION:The novolak resin is synthesized in the presence of excess formaline, resulting in forming branched structure as shown on the right, and greatly enhancing dissolution velocity in an aqueous solution of alkali, and extremely facilitating development. The diazo compound, such as naphthoquinone-diazido derivatives, is chemically combined with the hydroxyl groups present in the novolak resin to cause them to function as photosensitive agents, thus permitting high sensitivity and high resolution to be ensured, and ultrafine patterns, for example, <= 0.5 mum to be resolved with good rectangularity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路や磁気バブルメモリ素子等の
製造に適用され微細なパターンの形成に適するレジスト
材料に関するものであり、特に光照射部分がアルカリ溶
液によって溶解するポジ型のレジスト材料に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a resist material suitable for forming fine patterns, which is applied to the manufacture of semiconductor integrated circuits, magnetic bubble memory elements, etc. This relates to a positive resist material that is dissolved by an alkaline solution.

〔発明の概要〕[Summary of the invention]

本発明は、クレゾールとホルマリンとから合成されるノ
ボラック樹脂を主体とするレジスト材料において、ホル
マリンの比率を高めて技分かれ構造を導入するとともに
、ノボラック樹脂に直接ジアゾ化合物を化学結合させる
ことで、遠紫外光に高感度を有し、しかも解像度が高い
レジスト材料を提供しようとするものである。
The present invention has developed a resist material mainly composed of novolac resin synthesized from cresol and formalin, by increasing the ratio of formalin and introducing a divided structure, and by chemically bonding a diazo compound directly to the novolac resin. The present invention aims to provide a resist material that is highly sensitive to ultraviolet light and has high resolution.

〔従来の技術〕[Conventional technology]

半導体集積回路や磁気バブルメモリ等の高集積化に伴い
、より一層の微細パターンの形成が要望され、フォトリ
ソグラフィーに使用する光源の短波長化が進められてい
る。また、パターンの微細化に対応して、レジストパタ
ーンを精度良く基板に転写するために、従来のウェット
エツチングに代わって酸素等を用いたドライエツチング
が行われるようになっている。
BACKGROUND OF THE INVENTION As semiconductor integrated circuits, magnetic bubble memories, and the like become highly integrated, there is a demand for the formation of even finer patterns, and the wavelength of light sources used in photolithography is becoming shorter. In addition, in response to the miniaturization of patterns, dry etching using oxygen or the like has been used instead of conventional wet etching in order to accurately transfer resist patterns onto substrates.

そこで、遠紫外線である波長200〜300nsの範囲
に感度を有し、しかもドライエツチング耐性の高いレジ
スト材料が求められている。
Therefore, there is a need for a resist material that is sensitive to the far ultraviolet wavelength range of 200 to 300 ns and has high dry etching resistance.

遠紫外線の波長域に感度を有するレジスト材料としては
、ポジ型のものでポリメチルメタクリレート系レジスト
やノボラック系レジスト、ネガ型のものでクロロメチル
化スチレン系レジストやポリグリシジルメタクリレート
系レジスト等が既に提案されている。
As resist materials sensitive to the deep ultraviolet wavelength range, positive type resists such as polymethyl methacrylate resists and novolac type resists, and negative type resists such as chloromethylated styrene type resists and polyglycidyl methacrylate type resists have already been proposed. has been done.

しかしながら、ポリメチルメタクリレート系レジストや
ポリグリシジルメタクリレート系レジストについては、
ドライエツチング耐性が悪い上に非常に感度が低く、実
用に耐えるものではない。
However, regarding polymethyl methacrylate-based resists and polyglycidyl methacrylate-based resists,
It has poor dry etching resistance and extremely low sensitivity, making it impractical.

また、クロロメチル化スチレン系レジストも、例えばK
rFレーザで1〜2J/c4が必要で、感度の悪さが問
題となる。
In addition, chloromethylated styrene resists, such as K
An rF laser requires 1 to 2 J/c4, and poor sensitivity is a problem.

一方、ノボラック系レジストは、塩素系ガスやフッ素系
ガスに対してエツチング耐性があり、前述のレジストの
中では最も感度が良いが、それでも200〜300mJ
/d程度は必要であり、十分なものとは言えない、さら
に、前記ノボラック系レジストでは、遠紫外光を吸収す
る成分が多量に含まれており、露光後のレジスト形状が
断面三角形となる傾向にある。したがって、短波長光源
を用いた場合、微細なパターンを矩形性良く得ることは
難しい。
On the other hand, novolac resists have etching resistance against chlorine gases and fluorine gases, and have the highest sensitivity among the resists mentioned above, but they still have a resistance of 200 to 300 mJ.
/d is necessary, but cannot be said to be sufficient.Furthermore, the novolak resist contains a large amount of components that absorb deep ultraviolet light, and the resist shape after exposure tends to be triangular in cross section. It is in. Therefore, when a short wavelength light source is used, it is difficult to obtain a fine pattern with good rectangularity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、従来提案されているレジスト材料では、遠
紫外域における感度の点、さらには解像度の点で不満が
多く、その改良が望まれる。
As described above, there are many dissatisfaction with conventionally proposed resist materials in terms of sensitivity in the deep ultraviolet region and furthermore in terms of resolution, and improvements are desired.

そこで本発明は、かかる従来の実情に鑑みて提案された
ものであって、遠紫外域に高い感度を有し、微細パター
ンを矩形性良く解像することができるレジスト材料を提
供することを目的とする。
Therefore, the present invention was proposed in view of the conventional situation, and an object of the present invention is to provide a resist material that has high sensitivity in the far ultraviolet region and is capable of resolving fine patterns with good rectangularity. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、前述の目的を達成せんものと長期に亘り
鋭意研究を重ねた結果、ノボラック樹脂を合成する際に
ホルマリン過剰とし、樹脂に枝分かれ構造を導入するこ
とで現像液(アルカリ溶液)に対する現像速度が増加し
、その結果、レジスト感度やγ特性が向上すること、さ
らに感光剤とノボラック樹脂とを化学結合させることで
少ない感光剤で感度を確保することができ、透過率が向
上してレジスト形状が改善されることを見出した。
The inventors of the present invention have conducted intensive research over a long period of time in order to achieve the above-mentioned purpose. As a result, they have found that when synthesizing novolac resin, they use excessive formalin, and by introducing a branched structure into the resin, they can use a developing solution (alkaline solution). As a result, the resist sensitivity and γ characteristics are improved, and by chemically bonding the photosensitive agent and novolac resin, sensitivity can be secured with less photosensitive agent, resulting in improved transmittance. It was found that the resist shape was improved.

本発明は、これらの知見に基づいて提案されたものであ
って、クレゾールとホルマリンのモル比を1:1〜1:
4として合成されるノボラック樹脂を主体とし、該ノボ
ラック樹脂のフェノール性水酸基にジアゾ化合物が化学
結合されていることを特徴とするものである。
The present invention was proposed based on these findings, and the molar ratio of cresol and formalin is set to 1:1 to 1:1.
It is mainly composed of a novolak resin synthesized as No. 4, and is characterized in that a diazo compound is chemically bonded to the phenolic hydroxyl group of the novolak resin.

本発明のレジスト材料は、クレゾールとホルマリンとか
ら合成されるノボラック樹脂を主体とするものであるが
、その合成に際してのクレゾールとホルマリンのモル比
をホルマリン過剰とすることで技分かれ構造が導入され
ている。
The resist material of the present invention is mainly composed of a novolak resin synthesized from cresol and formalin, but a divided structure is introduced by making the molar ratio of cresol and formalin excessive in formalin during synthesis. There is.

したがって、合成際のクレゾール:ホルマリンを1:1
−1:4とする必要があり、1F1.5〜1:2とする
ことが好ましい、ホルマリンのクレゾールに対するモル
比(ホルマリン/クレゾール)が1以下であると、枝分
かれ構造が導入されず、感度やγ特性等の点で効果が期
待できない、ただし、前記モル比が4を越えると、ノボ
ラック樹脂がゲル化し取り扱いが困難となる。
Therefore, during synthesis, cresol:formalin was mixed in a ratio of 1:1.
-1:4, and preferably 1F1.5 to 1:2. If the molar ratio of formalin to cresol (formalin/cresol) is less than 1, a branched structure will not be introduced and the sensitivity will be No effect can be expected in terms of γ properties, etc. However, if the molar ratio exceeds 4, the novolac resin will gel and become difficult to handle.

前記ノボラック樹脂には、さらに249ns付近の光で
反応するジアゾ化合物が化学結合されるが、このジアゾ
化合物は、ジアゾ基を有し感光剤として機能する化合物
であって、例えばナフトキノンジアジド誘導体、環状ま
たは直鎖状の1.3−ジケトン−2−ジアゾ化合物(メ
ルドラム酸ジアゾ化合物)等が挙げられる。
A diazo compound that reacts with light of around 249 ns is further chemically bonded to the novolac resin, and this diazo compound is a compound having a diazo group and functioning as a photosensitizer, such as a naphthoquinone diazide derivative, a cyclic or Examples include linear 1,3-diketone-2-diazo compounds (Meldrum's acid diazo compounds).

例示するならば、 等である。To illustrate, etc.

なお、これらジアゾ化合物は、前記ノボラック樹脂のフ
ェノール性水酸基に化学結合するような官能基〔例えば
スルホン酸基、 −3o!X、 −COX (Xはハロ
ゲン等)〕を有していることが好ましく、したがって使
用される化合物としては下記の化合物が例示される。
Note that these diazo compounds contain a functional group [for example, a sulfonic acid group, -3o!] that chemically bonds to the phenolic hydroxyl group of the novolak resin. X, -COX (X is halogen, etc.)], and therefore, the following compounds are exemplified as the compounds used.

前記ジアゾ化合物が例えば−3O,C1基を有していれ
ば、前記ノボラック樹脂の水酸基とスルホン酸エステル
結合により化学結合される。
If the diazo compound has, for example, a -3O,C1 group, it will be chemically bonded to the hydroxyl group of the novolak resin through a sulfonic acid ester bond.

これらジアゾ化合物の導入量としては、ノボラック樹脂
に対して3〜30重量%′とすることが好ましい、ジア
ゾ化合物の導入量が少なすぎると感度を確保することが
できず、また逆に多すぎても透過率が低下して却って感
度が低下する。
The amount of these diazo compounds introduced is preferably 3 to 30% by weight based on the novolac resin. If the amount of diazo compounds introduced is too small, sensitivity cannot be ensured, and conversely, if it is too large, However, the transmittance decreases and the sensitivity actually decreases.

上述のノボラック樹脂は、溶剤に溶解してレジスト材料
とされるが、使用する溶剤は前記ノボラック樹脂を溶解
し得るものであればその種類は問わない、したがって、
用途に応じて適宜選定すればよい。
The above-mentioned novolak resin is dissolved in a solvent to obtain a resist material, but the type of solvent used is not limited as long as it can dissolve the novolak resin.
It may be selected as appropriate depending on the purpose.

また、本発明のレジスト材料を感光させるための光源と
しては、例えば波長300n−以下の光を照射するもの
が好適で、種々の遠紫外線光源を用いることができるが
、−例としてKrFエキシマレーザを用いることが可能
である。
Furthermore, as a light source for exposing the resist material of the present invention, one suitable for irradiating light with a wavelength of 300 nm or less is suitable, and various deep ultraviolet light sources can be used. It is possible to use

現像に際しては、アルカリ溶液が使用されるが、これま
でのレジスト材料に比べて濃度の薄いアルカリ溶液で良
く、アルカリ濃度が0.6〜0.8重量%のアルカリ水
溶液が好適である。
During development, an alkaline solution is used, but an alkaline solution with a lower concentration than that of conventional resist materials may be used, and an alkaline aqueous solution with an alkali concentration of 0.6 to 0.8% by weight is preferred.

〔作用〕[Effect]

ノボラック樹脂を合成する際に、ホルマリン過剰とする
ことで、第1図に示すように、樹脂に技分かれ構造が導
入される。そして、この枝分かれ部分のクレゾールはア
ルカリと反応し易く、したがって枝分かれ構造が導入さ
れたノボラック樹脂は極めて現像され易くなる。
When synthesizing a novolak resin, by adding too much formalin, a split structure is introduced into the resin, as shown in FIG. This branched part of cresol easily reacts with alkali, and therefore, the novolak resin into which a branched structure has been introduced is extremely easy to develop.

また、前記ノボラック樹脂に感光剤であるジアゾ化合物
を化学結合させると、少ない量で十分な特性が得られ、
透過率の低下による感度の低下。
In addition, if a diazo compound, which is a photosensitizer, is chemically bonded to the novolak resin, sufficient characteristics can be obtained with a small amount.
Decrease in sensitivity due to decrease in transmittance.

レジスト形状の劣化が解消される。Deterioration of resist shape is eliminated.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果に基づいて説明する。 The present invention will be explained below based on specific experimental results.

相J[lll吸 収タクレゾール25g、ホルマリン24.3g。Phase J [lll sucking Acquired 25g of tacresol, 24.3g of formalin.

蓚酸180mgを秤取し、エチルセロソルブアセテート
中、120°Cで5時間加熱・撹拌し、反応させた。
180 mg of oxalic acid was weighed out and reacted in ethyl cellosolve acetate by heating and stirring at 120°C for 5 hours.

これを水中で再沈澱させ、未反応のホルマリンを除去し
、減圧乾燥した。得られた樹脂の重量平均分子量は、お
よそ2000であった。
This was reprecipitated in water, unreacted formalin was removed, and dried under reduced pressure. The weight average molecular weight of the obtained resin was approximately 2,000.

以上はモル比(クレゾール/ホルマリン)が1/1.3
の例であるが、仕込み量を変えることで、クレゾール/
ホルマリン−1/1.1/1.1.1/1.5.1/2
.1/3のノボラック樹脂を合成した。これらは、いず
れも重合時間を調整することで、重量平均分子量をおよ
そ2000に揃えた。
Above, the molar ratio (cresol/formalin) is 1/1.3
As an example, by changing the amount of preparation, cresol/
Formalin-1/1.1/1.1.1/1.5.1/2
.. 1/3 of the novolac resin was synthesized. By adjusting the polymerization time, the weight average molecular weights of all of these were made to be approximately 2,000.

合成したノボラック樹脂をNMRスペクトルにより確認
したところ、前記モル比が1 /1.3のもので結合数
10に対して約1.1 /1.5のもので結合数5に対
して約1.1/2のもので結合数3に対して約1の割合
でそれぞれ枝分かれが生じていた。
When the synthesized novolac resin was confirmed by NMR spectroscopy, it was found that the molar ratio was 1/1.3 and the number of bonds was about 1.1/1.5, whereas the number of bonds was about 1.1/1.5 for 5 bonds. In the case of 1/2, branching occurred at a ratio of about 1 to 3 bonds.

ジアゾ A の 先に合成した各ノボラック樹脂9g及びナフトキノンジ
アジド−4−スルホニルクロライド0.63g(樹脂に
対して7重量%)をジオキサンに溶解し、トリエチルア
ミン0.33M1を滴下してナフトキノンジアジド−4
−スルホニルクロライドをノボラック樹脂にエステル結
合させた。
Diazo A 9 g of each novolac resin synthesized above and 0.63 g of naphthoquinone diazide-4-sulfonyl chloride (7% by weight based on the resin) were dissolved in dioxane, and 0.33 M1 of triethylamine was added dropwise to form naphthoquinone diazide-4.
- Sulfonyl chloride was ester bonded to novolak resin.

これを塩酸水溶液中で再沈澱させ、アミン塩を除去した
This was reprecipitated in an aqueous hydrochloric acid solution to remove the amine salt.

最後にエチルセロソルブアセテートに溶解し、孔径0.
2μmのフィルターでろ過してフォトレジストを調製し
た。
Finally, it is dissolved in ethyl cellosolve acetate and the pore size is 0.
A photoresist was prepared by filtering through a 2 μm filter.

これら各レジストのT値、感度及び樹脂溶解速度を第1
表に示す。
The T value, sensitivity, and resin dissolution rate of each of these resists are
Shown in the table.

第1表 この第1表を見ると、ホルマリンの比率が高くなるにし
たがって感度が向上し、樹脂溶解速度が速くなることが
わかる。
Table 1 It can be seen from Table 1 that as the formalin ratio increases, the sensitivity improves and the resin dissolution rate increases.

パノ:≦ヨL広 先に合成したフォトレジストのうち、クレゾール/ホル
マリン=1/1.3.1/1.5.1/2とした各サン
プルを、膜厚1μmとなるようにスピンコーティングし
、90°Cで90秒間ベーキングした。
Pano: ≦ Yo L Among the synthesized photoresists, each sample with cresol/formalin = 1/1.3.1/1.5.1/2 was spin-coated to a film thickness of 1 μm. , baked at 90°C for 90 seconds.

次に、KrFエキシマステッパー(NA=0.42)で
露光し、テトラメチルアンモニウムハイドロオキサイド
水溶液で現像(6秒)した。
Next, it was exposed with a KrF excimer stepper (NA=0.42) and developed with a tetramethylammonium hydroxide aqueous solution (6 seconds).

形成されたレジストパターンの断面を走査型電子顕微鏡
で観察したところ、いずれのサンプルにおいてもエキシ
マステッパーの解像限界に近い0.35μmL/Sのパ
ターンが形状良く解像された。
When the cross section of the formed resist pattern was observed with a scanning electron microscope, it was found that in each sample, a pattern of 0.35 μmL/S, which is close to the resolution limit of an excimer stepper, was resolved with good shape.

各サンプルでのレジストパターンの側壁角度並びに使用
したアルカリ溶液(テトラメチルアンモニウムハイドロ
オキサイド水溶液)の濃度を第2表に示す。
Table 2 shows the sidewall angle of the resist pattern for each sample and the concentration of the alkaline solution (tetramethylammonium hydroxide aqueous solution) used.

第2表 この第2表からも明らかなように、クレゾールとホルマ
リンのモル比を変えることで樹脂の溶解速度が増加し、
その結果レジスト感度の向上、形状の改善に結びつくこ
とが確認された。
Table 2 As is clear from Table 2, changing the molar ratio of cresol and formalin increases the dissolution rate of the resin.
As a result, it was confirmed that the resist sensitivity was improved and the shape was improved.

なお、市販のレジスト中、解像度が高いノボラック系レ
ジストについて同様の測定を行って比較したところ、レ
ジスト感度は200〜460sJ/C−1解像度は0.
4〜0.5μm1側壁角度は60〜70°であり、本発
明を適用したレジスト材料に比べてレジスト感度、解像
度、レジスト形状共大幅に劣ることがわかった。
In addition, when similar measurements were performed and compared with commercially available resists, novolak resists with high resolution, the resist sensitivity was 200 to 460 sJ/C-1 resolution was 0.
The sidewall angle of 4 to 0.5 μm was 60 to 70°, and it was found that the resist sensitivity, resolution, and resist shape were significantly inferior to the resist material to which the present invention was applied.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明のレジスト材
料においては、ノボラック樹脂合成の際にホルマリン過
剰とし技分かれ構造を導入しているので、アルカリ水溶
液に対する溶解速度を大幅に高めることができる。さら
に、遠紫外光に感度を有するジアゾ化合物が化学結合さ
れているので、高感度、高解像度を達成することができ
、例えばエキシマレーザ光による露光・現像を行うこと
で、0.5μm以下の微細パターンを矩形性良く解像す
ることが可能である。
As is clear from the above description, in the resist material of the present invention, formalin is added in excess when synthesizing the novolak resin and a split structure is introduced, so that the dissolution rate in an aqueous alkaline solution can be significantly increased. Furthermore, since a diazo compound sensitive to deep ultraviolet light is chemically bonded, high sensitivity and high resolution can be achieved. For example, by exposing and developing with excimer laser light, fine particles of 0.5 μm or less can be produced. It is possible to resolve a pattern with good rectangularity.

したがって、例えば半導体集積回路の製造に適用すれば
、半導体素子の微細化や歩留りの向上につながり、工業
的価値は非常に高い。
Therefore, if applied to the manufacture of semiconductor integrated circuits, for example, it will lead to miniaturization of semiconductor elements and improvement in yield, and has very high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はノボラック樹脂の枝分かれ構造を示す構造式で
ある。
FIG. 1 is a structural formula showing the branched structure of novolak resin.

Claims (1)

【特許請求の範囲】 クレゾールとホルマリンのモル比を1:1〜1:4とし
て合成されるノボラック樹脂を主体とし、 該ノボラック樹脂のフェノール性水酸基にジアゾ化合物
が化学結合されていることを特徴とするレジスト材料。
[Scope of Claims] Mainly composed of a novolak resin synthesized with a molar ratio of cresol and formalin of 1:1 to 1:4, and characterized in that a diazo compound is chemically bonded to the phenolic hydroxyl group of the novolac resin. resist material.
JP2081590A 1990-01-31 1990-01-31 Resist material Pending JPH03225340A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2081590A JPH03225340A (en) 1990-01-31 1990-01-31 Resist material
GB9102023A GB2240549B (en) 1990-01-31 1991-01-30 Photoresist materials
DE19914102946 DE4102946A1 (en) 1990-01-31 1991-01-31 RESIST MATERIALS CONTAINING A NOVOLA RESIN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2081590A JPH03225340A (en) 1990-01-31 1990-01-31 Resist material

Publications (1)

Publication Number Publication Date
JPH03225340A true JPH03225340A (en) 1991-10-04

Family

ID=12037533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2081590A Pending JPH03225340A (en) 1990-01-31 1990-01-31 Resist material

Country Status (1)

Country Link
JP (1) JPH03225340A (en)

Similar Documents

Publication Publication Date Title
JPH0219847A (en) Positive and negatively treated radiation sensitive mixture and relief pattern
JP2001122927A (en) Monomer for photoresist and its manufacture, copolymer for photoresist and its manufacture, photoresist composition, forming method for photoresist pattern, and semiconductor element
EP1046958A1 (en) Composition for bottom reflection preventive film and novel polymeric dye for use in the same
JPH07504762A (en) Photoresist with low metal ion levels
CA1263822A (en) Method for producing a positive photoresist
JPH06242605A (en) Positive type radiation sensitive mixture
JPH01300250A (en) Photoresist composition
JPH06148891A (en) Positive type radiation sensitive mixture and radiation sensitive recording material manufactured by using mixture thereof
JP2645587B2 (en) Fine pattern forming material and fine pattern forming method
JPS62105137A (en) Radiophotosensitive positive type photoresist composition, photosensitive material and making of photoresist
JPH10254137A (en) Chemical amplification type resist
JPS5968737A (en) Simultaneous formation of positive and negative type patterns
JPH02217855A (en) Negative type electron beam resist composition
JP2005157352A (en) Organic anti-reflective coating composition and method for forming photoresist pattern using the same
JP4226255B2 (en) Pyrenesulfonic acid onium salt compound, method for producing the compound, photosensitive resin composition using the compound, and photosensitive material using the same.
JPH02275956A (en) Photoresist composition
JPH03225340A (en) Resist material
JPH05155942A (en) Radiation-sensitive polymer containing naphthoquinone-2- diazido-4-sulfonyl group and its use in positive recording material
JPH0816782B2 (en) Contrast enhancement of non-chemically sensitized alkali developable photoresist
JPS59162542A (en) Positive type photoresist composition
JPH04249509A (en) Patterning material
JP2001114822A (en) Copolymer for producing chemical amplification type photoresist and chemical amplification type positive photoresist composition comprising the same
JP3160255B2 (en) Method for producing polyhydroxystyrene derivative
KR100586542B1 (en) Top anti-reflective coating polymer, its preparation method and top anti-reflective coating composition comprising the same
US4996122A (en) Method of forming resist pattern and thermally stable and highly resolved resist pattern