JPH03224897A - Energy supply system for spacecraft - Google Patents

Energy supply system for spacecraft

Info

Publication number
JPH03224897A
JPH03224897A JP2017083A JP1708390A JPH03224897A JP H03224897 A JPH03224897 A JP H03224897A JP 2017083 A JP2017083 A JP 2017083A JP 1708390 A JP1708390 A JP 1708390A JP H03224897 A JPH03224897 A JP H03224897A
Authority
JP
Japan
Prior art keywords
hydrogen
oxygen
water
liquid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017083A
Other languages
Japanese (ja)
Inventor
Katsunori Yuzawa
湯沢 克宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2017083A priority Critical patent/JPH03224897A/en
Publication of JPH03224897A publication Critical patent/JPH03224897A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/425Power storage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/402Propellant tanks; Feeding propellants

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance safety without equipping with liquified hydrogen and oxygen by lanching a rocket equipped with water arranged in the remaining space of the rocket, and electrolizing the water in the air space. CONSTITUTION:Electric power is generated by a solar cell 29 from the energy of sun and fed to a battery 30 for charging and to an electrolizing unit 4 through a power control unit 28. Water in a water tank 1 is fed to the unit 4 and thereat electrolized into hydrogen and oxygen. Hydrogen and oxygen are cooled by a radiator, and thereafter stored in a hydrogen and a oxygen gas tank 8, 9. They are compressed by compressors 10, 11 driven by a combustor 14 using them as fuel, liquified by liquifying units 13, 16 and stored in tanks 17, 20. They are respectively supplied thereto through pumps 18, 21 and via supply ports 19, 22. With the constitution, transportation of material is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、宇宙衛星等の宇宙機とドツキングして燃料等
を宇宙機に補給するために使用する宇宙機のエネルギー
供給装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an energy supply device for a spacecraft, which is used to dock with a spacecraft such as a space satellite and supply fuel, etc. to the spacecraft. .

[従来の技術] 軌道間輸送機等の宇宙機を長期にわたって運用するため
には、宇宙機に燃料等を補給する必要がある。
[Background Art] In order to operate a spacecraft such as an interorbital transport vehicle for a long period of time, it is necessary to replenish the spacecraft with fuel, etc.

宇宙機に燃料を補給するために従来は、液体水素、液体
酸素をそれぞれ容器に入れて積載したロケットをエネル
ギー補給ステーションとして打ち上げ、このエネルギー
補給ステーションを宇宙機とドツキングさせて宇宙機に
液体水素および液体酸素を燃料として補給した後、エネ
ルギー補給ステージiンを地上に回収することが計画さ
れている。
Conventionally, in order to refuel a spacecraft, a rocket loaded with liquid hydrogen and liquid oxygen in containers was launched as an energy replenishment station, and this energy replenishment station was docked with the spacecraft to supply liquid hydrogen and liquid oxygen to the spacecraft. After refueling with liquid oxygen, it is planned that the refueling stage will be returned to the ground.

[発明が解決しようとする課題] 補給する燃料として液体水素および液体酸素を容器に入
れて打ち上げると、圧力容器としての容器の重量と、更
に宇宙空間で該容器の熱制御が必要となるために打ち上
げ重量が重くなり、また射場安全の保安距離の制約から
広い場所が必要である。
[Problems to be Solved by the Invention] When liquid hydrogen and liquid oxygen are placed in a container as replenishment fuel and launched, the weight of the container as a pressure container and the need to control the temperature of the container in outer space increase. The launch weight is heavy, and a large space is required due to safety distance constraints at the launch site.

本発明は、液体水素および液体酸素容器を必要とせず、
打上ロケットの搭載余裕空間を利用し、水を積載したロ
ケットを打ち上げ、この水を電気分解して得た水素と酸
素とを液化して宇宙機に燃料として補給するようにして
、軌道上輸送に便利になるようにした宇宙機のエネルギ
ー供給装置を提供することを目的とするものである。
The invention does not require liquid hydrogen and liquid oxygen containers;
Utilizing the space available on the launch vehicle, a rocket loaded with water is launched, and the water is electrolyzed to liquefy hydrogen and oxygen, which are then supplied to the spacecraft as fuel for on-orbit transportation. The purpose of this invention is to provide a convenient energy supply device for a spacecraft.

[課題を解決するための手段] 本発明の宇宙機のエネルギー供給装置は、水を貯蔵する
水タンクと、該水タンク内の水を受けて水素と酸素とに
分解する電気分解装置と、前記分解した水素と酸素とを
それぞれ液化させる液化機と、前記液化された水素と酸
素とを貯蔵する液体水素タンクおよび液体酸素タンクと
、前記液体水素タンク内の液体水素と前記液体酸素タン
ク内の液体酸素とをそれぞれ外部に供給する液体水素供
給口および液体酸素供給口と、を備えたことを特徴とす
るものである。
[Means for Solving the Problems] An energy supply device for a spacecraft according to the present invention includes: a water tank for storing water; an electrolyzer for receiving water in the water tank and decomposing it into hydrogen and oxygen; a liquefier that liquefies decomposed hydrogen and oxygen, respectively; a liquid hydrogen tank and a liquid oxygen tank that store the liquefied hydrogen and oxygen; and liquid hydrogen in the liquid hydrogen tank and liquid in the liquid oxygen tank. The present invention is characterized by comprising a liquid hydrogen supply port and a liquid oxygen supply port that respectively supply oxygen to the outside.

[作   用] 地上で水を水タンクに入れてエネルギー補給ステーショ
ンであるロケットを打ち上げ、宇宙において水を電気分
解して水素と酸素とを得た後、これらを液化した液体水
素と液体酸素とを燃料として宇宙機に補給する。
[Operation] Water is put into a water tank on the ground, a rocket is launched as an energy replenishment station, water is electrolyzed in space to obtain hydrogen and oxygen, and then these are liquefied into liquid hydrogen and liquid oxygen. Supply spacecraft with fuel.

[実 施 例] 以下、本発明の実施例を、図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の系統図であって、太線は水
素の流れるライン、細線は酸素の流れるライン、平行二
重線は水の流れるライン、波形線は電力ラインを示して
いる。
FIG. 1 is a system diagram of an embodiment of the present invention, in which thick lines indicate hydrogen flow lines, thin lines indicate oxygen flow lines, parallel double lines indicate water flow lines, and wavy lines indicate power lines. .

第1図において水タンク1には水補給・供給継手2が接
続されていて、地上において水補給・供給継手2から水
タンク1内に水を入れて貯蔵し、また宇宙において水タ
ンク1内に貯蔵しである水を水補給・供給継手2から他
の宇宙機に供給したりすることができるようになってい
る。水タンクlは水ライン3を介して電気分解装置4に
つながっており、電気分解装置4から水素ライン5と酸
素ライン6が延び、ラジェター7を通って水素ガスタン
ク8と酸素ガスタンク9とにそれぞれ接続されている。
In Fig. 1, a water tank 1 is connected to a water replenishment/supply joint 2, and water is poured into the water tank 1 from the water replenishment/supply joint 2 on the ground and stored, and water is stored in the water tank 1 in space. The stored water can be supplied to other spacecraft from the water supply/supply joint 2. The water tank l is connected to an electrolyzer 4 via a water line 3, and a hydrogen line 5 and an oxygen line 6 extend from the electrolyzer 4 and are connected to a hydrogen gas tank 8 and an oxygen gas tank 9 through a radiator 7, respectively. has been done.

水素ガスタンク8は圧縮機10に接続され、酸素ガスタ
ンク9は他の圧縮機11に接続されており、圧縮機10
.11はタービン12によって駆動されるようになって
いる。圧縮機10は液化機13と、燃焼器14の外側に
ある燃焼器冷却管15とに接続されている。他方の圧縮
機11は、燃焼器14と液化機lBとに接続されている
The hydrogen gas tank 8 is connected to a compressor 10, the oxygen gas tank 9 is connected to another compressor 11, and the compressor 10
.. 11 is adapted to be driven by a turbine 12. The compressor 10 is connected to a liquefier 13 and a combustor cooling pipe 15 located outside the combustor 14 . The other compressor 11 is connected to the combustor 14 and the liquefier IB.

液化機13は、液体水素タンク17、ポンプ18を介し
て液体水素供給口19に接続されており、他方の液化機
16は、液体酸素タンク20、ポンプ21を介して液体
酸素供給口22に接続されており、ポンプ18.21は
タービン23によって駆動されるようになっている。
The liquefier 13 is connected to a liquid hydrogen supply port 19 via a liquid hydrogen tank 17 and a pump 18, and the other liquefier 16 is connected to a liquid oxygen supply port 22 via a liquid oxygen tank 20 and a pump 21. The pump 18.21 is driven by a turbine 23.

燃焼器14は蒸気管24を介してタービン25に接続さ
れており、タービン25は復水管26を介して水タンク
1に接続されていて、タービン25は発電機27を回転
駆動するようになっている。発電機27は電力制御器2
8に接続されており電力制御器28にはさらにソーラー
・セル29とバッテリ30とが接続されており、バッテ
リー30には電力供給端子31が接続されている。
The combustor 14 is connected to a turbine 25 via a steam pipe 24, the turbine 25 is connected to the water tank 1 via a condensate pipe 26, and the turbine 25 rotationally drives a generator 27. There is. The generator 27 is the power controller 2
A solar cell 29 and a battery 30 are further connected to the power controller 28, and a power supply terminal 31 is connected to the battery 30.

ソーラー・セル29は太陽エネルギーから発生した電力
を電力制御器28に送り、電力制御器28は、ソーラー
・セル29および発電機27から送られて来た電力を電
気分解装置4およびバッテリ30に供給し、バッテリー
30は電力供給端子31から外部へ電力を供給したり、
電力制御器28に電力を送り帰したりできるようになっ
ている。
The solar cell 29 sends the power generated from solar energy to the power controller 28, and the power controller 28 supplies the power sent from the solar cell 29 and the generator 27 to the electrolyzer 4 and the battery 30. However, the battery 30 supplies power to the outside from the power supply terminal 31,
Electric power can be sent back to the power controller 28.

水タンクlには地上で水補給・供給継手2から水を貯蔵
し、ロケットをエネルギー補給ステジョンとして打ち上
げる。打ち上げ後に他のロケットとドツキングして水補
給・供給継手2を介して他のロケットから水を補給した
り、他のロケットに水を補給したりすることも可能であ
る。
Water is stored in the water tank l from the water supply/supply joint 2 on the ground, and the rocket is launched as an energy supply station. It is also possible to dock with another rocket after launch and replenish water from the other rocket via the water replenishment/supply joint 2, or to replenish water to the other rocket.

水タンクl内に貯蔵されている水を水ライン3を介して
電気分解装置4に供給すると、水は水素と酸素とに電気
分解され、水素は水素ライン5に入り、酸素は酸素ライ
ン6に入った後、ラジェーター7を通過して冷却され、
水素は水素ガスタンク8に供給され、酸素は酸素ガスタ
ンク9に供給される。
When the water stored in the water tank 1 is supplied to the electrolyzer 4 via the water line 3, the water is electrolyzed into hydrogen and oxygen, the hydrogen enters the hydrogen line 5, and the oxygen enters the oxygen line 6. After entering, it passes through a radiator 7 and is cooled.
Hydrogen is supplied to a hydrogen gas tank 8, and oxygen is supplied to an oxygen gas tank 9.

水素ガスタンク8内の水素の一部は、圧縮機IO1燃焼
器冷却管15、タービン23、燃焼器冷却管32、ター
ビン12を通って燃焼器14の中に入る。
A portion of the hydrogen in the hydrogen gas tank 8 enters the combustor 14 through the compressor IO1 combustor cooling pipe 15, the turbine 23, the combustor cooling pipe 32, and the turbine 12.

また酸素ガスタンク9内の酸素の一部も圧縮機11を通
って燃焼器■4の中に入る。燃焼器14内の点火プラグ
を用いて燃焼器14の中の水素と酸素の混合ガスに着火
して燃焼させると、燃焼ガスは蒸気管24を通ってター
ビン25を回転し、又燃焼によって生じた水は復水管2
6を通って水タンク1に還流する。タービン25が回転
すると発電機27が回転して発電し、発電した電力は電
力制御器28を介して電気分解装置4およびバッテリ=
30に供給される。
A part of the oxygen in the oxygen gas tank 9 also passes through the compressor 11 and enters the combustor 4. When the mixture gas of hydrogen and oxygen in the combustor 14 is ignited and combusted using the ignition plug in the combustor 14, the combustion gas passes through the steam pipe 24, rotates the turbine 25, and also generates gas produced by combustion. Water is condensate pipe 2
6 and return to water tank 1. When the turbine 25 rotates, the generator 27 rotates and generates electricity, and the generated electricity is sent to the electrolyzer 4 and battery via the power controller 28.
30.

燃焼器14内の燃焼により燃焼器冷却管15.32内の
水素が加熱され、タービン23.12を回転し、ポンプ
18.21および圧縮機10.11を駆動する。
Combustion in the combustor 14 heats the hydrogen in the combustor cooling pipe 15.32, rotating the turbine 23.12 and driving the pump 18.21 and compressor 10.11.

圧縮機10.11によって加圧された水素および酸素は
、液化機13.18においてジュール・トムソン効果に
より液化し、それぞれ液体水素タンク17、液体酸素タ
ンク20に貯蔵される。そしてポンプ18.21によっ
て液体水素供給口19、液体酸素供給口22から他の宇
宙機に供給される。
Hydrogen and oxygen pressurized by the compressor 10.11 are liquefied by the Joule-Thomson effect in the liquefier 13.18, and stored in a liquid hydrogen tank 17 and a liquid oxygen tank 20, respectively. The liquid is then supplied to other spacecraft through the liquid hydrogen supply port 19 and the liquid oxygen supply port 22 by pumps 18 and 21.

[発明の効果] 本発明は、宇宙機の燃料である液体水素と液体酸素を水
の状態で運搬するので、打上ロケットとしては高密度物
質を運搬することになって空気抵抗を小さくできるため
有利であり、射場安全の保安距離の制約から広い場所を
必要とせず、打上ロケットの余裕空間を利用して水を積
載できる効果がある。
[Effects of the Invention] The present invention transports liquid hydrogen and liquid oxygen, which are the fuel for spacecraft, in the form of water, so it is advantageous for a launch vehicle because it transports high-density materials and can reduce air resistance. This has the effect of allowing water to be loaded using the free space of the launch vehicle without requiring a large space due to safety distance constraints at the launch site.

そして水を電気分解して得た水素と酸素とを液化し、液
体水素と液体酸素とを燃料として供給することができる
Then, hydrogen and oxygen obtained by electrolyzing water can be liquefied, and liquid hydrogen and liquid oxygen can be supplied as fuel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図である。 図中、■は水タンク、4は電気分解装置、13゜16は
液化機、17は液体水素タンク、19は液体水素供給口
、20は液体酸素タンク、22は液体酸素供給口を示す
。 特 許出願人 石川島播磨重工業株式会社
FIG. 1 is a system diagram of an embodiment of the present invention. In the figure, ■ indicates a water tank, 4 indicates an electrolyzer, 13° and 16 indicate a liquefier, 17 indicates a liquid hydrogen tank, 19 indicates a liquid hydrogen supply port, 20 indicates a liquid oxygen tank, and 22 indicates a liquid oxygen supply port. Patent applicant Ishikawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)水を貯蔵する水タンクと、該水タンク内の水を受け
て水素と酸素とに分解する電気分解装置と、前記分解し
た水素と酸素とをそれぞれ液化させる液化機と、前記液
化された水素と酸素とを貯蔵する液体水素タンクおよび
液体酸素タンクと、前記液体水素タンク内の液体水素と
前記液体酸素タンク内の液体酸素とをそれぞれ外部に供
給する液体水素供給口および液体酸素供給口と、を備え
たことを特徴とする宇宙機のエネルギー供給装置。
1) A water tank that stores water, an electrolyzer that receives water in the water tank and decomposes it into hydrogen and oxygen, a liquefier that liquefies the decomposed hydrogen and oxygen, respectively, and a liquefier that liquefies the decomposed hydrogen and oxygen. A liquid hydrogen tank and a liquid oxygen tank that store hydrogen and oxygen, and a liquid hydrogen supply port and a liquid oxygen supply port that supply the liquid hydrogen in the liquid hydrogen tank and the liquid oxygen in the liquid oxygen tank to the outside, respectively. An energy supply device for a spacecraft, characterized by comprising:
JP2017083A 1990-01-26 1990-01-26 Energy supply system for spacecraft Pending JPH03224897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017083A JPH03224897A (en) 1990-01-26 1990-01-26 Energy supply system for spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083A JPH03224897A (en) 1990-01-26 1990-01-26 Energy supply system for spacecraft

Publications (1)

Publication Number Publication Date
JPH03224897A true JPH03224897A (en) 1991-10-03

Family

ID=11934086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083A Pending JPH03224897A (en) 1990-01-26 1990-01-26 Energy supply system for spacecraft

Country Status (1)

Country Link
JP (1) JPH03224897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520707A (en) * 2008-05-26 2011-07-21 スネクマ Aircraft powered by a hybrid power source
CN105438501A (en) * 2015-11-30 2016-03-30 北京控制工程研究所 Space station aqueous-based propulsion system based on hydrogen arc thruster and hydrogen oxygen engine
CN110127089A (en) * 2019-05-10 2019-08-16 北京控制工程研究所 A kind of water base propulsion system and method applied to high rail satellite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520707A (en) * 2008-05-26 2011-07-21 スネクマ Aircraft powered by a hybrid power source
CN105438501A (en) * 2015-11-30 2016-03-30 北京控制工程研究所 Space station aqueous-based propulsion system based on hydrogen arc thruster and hydrogen oxygen engine
CN105438501B (en) * 2015-11-30 2017-08-29 北京控制工程研究所 The water base propulsion system in space station based on hydrogen Arcjet and oxyhydrogen engine
CN110127089A (en) * 2019-05-10 2019-08-16 北京控制工程研究所 A kind of water base propulsion system and method applied to high rail satellite

Similar Documents

Publication Publication Date Title
US6474101B1 (en) Natural gas handling system
JP5584768B2 (en) Liquefied fuel gas supply ship
KR102438790B1 (en) Bunkering vessel
KR100832603B1 (en) Liquefied natural gas carrier
US20100205979A1 (en) Integrated LNG Re-Gasification Apparatus
KR100714090B1 (en) Regasification system in electric propulsion lngc
CN110914586A (en) Method for transferring a cryogenic fluid and transfer system for implementing such a method
US11658316B2 (en) Fuel cell system
KR200431697Y1 (en) Electric propulsion type regasification LNGC for reducing NOx emission
JP2003254084A (en) Distributed cogeneration facility using gas hydrate
JPH03224897A (en) Energy supply system for spacecraft
US20140165584A1 (en) Cryogenic pump system for converting fuel
US5301510A (en) Self-powered slush maintenance unit
JPH01172700A (en) Evaporation gas treatment equipment in lng base
JPH10252996A (en) Method and device for controlling lng for power station
KR101654243B1 (en) Electric Heating System And Method
RU2270792C1 (en) Launch complex for preparation and launching of launch vehicles with spacecraft
KR101599396B1 (en) Electric Heating System And Method
KR20200118960A (en) Return gas treatment system for small scale LNG bunkering system
KR102367178B1 (en) boil-off gas treatment system of LNG fueled ship equipped with hybrid power generation system
RU2345933C1 (en) Multistage carrier rocket
KR101599400B1 (en) Electric Heating System And Method
KR102404665B1 (en) Gas treatment system of hydrogen carrier
JP7134450B1 (en) Buoyancy power generation device using air bubbles and buoyancy power generation method using air bubbles
JP2634266B2 (en) Propellant production storage device