JP2003254084A - Distributed cogeneration facility using gas hydrate - Google Patents

Distributed cogeneration facility using gas hydrate

Info

Publication number
JP2003254084A
JP2003254084A JP2002055790A JP2002055790A JP2003254084A JP 2003254084 A JP2003254084 A JP 2003254084A JP 2002055790 A JP2002055790 A JP 2002055790A JP 2002055790 A JP2002055790 A JP 2002055790A JP 2003254084 A JP2003254084 A JP 2003254084A
Authority
JP
Japan
Prior art keywords
natural gas
facility
gas hydrate
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002055790A
Other languages
Japanese (ja)
Inventor
Hajime Kanda
神田  肇
Takeshi Suzuki
鈴木  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2002055790A priority Critical patent/JP2003254084A/en
Publication of JP2003254084A publication Critical patent/JP2003254084A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributed cogeneration facility increasing the supply of thermal energy by safely and efficiently transporting natural gas to remote areas. <P>SOLUTION: A natural gas hydrate c generated in a natural gas hydrate generation facility 21 provided in a liquefied natural gas receiving station or the like is transported using a transporting container 15 to the distributed cogeneration facility 21. At the distributed cogeneration facility 21, the natural gas hydrate c is intermittently fed from the container 15 into a high pressure container 22. The natural gas hydrate c in the high pressure container 22 is decomposed into fuel gas a' and water by use of reducing water heated by the air-conditioning load of an air-conditioning facility 23, and the high pressure fuel gas a' generated is fed to gas-consuming equipment 25 such as a gas turbine. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、天然ガスハイドレ
ートを用いる分散型コージェネレーション設備に関する
ものである。
TECHNICAL FIELD The present invention relates to a distributed cogeneration facility using natural gas hydrate.

【0002】[0002]

【従来の技術】一般に、郊外に点在する大型のショッピ
ングセンターやスーパーマーケット、或いは、病院など
は、電力会社から電気を購入し、燃料会社から重油など
の燃料を購入して電気や熱エネルギーを賄っているが、
近年、電気と熱エネルギーの併給手段として、天然ガス
を利用したマイクロガスタービンや燃料電池などを利用
することが考えられている。
2. Description of the Related Art Generally, large shopping centers, supermarkets, and hospitals scattered in the suburbs purchase electricity from electric power companies and fuel such as heavy oil from fuel companies to supply electricity and heat energy. However,
In recent years, it has been considered to use a micro gas turbine using natural gas, a fuel cell or the like as a means for supplying electricity and heat energy together.

【0003】ところが、天然ガス導管の無い地域におい
ては、何らかの形で天然ガスを輸送し、又は冷熱を製造
する必要がある。そこで、LNG(液化天然ガス)やC
NG(圧縮天然ガス)の利用が考えられるが、LNGの
場合には、−162℃の状態を保つため、二重殻構造の
特殊なタンクを必要とする。また、CNG(圧縮天然ガ
ス)の場合には、25〜30MPa程度の高圧ガスの形
での輸送及び貯蔵となるため、小容量のシリンダータン
クを用いた輸送及び貯蔵となり、正味の輸送量及び貯蔵
量が少なくなる。
However, in areas where there is no natural gas conduit, there is some need to transport natural gas or produce cold heat. Therefore, LNG (liquefied natural gas) and C
The use of NG (compressed natural gas) is conceivable, but in the case of LNG, a special tank with a double shell structure is required to maintain the state of -162 ° C. Further, in the case of CNG (compressed natural gas), since it is transported and stored in the form of high-pressure gas of about 25 to 30 MPa, it is transported and stored using a small-capacity cylinder tank, and the net transport amount and storage The quantity is reduced.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の問題
を解消するために行なわれたものであり、遠隔地へ天然
ガスを安全、かつ、効率的に輸送し、熱エネルギーの供
給量の向上を計り得る天然ガスハイドレートを用いる分
散型コージェネレーション設備を提供することを主たる
目的とするものである。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to safely and efficiently transport natural gas to a remote place and to reduce the amount of heat energy supplied. The main object of the present invention is to provide a distributed cogeneration facility using natural gas hydrate that can be improved.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
め、請求項1に記載の発明に係るガスハイドレートを用
いる分散型コージェネレーション設備は、ガスタービン
発電設備と、高圧容器と、温水ボイラ及び空調設備など
を備えた分散型コージェネレーション設備であって、液
化天然ガス受入れ基地又は天然ガス田に設けた天然ガス
ハイドレート生成設備で生成した天然ガスハイドレート
を、輸送容器を用いて分散型コージェネレーション設備
に輸送し、該分散型コージェネレーション設備にて天然
ガスハイドレートを輸送容器から高圧容器に間欠的に送
出し、該高圧容器内の天然ガスハイドレートを空調設備
の空調負荷で加温された還水によって燃料ガスと水に分
解し、分解により発生した高圧の燃料ガスをガスタービ
ンなどのガス消費機器に送出することを特徴とするガス
ハイドレートを用いる分散型コージェネレーション設備
である。
In order to solve the above-mentioned problems, a distributed cogeneration facility using a gas hydrate according to the invention as defined in claim 1 is a gas turbine power generation facility, a high pressure vessel, and a hot water boiler. And a decentralized cogeneration facility equipped with air-conditioning equipment, which uses a transportation container to disperse the natural gas hydrate produced by the natural gas hydrate production facility installed in the liquefied natural gas receiving terminal or natural gas field. It is transported to a cogeneration facility, where natural gas hydrate is intermittently sent from the transportation container to the high-pressure container by the distributed cogeneration facility, and the natural gas hydrate in the high-pressure container is heated by the air conditioning load of the air conditioning facility. The returned return water decomposes it into fuel gas and water, and the high-pressure fuel gas generated by the decomposition is consumed by gas turbines and other equipment. It is a distributed cogeneration equipment using a gas hydrate, which comprises delivering to the vessel.

【0006】請求項2に記載の発明に係るガスハイドレ
ートを用いる分散型コージェネレーション設備は、ガス
タービン発電装置と、圧力容器と、温水ボイラ及び空調
設備で構成され、前記ガスタービン発電装置は、空気圧
縮機と、燃焼器と、ガスタービン及び発電機で構成さ
れ、前記圧力容器及び空調設備は、循環ポンプを備えた
循環パイプによって連通され、更に、前記圧力容器と燃
焼器とは、制御弁を備えた高圧パイプによって接続さ
れ、かつ、前記圧力容器は、開閉弁を備えた接続パイプ
を備えている請求項1記載のガスハイドレートを用いる
分散型コージェネレーション設備である。
[0006] A distributed cogeneration facility using a gas hydrate according to a second aspect of the present invention comprises a gas turbine power generator, a pressure vessel, a hot water boiler and an air conditioning facility, and the gas turbine power generator is It is composed of an air compressor, a combustor, a gas turbine and a generator, the pressure vessel and the air conditioning equipment are connected by a circulation pipe equipped with a circulation pump, and the pressure vessel and the combustor are provided with a control valve. The distributed cogeneration facility using a gas hydrate according to claim 1, wherein the pressure vessel is connected by a high pressure pipe, and the pressure vessel is provided with a connection pipe having an on-off valve.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1に示すように、液化天然ガス受入れ基
地又は天然ガス田などの基地10に設置した天然ガスハ
イドレート生成設備11では、図示しないLNGタンク
で気化したボイルオフガスや天然ガス田で採れた天然ガ
スaと水bを天然ガスハイドレート生成槽12に導入し
て天然ガスハイドレートcを生成するようになっている
(図3の符号A参照)。この天然ガスハイドレート生成
槽12は、公知の攪拌手段13を備え、槽内を攪拌する
ようになっている。
As shown in FIG. 1, in a natural gas hydrate production facility 11 installed in a liquefied natural gas receiving terminal or a terminal 10 such as a natural gas field, the natural gas hydrate can be collected in a boil-off gas or natural gas field vaporized in an LNG tank (not shown). The natural gas a and the water b are introduced into the natural gas hydrate production tank 12 to produce the natural gas hydrate c (see symbol A in FIG. 3). The natural gas hydrate production tank 12 is provided with a known stirring means 13 to stir the inside of the tank.

【0009】この天然ガスハイドレート生成槽12で生
成された天然ガスハイドレートcは、脱水機及び過冷却
器17によって脱水及び過冷却され(図3の符号B参
照)、ドライパウダー又はペレット状に処理された後、
大気圧になるまで脱圧され、可搬スキッド14上に搭載
した輸送容器15に積み込まれる(図3の符号C参
照)。天然ガスハイドレートcの過冷却には、例えば、
LNG(液化天然ガス)などが好ましく使用される。
The natural gas hydrate c produced in the natural gas hydrate production tank 12 is dehydrated and supercooled by a dehydrator and a supercooler 17 (see symbol B in FIG. 3) to be in the form of dry powder or pellets. After being processed
It is depressurized to atmospheric pressure and loaded in a transport container 15 mounted on the transportable skid 14 (see symbol C in FIG. 3). To supercool the natural gas hydrate c, for example,
LNG (liquefied natural gas) or the like is preferably used.

【0010】しかる後に、天然ガスハイドレートを積み
込んだ輸送容器15は、トレラー16によって分散型コ
ージェネレーション設備20に輸送される。この分散型
コージェネレーション設備20は、図2に示すように、
中小規模のガスタービン発電装置21と、圧力容器22
と、空調設備23および温水ボイラ28で構成されてい
る。
Thereafter, the transport container 15 loaded with the natural gas hydrate is transported by the trailer 16 to the distributed cogeneration facility 20. This distributed cogeneration facility 20, as shown in FIG.
Small and medium-sized gas turbine power generator 21 and pressure vessel 22
And an air conditioner 23 and a hot water boiler 28.

【0011】上記ガスタービン発電装置21は、空気圧
縮機24と、燃焼器25と、ガスタービン26及び発電
機27で構成され、空気圧縮機24及び発電機27は、
ガスタービン26によって運転されるようになってい
る。
The gas turbine power generator 21 comprises an air compressor 24, a combustor 25, a gas turbine 26 and a generator 27. The air compressor 24 and the generator 27 are
It is adapted to be operated by the gas turbine 26.

【0012】一方、圧力容器22及び空調設備23は、
熱交換器35を共有し、熱交換器35で加温された水b
を噴射ノズル36から圧力容器22内に噴射する一方、
熱交換器35で冷却された冷水b″を空調設備23に還
元するようになっている。符号29及び37は、循環ポ
ンプを示している。更に、圧力容器22及び燃焼器25
は、制御弁31を備えた高圧パイプ32によって接続さ
れている。また、圧力容器22は、開閉弁33を備えた
接続パイプ34を備えており、この接続パイプ34に輸
送容器15を接続するようになっている。
On the other hand, the pressure vessel 22 and the air conditioning equipment 23 are
Water b shared by the heat exchanger 35 and heated by the heat exchanger 35
While injecting from the injection nozzle 36 into the pressure vessel 22,
The cold water b ″ cooled by the heat exchanger 35 is returned to the air conditioning equipment 23. Reference numerals 29 and 37 denote circulation pumps. Further, the pressure vessel 22 and the combustor 25.
Are connected by a high pressure pipe 32 with a control valve 31. Further, the pressure vessel 22 is provided with a connection pipe 34 having an opening / closing valve 33, and the transportation container 15 is connected to the connection pipe 34.

【0013】分散型コージェネレーション設備20の設
置場所に到着した輸送容器15は、トレラー16から切
り離され、可搬スキッド14と共に所定の場所に載置さ
れた後、圧力容器22の接続パイプ34に接続される
(図1参照)。この輸送容器15の内部は、例えば、大
気圧に保持されるとともに、−15℃程度に保持されて
いる。
The transport container 15 that has arrived at the installation location of the distributed cogeneration facility 20 is separated from the trailer 16, placed on a predetermined place together with the portable skid 14, and then connected to the connection pipe 34 of the pressure container 22. (See FIG. 1). The inside of the transport container 15 is maintained at, for example, atmospheric pressure and at about −15 ° C.

【0014】しかして、開閉弁33を操作して輸送容器
15内の天然ガスハイドレートcを圧力容器22内に所
定量だけ取り込んだ後、循環ポンプ29及び37を運転
して圧力容器22内の水b及び空調設備23の水b′を
それぞれ循環させると、圧力容器22内の天然ガスハイ
ドレートcが高圧の燃料ガスa′と水bに分解される
(図3の符号C→D参照)。
However, after operating the on-off valve 33 to take in a predetermined amount of the natural gas hydrate c in the transportation container 15 into the pressure container 22, the circulation pumps 29 and 37 are operated to operate the inside of the pressure container 22. When the water b and the water b ′ in the air conditioning equipment 23 are circulated, the natural gas hydrate c in the pressure vessel 22 is decomposed into high-pressure fuel gas a ′ and water b (see symbols C → D in FIG. 3). .

【0015】分解により得られた高圧の燃料ガスa′
は、制御弁31によって所定の圧力、例えば、1〜2M
Paに圧力調整され、燃焼器25に供される(図3の符
号D→E参照)。そして、圧縮機24から供給される燃
焼用空気dと混合して燃焼し、燃焼ガスとなってガスタ
ービン26に供給され、発電機27を回転駆動する原動
力となる。
High-pressure fuel gas a'obtained by decomposition
Is controlled by the control valve 31 to a predetermined pressure, for example, 1 to 2M.
The pressure is adjusted to Pa and the combustor 25 is supplied (see reference numeral D → E in FIG. 3). Then, it is mixed with the combustion air d supplied from the compressor 24 and burned to form combustion gas, which is supplied to the gas turbine 26 and serves as a driving force for rotationally driving the generator 27.

【0016】天然ガスハイドレートcの分解によって生
じた生成水bで冷却(例えば、7℃程度)された冷水
b″は、空調設備23に供される。この空調設備23を
通過する間に昇温(例えば、12℃程度)した還水b′
は、再度、熱交換器35に戻される。なお、余分な生成
水bは、図示しない貯水槽に移送される。
The cold water b ″ cooled (for example, about 7 ° C.) with the produced water b generated by the decomposition of the natural gas hydrate c is supplied to the air conditioning equipment 23. Warm water (for example, about 12 ° C) b '
Are returned to the heat exchanger 35 again. The extra generated water b is transferred to a water tank (not shown).

【0017】一方、ガスタービン26から排出された排
ガスeは、温水ボイラ28に導入され、温水の生成に供
される。そして、圧力容器22内の天然ガスハイドレー
トcが消費されると、輸送容器15から圧力容器22
に、再度、天然ガスハイドレートcが供給され、上記と
同様の作業が行なわれる。
On the other hand, the exhaust gas e discharged from the gas turbine 26 is introduced into the hot water boiler 28 and is used for generating hot water. When the natural gas hydrate c in the pressure vessel 22 is consumed, the transportation vessel 15 changes the pressure vessel 22.
Then, the natural gas hydrate c is supplied again, and the same work as above is performed.

【0018】図3は、天然ガスの解離曲線を示す線図で
あり、LNG受入れ基地のLNGタンクで気化したボイ
ルオフガスや天然ガス田で採れた天然ガスを天然ガスハ
イドレート生成槽で天然ガスハイドレートを生成し
(A)、これを脱水及び過冷却(B)してトレーラーに
積み込む(C)。この時、天然ガスハイドレートは、自
己保存状態にある。
FIG. 3 is a diagram showing a dissociation curve of natural gas. The boil-off gas vaporized in the LNG tank at the LNG receiving terminal and the natural gas collected in the natural gas field are converted into natural gas hydrate in the natural gas hydrate production tank. A rate is produced (A) which is dehydrated and subcooled (B) and loaded onto a trailer (C). At this time, the natural gas hydrate is in a self-preserving state.

【0019】分散コージェネレーションサイドで、空調
器などの負荷によって天然ガスハイドレートを分解して
燃料ガス及び水を分離する(C→D→E)。発生した燃
料ガスは、ガスホルダー又はガスタービンなどのガス消
費機器に供給し、生成水は、貯水槽に移送する。
On the distributed cogeneration side, a natural gas hydrate is decomposed by a load such as an air conditioner to separate fuel gas and water (C → D → E). The generated fuel gas is supplied to a gas consuming device such as a gas holder or a gas turbine, and the generated water is transferred to a water tank.

【0020】以上の説明では、天然ガスハイドレートが
分解してできた燃料ガスをガスタービンに供給する場合
について説明したが、例えば、ガスエンジンや、燃料電
池などのガス消費機器に供給することも考えられる。
In the above description, the case where the fuel gas produced by decomposing the natural gas hydrate is supplied to the gas turbine has been described. However, it may be supplied to a gas consuming device such as a gas engine or a fuel cell. Conceivable.

【0021】[0021]

【発明の効果】上記のように、本発明は、ガスタービン
発電設備と、高圧容器と、温水ボイラ及び空調設備など
を備えた分散型コージェネレーション設備であって、液
化天然ガス受入れ基地又は天然ガス田に設けた天然ガス
ハイドレート生成設備で生成した天然ガスハイドレート
を、輸送容器を用いて分散型コージェネレーション設備
に輸送し、該分散型コージェネレーション設備にて天然
ガスハイドレートを輸送容器から高圧容器に間欠的に送
出し、該高圧容器内の天然ガスハイドレートを空調設備
の空調負荷で加温された還水によって燃料ガスと水に分
解し、分解により発生した高圧の燃料ガスをガスタービ
ンなどのガス消費機器に送出することに特徴がある。
As described above, the present invention is a distributed cogeneration facility equipped with a gas turbine power generation facility, a high pressure vessel, a hot water boiler, an air conditioning facility and the like, which is a liquefied natural gas receiving base or natural gas. The natural gas hydrate produced in the natural gas hydrate production facility installed in the rice field is transported to the distributed cogeneration facility using a transportation container, and the natural gas hydrate is pressurized from the transportation container in the distributed cogeneration facility. The natural gas hydrate in the high-pressure container is intermittently delivered to the container and decomposed into fuel gas and water by the return water heated by the air conditioning load of the air-conditioning equipment, and the high-pressure fuel gas generated by the decomposition is gas turbine It is characterized by sending to gas consuming equipment such as.

【0022】従って、本発明によれば、ガスタービンに
よる発電によって電気が賄える一方、ガスタービン排ガ
スを利用して温熱が賄えるとともに、空調設備による冷
熱が賄える。
Therefore, according to the present invention, electricity can be provided by the power generation by the gas turbine, while hot heat can be provided by using the gas turbine exhaust gas and cold heat by the air conditioning equipment can be provided.

【0023】その上、本発明は、上記のように、高圧容
器に冷凍負荷還水(12℃程度)を注入することで容易
に所定圧力(1〜2MPa)の燃料ガスが得られる。従
って、ガスタービンの場合には、燃料用ガス圧縮機が不
要となるため、設置コスト及び電気エネルギーを低減す
ることができる。
Moreover, according to the present invention, as described above, the fuel gas having a predetermined pressure (1-2 MPa) can be easily obtained by injecting the refrigerating load return water (about 12 ° C.) into the high-pressure container. Therefore, in the case of a gas turbine, a gas compressor for fuel is unnecessary, so that installation cost and electric energy can be reduced.

【0024】また、天然ガスハイドレート分解水は、7
℃程度の空調用冷水となり、そのまま空調負荷に利用さ
れ、12℃程度の還水となって、再度、天然ガスハイド
レートを分解する。すなわち、高圧容器が冷凍機と同様
の機能を有することとなることから、本方式を採ること
で通常必要とされる温水吸収式冷凍機が不要となり、設
置コスト及び電気エネルギーを低減することができる。
The natural gas hydrate decomposed water is 7
It becomes cold water for air conditioning at about ℃, it is used as it is for the air conditioning load, and it becomes return water at about 12 ℃ and decomposes natural gas hydrate again. That is, since the high-pressure container has the same function as the refrigerator, the hot water absorption refrigerator normally required by adopting this method is unnecessary, and the installation cost and electric energy can be reduced. .

【0025】また、天然ガスハイドレートは、自己保存
性があるために、大気圧及び−15℃程度の環境下で安
定することから、保冷タンク内にて安全に保管又は輸送
できるメリットがあるが、LNGの場合には、−162
℃の状態を保つため、二重殻構造の特殊なタンクを必要
とする。また、CNG(圧縮天然ガス)の場合には、2
5〜30MPa程度の高圧ガスの形での輸送及び貯蔵と
なるため、小容量のシリンダータンクを用いた輸送及び
貯蔵となり、正味の輸送量及び貯蔵量が少なくなる。
Further, since natural gas hydrate has a self-preserving property, it is stable under the environment of atmospheric pressure and about −15 ° C., so that there is an advantage that it can be safely stored or transported in a cold storage tank. , In the case of LNG, -162
A special tank with a double shell structure is required to maintain the temperature of ℃. In the case of CNG (compressed natural gas), 2
Since it is transported and stored in the form of high-pressure gas of about 5 to 30 MPa, it is transported and stored using a small-capacity cylinder tank, and the net transport amount and storage amount are reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る分散型コージェネレーション設備
の模式図である。
FIG. 1 is a schematic diagram of a distributed cogeneration facility according to the present invention.

【図2】本発明に係る分散型コージェネレーション設備
の概略図である。
FIG. 2 is a schematic diagram of a distributed cogeneration facility according to the present invention.

【図3】天然ガスの解離曲線を示す線図である。FIG. 3 is a diagram showing a dissociation curve of natural gas.

【符号の説明】[Explanation of symbols]

11 天然ガスハイドレート生成設備 15 輸送容器 21 ガスタービン発電設備 22 高圧容器 23 空調設備 25 ガスタービンなどのガス消費機器 28 温水ボイラ a′ 燃料ガス b′ 還水 b 水 c 天然ガスハイドレート 11 Natural gas hydrate production facility 15 shipping containers 21 Gas turbine power generation equipment 22 High-pressure container 23 Air conditioning equipment Gas consumption equipment such as 25 gas turbines 28 Hot water boiler a'fuel gas b'return water b water c Natural gas hydrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン発電設備と、高圧容器と、
温水ボイラ及び空調設備などを備えた分散型コージェネ
レーション設備であって、液化天然ガス受入れ基地又は
天然ガス田に設けた天然ガスハイドレート生成設備で生
成した天然ガスハイドレートを、輸送容器を用いて分散
型コージェネレーション設備に輸送し、該分散型コージ
ェネレーション設備にて天然ガスハイドレートを輸送容
器から高圧容器に間欠的に送出し、該高圧容器内の天然
ガスハイドレートを空調設備の空調負荷で加温された還
水によって燃料ガスと水に分解し、分解により発生した
高圧の燃料ガスをガスタービンなどのガス消費機器に送
出することを特徴とするガスハイドレートを用いる分散
型コージェネレーション設備。
1. A gas turbine power generation facility, a high-pressure vessel,
A distributed cogeneration system equipped with a hot water boiler and an air conditioning system, which uses natural gas hydrate produced by a natural gas hydrate production facility installed in a liquefied natural gas receiving terminal or a natural gas field using a transportation container. The natural gas hydrate is transported to the decentralized cogeneration facility, and the natural gas hydrate is intermittently sent from the transportation container to the high-pressure container by the decentralized cogeneration facility, and the natural gas hydrate in the high-pressure container is used by the air conditioning load of the air conditioning facility. A distributed cogeneration facility using a gas hydrate, characterized in that it decomposes into fuel gas and water by heated return water and sends the high-pressure fuel gas generated by the decomposition to a gas consuming device such as a gas turbine.
【請求項2】 分散型コージェネレーション設備は、ガ
スタービン発電装置と、圧力容器と、温水ボイラ及び空
調設備で構成され、前記ガスタービン発電装置は、空気
圧縮機と、燃焼器と、ガスタービン及び発電機で構成さ
れ、前記圧力容器及び空調設備は、循環ポンプを備えた
循環パイプによって連通され、更に、前記圧力容器と燃
焼器とは、制御弁を備えた高圧パイプによって接続さ
れ、かつ、前記圧力容器は、開閉弁を備えた接続パイプ
を備えている請求項1記載のガスハイドレートを用いる
分散型コージェネレーション設備。
2. The distributed cogeneration facility comprises a gas turbine power generator, a pressure vessel, a hot water boiler and an air conditioning facility, and the gas turbine power generator includes an air compressor, a combustor, a gas turbine, and A pressure generator and an air conditioner are connected by a circulation pipe equipped with a circulation pump, and the pressure container and the combustor are connected by a high-pressure pipe equipped with a control valve, and The distributed cogeneration facility using a gas hydrate according to claim 1, wherein the pressure vessel is provided with a connection pipe having an opening / closing valve.
JP2002055790A 2002-03-01 2002-03-01 Distributed cogeneration facility using gas hydrate Pending JP2003254084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002055790A JP2003254084A (en) 2002-03-01 2002-03-01 Distributed cogeneration facility using gas hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002055790A JP2003254084A (en) 2002-03-01 2002-03-01 Distributed cogeneration facility using gas hydrate

Publications (1)

Publication Number Publication Date
JP2003254084A true JP2003254084A (en) 2003-09-10

Family

ID=28666543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002055790A Pending JP2003254084A (en) 2002-03-01 2002-03-01 Distributed cogeneration facility using gas hydrate

Country Status (1)

Country Link
JP (1) JP2003254084A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162795A (en) * 2005-12-13 2007-06-28 Mitsui Eng & Shipbuild Co Ltd Storage method of gas hydrate
JP2007285569A (en) * 2006-04-14 2007-11-01 Chugoku Electric Power Co Inc:The Dehumidifier
JP2007308043A (en) * 2006-05-19 2007-11-29 Chugoku Electric Power Co Inc:The Transport ship
JP2007322029A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Hot water heat supply system by steam pressurization method
JP2007322030A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Hot water supply system by pump pressurization method
JP2007322026A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Hot water heat supply system by gas pressurization method
JP2007322032A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Desiccant air conditioning system
JP2007322025A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Air conditioning system
JP2008126826A (en) * 2006-11-21 2008-06-05 Chugoku Electric Power Co Inc:The Vessel
JP2008126827A (en) * 2006-11-21 2008-06-05 Chugoku Electric Power Co Inc:The Vessel
KR101294886B1 (en) 2012-08-14 2013-08-08 주식회사에스티엑스종합기술원 Natural gas hydrate dissociation and unloading system and method
KR101387759B1 (en) 2012-08-23 2014-04-21 삼성중공업 주식회사 Cleaning system for cargo holds

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162795A (en) * 2005-12-13 2007-06-28 Mitsui Eng & Shipbuild Co Ltd Storage method of gas hydrate
JP2007285569A (en) * 2006-04-14 2007-11-01 Chugoku Electric Power Co Inc:The Dehumidifier
JP2007308043A (en) * 2006-05-19 2007-11-29 Chugoku Electric Power Co Inc:The Transport ship
JP2007322032A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Desiccant air conditioning system
JP2007322030A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Hot water supply system by pump pressurization method
JP2007322026A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Hot water heat supply system by gas pressurization method
JP2007322029A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Hot water heat supply system by steam pressurization method
JP2007322025A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Air conditioning system
JP4578437B2 (en) * 2006-05-30 2010-11-10 中国電力株式会社 Hot water heat supply system by steam pressurization method
JP2008126826A (en) * 2006-11-21 2008-06-05 Chugoku Electric Power Co Inc:The Vessel
JP2008126827A (en) * 2006-11-21 2008-06-05 Chugoku Electric Power Co Inc:The Vessel
KR101294886B1 (en) 2012-08-14 2013-08-08 주식회사에스티엑스종합기술원 Natural gas hydrate dissociation and unloading system and method
KR101387759B1 (en) 2012-08-23 2014-04-21 삼성중공업 주식회사 Cleaning system for cargo holds

Similar Documents

Publication Publication Date Title
CN104024619B (en) Fuel combination supply system and method for the engine of ship
CN104704229B (en) Gaseous fuel is fed to engine from liquid condition
JP2003254084A (en) Distributed cogeneration facility using gas hydrate
US20140116062A1 (en) Method and system for combusting boil-off gas and generating electricity at an offshore lng marine terminal
US20100205979A1 (en) Integrated LNG Re-Gasification Apparatus
KR20130027319A (en) Refrigeration and air-con system using lng or bog from lng fuelled propulsion ship
US6079222A (en) Method for preparing deep-frozen liquid gas
KR20170120862A (en) Liquefied Gas Supply System and Method for Ship
CN109506126A (en) A kind of re-liquefied fuel dispensing system of small-sized LNG fuel ship BOG
US9097208B2 (en) Cryogenic pump system for converting fuel
CN209196537U (en) A kind of re-liquefied fuel dispensing system of small-sized LNG fuel ship BOG
KR200431697Y1 (en) Electric propulsion type regasification LNGC for reducing NOx emission
CN106461318A (en) Method and facility for transporting and liquefying gas
Łaciak Thermodynamic processes involving Liquefied Natural Gas at the LNG receiving terminals
KR102578402B1 (en) Boil-Off Gas Proceeding System for Liquefied Hydrogen Carrier
CN103382930A (en) System utilizing normal temperature compressor to process low temperature gas
JP4414924B2 (en) Cold supply system
JP2004325031A (en) Heat accumulation system by gas hydrate
JPH10252996A (en) Method and device for controlling lng for power station
KR20220152592A (en) Gas treatment system of hydrogen carrier
CN113734352A (en) Gas supply system with re-condensation function and working method
KR102578403B1 (en) Boil-Off Gas Proceeding System for Liquefied Hydrogen Carrier
KR20230001602A (en) Gas management system in ship
KR102404665B1 (en) Gas treatment system of hydrogen carrier
KR102452417B1 (en) Complex power generating system and ship having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926