JPH03224204A - Low loss oxide magnetic material - Google Patents

Low loss oxide magnetic material

Info

Publication number
JPH03224204A
JPH03224204A JP2024364A JP2436490A JPH03224204A JP H03224204 A JPH03224204 A JP H03224204A JP 2024364 A JP2024364 A JP 2024364A JP 2436490 A JP2436490 A JP 2436490A JP H03224204 A JPH03224204 A JP H03224204A
Authority
JP
Japan
Prior art keywords
oxide
weight
loss
magnetic material
exceeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2024364A
Other languages
Japanese (ja)
Other versions
JP2551491B2 (en
Inventor
Kiyoshi Shoji
潔 庄司
Tsutomu Otsuka
努 大塚
Atsushi Yonekura
淳 米倉
Tetsuyoshi Chiba
千葉 哲義
Tatsuya Chiba
龍矢 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to DE69020726T priority Critical patent/DE69020726T2/en
Priority to PCT/JP1990/001017 priority patent/WO1991010241A1/en
Priority to EP90912078A priority patent/EP0460215B1/en
Publication of JPH03224204A publication Critical patent/JPH03224204A/en
Application granted granted Critical
Publication of JP2551491B2 publication Critical patent/JP2551491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To optimize the title magnetic material for switching power supply transformer while minimizing the power loss by a method wherein specific content of MnO, ZnO and remaining part of Fe2 as for the main components likewise specific content of CaO, SiO2 as for the sub components while specific content of HfO2 as for the additive are respectively used. CONSTITUTION:The title magnetic material contains 30-42mole% of MnO, 4.0-19mole% of ZnO and remaining % of Fe2O3 as for the main component likewise 0.020-0.15wt% of CaO, 0.005-0.10wt.% of SiO2 as for the sub component. Besides, as for the additives, HfO2 not exceeding 1.00wt.% or at least one kind out of ZrO2 not exceeding 0.30wt%, V2O3 not exceeding 0.20wt.%, Ta2O3 not exceeding 0.30wt.% are contained. Furthermore, as for the additives, one kind out of Al2O3 not exceeding 0.50wt.%, TiO2 not exceeding 0.30wt.% may be further contained. Through these procedures, the power loss can be minimized even at the high-frequency exceeding 100kHz.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電源トランス等に用いられる低損失酸化物磁
性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-loss oxide magnetic material used in power transformers and the like.

[従来の技術] 従来のスイッチング電源用の変圧器においては。[Conventional technology] In transformers for conventional switching power supplies.

スイッチング周波数として専ら10〜200 kHz程
度のものが使用されており、これに対応すべき低損失酸
化物磁性材料として、主成分として30〜40モル%の
一酸化マンガン(MnO)、5〜15モル%の酸化亜鉛
(ZnO)及び残部として酸化第二鉄(Fe203 )
を含み、副成分として。
A switching frequency of about 10 to 200 kHz is used, and a low-loss oxide magnetic material that is compatible with this is manganese monoxide (MnO) with a main component of 30 to 40 mol% and 5 to 15 mol. % zinc oxide (ZnO) and balance ferric oxide (Fe203)
Contains as an accessory ingredient.

0.04〜0.15重量%の酸化カルシウム(Cab)
と0.010〜0.100重量%の二酸化ケイ素(S 
z 02 )とを含むM n −Z n系スピネル型フ
ェライトがすでに開発されている。
0.04-0.15% by weight of calcium oxide (Cab)
and 0.010 to 0.100% by weight of silicon dioxide (S
Mn-Zn-based spinel ferrite containing z02) has already been developed.

[発明が解決しようとする課題] 近年、スイッチング電源を小型・軽量化するために、ス
イッチング周波数が100 k)Izz以上高周波で使
用するのが一般的となりつつある。
[Problems to be Solved by the Invention] In recent years, in order to reduce the size and weight of switching power supplies, it has become common to use them at high switching frequencies of 100 k)Izz or higher.

ところが従来の成分を有する低損失酸化物磁性材料をス
イッチング周波数か100 kHz以上のスイッチング
電源用の変圧器の磁心材料として使用すると鉄損による
電力損失が大きく、それによる発熱のため許容温度以上
に温度か上昇し、トランス自体やその周辺部品を損ない
使用に耐えないという欠点かあった。
However, when a low-loss oxide magnetic material with conventional components is used as the magnetic core material of a transformer for a switching power supply with a switching frequency of 100 kHz or higher, power loss due to iron loss is large, and the resulting heat generation causes the temperature to rise above the allowable temperature. The drawback was that the transformer itself and its surrounding parts could be damaged, making it unusable.

そこで1本発明の技術的課題は周波数が100k Hz
以上の高い周波数で使用しても鉄損を小さく。
Therefore, one technical problem of the present invention is that the frequency is 100kHz.
Reduces iron loss even when used at higher frequencies.

従って発熱を許容温度以下に抑えて実用に供し得る低損
失酸化物磁性材料を提供することにある。
Therefore, it is an object of the present invention to provide a low-loss oxide magnetic material that can be put to practical use by suppressing heat generation to below an allowable temperature.

[課題を解決するための手段] 本発明によれば、主成分として30〜42.0モル%の
一酸化マンガンuvfno)  4.0〜19モル%の
酸化亜鉛(ZnO)及び残部として酸化第二鉄(Fe2
03)を含み、副成分として0.020〜0.15重量
%の酸化カルシウム(Ca O)と、0.005〜0.
10重量%の二酸化ケイ素(SiO□)とを含み、添加
物として1.00ffi量%以下の酸化ハフニウム(H
f O□)を含むことを特徴とする低損失酸化物磁性材
料か得られる。
[Means for Solving the Problems] According to the present invention, 30 to 42.0 mol% of manganese monoxide uvfno) as the main components, zinc oxide (ZnO) of 4.0 to 19 mol%, and secondary oxide as the balance. Iron (Fe2
03), 0.020 to 0.15% by weight of calcium oxide (CaO) as an accessory component, and 0.005 to 0.03% by weight of calcium oxide (CaO).
10% by weight of silicon dioxide (SiO□), and 1.00ffi% or less of hafnium oxide (H
A low-loss oxide magnetic material is obtained, which is characterized in that it contains f O□).

本発明によれば、前記低損失酸化物磁性材料において、
添加物として さらに0,30重量%以下の酸化ジルコ
ニウム(Z r02)、0.20重量%以下の酸化バナ
ジウム(V205 ) 及ヒ0.30重量%以下の酸化
タンタル(Ta205)の少なくとも一種を含むことを
特徴とする低損失酸化物磁性材料が得られる。
According to the present invention, in the low loss oxide magnetic material,
Furthermore, at least one of 0.30% by weight or less of zirconium oxide (Zr02), 0.20% by weight or less of vanadium oxide (V205), and 0.30% by weight or less of tantalum oxide (Ta205) is further included as an additive. A low-loss oxide magnetic material is obtained.

本発明によれば、前記した。いずれかの低損失酸化物磁
性材料において、添加物としてさらに0.50重量%以
下のAl2O,、及び0,30重量Oo以下のTiO2
の少なくとも一種を含むことを特徴とする低損失酸化物
磁性材料が得られる。
According to the present invention, as described above. In any of the low-loss oxide magnetic materials, further additives include not more than 0.50% by weight of Al2O, and not more than 0.30% by weight of TiO2.
A low-loss oxide magnetic material characterized by containing at least one of the following is obtained.

ここで1本発明において、必須添加物として1.00重
量%以下の酸化ハフニウム(HfO2)としたのは、こ
の元素の上記適量は、粗大結晶粒成長の抑制を行うとと
もに、結晶粒界に析出して。
Here, in the present invention, 1.00% by weight or less of hafnium oxide (HfO2) is used as an essential additive. do.

粒界の比抵抗を増加させる効果があるからである。This is because it has the effect of increasing the specific resistance of grain boundaries.

また1本発明において、任意添加物として0.30重量
%以下酸化ジルコニウム(Zr02)0.20ffif
fi%以下酸化バナジウム(V2O3)及び0.300
重量%以下の酸化タンタル(Ta203 )の少なくと
も一種としたのは、これらの元素の上記適量は、酸化ハ
フニウム(HfO□)と同様に粗大結晶粒成長の抑制を
行うとともに、結晶粒界に析出して2粒界の比抵抗を増
加させる効果かあり、これら酸化ハフニウム、酸化ジル
コニウム、酸化バナジウム、及び酸化タンタルの添加量
は、それぞれの成分の上記した適量の上限値を越えると
著しい粒成長が生じ、経済的でなく、また、電力損失特
性が劣化するからである。
In addition, in the present invention, as an optional additive, 0.30% by weight or less of zirconium oxide (Zr02) 0.20ffif
Vanadium oxide (V2O3) below fi% and 0.300
The reason why at least one kind of tantalum oxide (Ta203) is used in an amount of % or less by weight is that the appropriate amount of these elements suppresses the growth of coarse crystal grains in the same way as hafnium oxide (HfO□) and prevents precipitation at grain boundaries. If the amount of hafnium oxide, zirconium oxide, vanadium oxide, and tantalum oxide added exceeds the above-mentioned upper limit of the appropriate amount of each component, significant grain growth will occur. This is because it is not economical and the power loss characteristics deteriorate.

また1本発明において、上記必須添加物及び任意添加物
の他に 添加物としてさらに0.50重量96以下の酸
化アルミニウム(Al□03)、及び0.30重量%以
下の二酸化チタン(T i 02 )の少なくとも一種
を含むとしたのは、酸化アルミニウム(A120.)、
及び二酸化チタン(T102)は、上記上限値内におい
て、結晶内に固溶し、結晶粒内の組織を均一にし、結晶
内部の抵抗を増加させるからである。
Furthermore, in the present invention, in addition to the above essential additives and optional additives, additional additives include aluminum oxide (Al□03) of 0.50% by weight or less and titanium dioxide (T i 02) of 0.30% by weight or less. ) contains at least one type of aluminum oxide (A120.),
This is because, within the above upper limit, titanium dioxide (T102) dissolves in solid solution within the crystal, makes the structure within the crystal grain uniform, and increases the resistance inside the crystal.

しかし、この上限値を越えると著しい電力損失を増加さ
せる。
However, exceeding this upper limit significantly increases power losses.

[実施例] 以下1本発明の実施例について9図面を参照して、説明
する。
[Example] An example of the present invention will be described below with reference to nine drawings.

(実施例1) 主成分として、53.0モル%の酸化第二鉄(Fe20
3)、37モル%の一酸化マンガン(MnO)及び10
.0モル%の酸化亜鉛(ZnO)を含有し、副成分とし
て、0.025重量%の二酸化ケイ素(S i 02 
)と0.043重量%の酸化カルシウム(Ca O)を
含有し、添加成分として酸化ハフニウム(HfO2)を
添加し、これらを混合し、予焼し、微粉砕し、造粒し2
成形プレスした後、酸素分圧0.1at%、温度115
0℃において焼結し、酸化物磁性材料を得た。
(Example 1) As the main component, 53.0 mol% of ferric oxide (Fe20
3), 37 mol% manganese monoxide (MnO) and 10
.. Contains 0 mol% zinc oxide (ZnO) and 0.025% by weight silicon dioxide (S i 02
) and 0.043% by weight of calcium oxide (CaO), hafnium oxide (HfO2) is added as an additional component, these are mixed, pre-fired, pulverized, and granulated.
After molding and pressing, the oxygen partial pressure was 0.1 at% and the temperature was 115.
Sintering was carried out at 0°C to obtain an oxide magnetic material.

第1図は得られた酸化物磁性材料に対し酸化ハフニウム
(Hf02)の添加量をパラメータとした時の温度T 
[’C] と電力損失PR[kW/11’ ]の関係を
示した図である。第1図においては電力損失はPB[k
警/113]は周波数がIMHz、最大磁束密度B1が
500Gの場合を示している。また。
Figure 1 shows the temperature T when the added amount of hafnium oxide (Hf02) is used as a parameter for the obtained oxide magnetic material.
It is a figure showing the relationship between ['C] and power loss PR [kW/11']. In Figure 1, the power loss is PB[k
/113] indicates a case where the frequency is IMHz and the maximum magnetic flux density B1 is 500G. Also.

第1図において1曲線1は酸化ハフニウム(Hf02)
を添加しない場合2曲線2は0.20重量?6の酸化ハ
フニウム(Hf O2)を添加した場合。
In Figure 1, curve 1 is hafnium oxide (Hf02)
If not added, curve 2 is 0.20 weight? 6 with addition of hafnium oxide (Hf O2).

曲線3は0.40重量%の酸化ハフニウム(Hf02)
を添加した場合2曲線4は0,60重量%の酸化ハフニ
ウム(HfO2)を添加した場合。
Curve 3 is 0.40 wt% hafnium oxide (Hf02)
Curve 4 is the case when 0.60% by weight of hafnium oxide (HfO2) is added.

曲線5は0.80重量%の酸化ハフニウム(Hf02)
を添加した場合1曲線6は1.00重量%の酸化ハフニ
ウム(Hf O□)を添加した場合。
Curve 5 is 0.80 wt% hafnium oxide (Hf02)
Curve 6 is the case when 1.00% by weight of hafnium oxide (HfO□) is added.

曲線7は1.20重量%の酸化ハフニウム(HfO□)
を添加した場合の特性をそれぞれ示している。第1図よ
り周波数I MHzの場合においては電力損失PBは酸
化ハフニウム(Hf02)を添加するか否かに無関係に
温度が約60℃の時最小値を有する。そして酸化ハフニ
ウム(HfO2)の添加量を増加していくにつれて、電
力損失PBは小さくなり添加量が0.60重量%の時が
最も電力損失PBは小さくなりそれよりも添加量を増加
していくにつれて、電力損失PBが増加していき。
Curve 7 is 1.20% by weight hafnium oxide (HfO□)
The characteristics of each are shown when added. From FIG. 1, in the case of a frequency of I MHz, the power loss PB has a minimum value when the temperature is about 60° C., regardless of whether hafnium oxide (Hf02) is added or not. As the amount of hafnium oxide (HfO2) added increases, the power loss PB decreases, and the power loss PB becomes the lowest when the amount added is 0.60% by weight, and the amount added is increased beyond that. As the power loss PB increases, the power loss PB increases.

添加量が1,20重量%を越えると 添加しない時より
も電力損失P3が大きくなる。
When the amount added exceeds 1.20% by weight, the power loss P3 becomes larger than when it is not added.

以上から周波数I MHzにおいて酸化ハフニウム(H
fO2)を1.00重量%以下(0%を含まず)添加し
た方が、添加しないものより電力損失PBが小さくなる
事がわかる。
From the above, hafnium oxide (H
It can be seen that when 1.00% by weight or less (not including 0%) of fO2) is added, the power loss PB is smaller than when it is not added.

第1表に、実施例1により得られた酸化物磁性材料(副
成分として、0.025重量%の二酸化ケイ素(SiO
□)、0.043重量%の酸化カルシウム(Cab)及
び0.060重量96の酸化ハフニウム(Hf O2)
を含有)と、従来の酸化物磁性材料(副成分として0.
025重量%の二酸化ケイ素(SiO2)と0.043
重量%の酸化カルシウム(Ca O)を含有し、酸化ハ
フニウム(HfO7)は添加しない)の諸特性(初透磁
率μi、飽和磁束密度B15(磁化力15[Oe]にお
ける磁束密度)[G]、残留磁束密度B r [G] 
Table 1 shows the oxide magnetic material obtained in Example 1 (0.025% by weight of silicon dioxide (SiO
□), 0.043% by weight of calcium oxide (Cab) and 0.060% by weight of hafnium oxide (HfO2)
) and conventional oxide magnetic materials (containing 0.0% as a subcomponent).
025% by weight silicon dioxide (SiO2) and 0.043
Contains % by weight of calcium oxide (CaO) and does not add hafnium oxide (HfO7)) properties (initial permeability μi, saturation magnetic flux density B15 (magnetic flux density at magnetizing force 15 [Oe]) [G], Residual magnetic flux density B r [G]
.

保持力Hc[Oe]を示す。尚、主成分はいずれも酸化
第二鉄(Fe20.)を53.0モル%2酸化マンガン
(MnO)を37.0モル%及び酸化亜鉛(ZnO)を
10.0モル%含有している。
It shows the holding force Hc [Oe]. The main components each contain 53.0 mol % of ferric oxide (Fe20.), 37.0 mol % of manganese dioxide (MnO), and 10.0 mol % of zinc oxide (ZnO).

第1表より明らかな如く1本発明の実施例1のものは、
スイッチング電源用磁心材料として求められる諸特性1
例えば初透磁率μmが1000以上、飽和磁束密度か5
000G以上等という特性を十分に満たしている。
As is clear from Table 1, in Example 1 of the present invention,
Characteristics required for magnetic core materials for switching power supplies 1
For example, the initial permeability μm is 1000 or more, the saturation magnetic flux density is 5
It fully satisfies the characteristics of 000G or more.

以上のことより添加物として酸化ハフニウム(HfO□
)は、スイッチング電源用磁心材料として求められる諸
特性を十分に満たし2周波数が200 kHz以上にお
いて、電力損失PBを1例えば約0.60重量%添加し
た場合、添加しない場合に比較し、温度60℃で約50
0 kW/m3改善できることがわかる。
Based on the above, hafnium oxide (HfO□
) sufficiently satisfies the characteristics required as a magnetic core material for switching power supplies. 2 At a frequency of 200 kHz or higher, the power loss PB is reduced by 60% when added (for example, about 0.60% by weight) compared to when not added. Approximately 50°C
It can be seen that an improvement of 0 kW/m3 can be achieved.

第1表 (実施例2) 酸化物粉末を混合、成形、焼成してなる酸化物磁性材料
を主成分として、53.0モル%の酸化第二鉄(F e
203 )、36.0モル%の一酸化マンガン(MnO
)、及び11,0モル%の酸化亜鉛(Z n O)を含
有し、副成分として酸化カルシウム(Cab)  及び
二酸化ケイ素(SiO2)を従来の低損失酸化物磁性材
料の成分範囲(酸化カルシウム(Cab)が0.02〜
0.15重量9・6.二酸化ケイ素(S i 02 )
が0.005〜0.100重量96の範囲)で含有する
従来の低損失酸化物磁性材料に、さらに、酸化ジルコニ
ウム(Zr02)、酸化アルミニウム(A120i)及
び酸化ハフニウム(HfO2)の添加物を種々の割合で
複合添加した複数の実施例2の低損失酸化物磁性材料、
上記添加物を添加しない従来例及び比較例2として上記
添加物の単独または複合添加した複数の低損失酸化物磁
性材料を試作した。
Table 1 (Example 2) 53.0 mol% of ferric oxide (Fe
203), 36.0 mol% manganese monoxide (MnO
), and 11.0 mol% zinc oxide (ZnO), and calcium oxide (Cab) and silicon dioxide (SiO2) as subcomponents within the component range of conventional low-loss oxide magnetic materials (calcium oxide ( Cab) is 0.02~
0.15 weight 9.6. Silicon dioxide (S i 02 )
In addition, various additives such as zirconium oxide (Zr02), aluminum oxide (A120i), and hafnium oxide (HfO2) are added to the conventional low-loss oxide magnetic material containing zirconium oxide (Zr02), aluminum oxide (A120i), and hafnium oxide (HfO2). A plurality of low-loss oxide magnetic materials of Example 2 added in a composite manner at a ratio of
As a conventional example in which the above-mentioned additives were not added and a comparative example 2, a plurality of low-loss oxide magnetic materials to which the above-mentioned additives were added singly or in combination were fabricated.

これらの実施例2.従来例、及び比較例2の試作におい
ては、それぞれの酸化物原料を所定量秤量し混合した後
、造粒、成形プレスし、窒素ガス雰囲気中において、酸
素分圧5.Oat%以下で。
These Example 2. In the trial production of the conventional example and comparative example 2, predetermined amounts of each oxide raw material were weighed and mixed, then granulated and molded and pressed in a nitrogen gas atmosphere at an oxygen partial pressure of 5. At less than Oat%.

1100〜1300℃の温度で焼成して試料を得た。A sample was obtained by firing at a temperature of 1100 to 1300°C.

第2表は試作した実施例2の試料No、 15〜17゜
No、19.20,22.23,25.26と、従来例
として試料層、8.及び比較例2の試料NO,9〜No
Table 2 shows sample No. 15-17° No. 19.20, 22.23, 25.26 of Example 2 which was produced as a prototype, and sample layer 8.2 as a conventional example. and Samples No. 9 to No. of Comparative Example 2
.

14 、 No、 18 、 21 、 24について
、それぞれの副成分及び添加成分の含有量と1周波数2
00kHzで最大磁束密度Bmが100OGの場合の電
力損失PRの試料温度に対する最小値を示したものであ
る。
14, No. 18, 21, and 24, the content of each subcomponent and additive component and 1 frequency 2
This figure shows the minimum value of the power loss PR with respect to the sample temperature when the maximum magnetic flux density Bm is 100 OG at 00 kHz.

第2表によれば、添加物である二酸化ジルコニウム(Z
rO2)、酸化アルミニウム(A1203)及び酸化ハ
フニウム(HfO2)の複合添加によって、従来例の試
料N098より電力損失が減少していることがわかる。
According to Table 2, the additive zirconium dioxide (Z
It can be seen that the combined addition of aluminum oxide (A1203), aluminum oxide (A1203), and hafnium oxide (HfO2) reduces the power loss compared to the conventional sample N098.

これは、これらの添加物において、ZrO2とHfO2
は、低損失酸化物磁性材料の粒界に析出して9粒界の抵
抗率を増大させ、Al2O3は結晶内に固溶して結晶内
の抵抗率を増大させ、且つ結晶組織を均一にする効果が
あったと考えられ。
This is because in these additives ZrO2 and HfO2
Al2O3 precipitates at the grain boundaries of the low-loss oxide magnetic material and increases the resistivity of the grain boundaries, and Al2O3 solidly dissolves within the crystal to increase the resistivity within the crystal and make the crystal structure uniform. It is thought that it was effective.

これらの複合作用によって1組織内部の電磁気特性の均
一化と組織全体の抵抗率を増大せしめ、これが鉄損失を
減少せしめたものと、考えられる。
It is thought that these combined effects uniformize the electromagnetic characteristics within one structure and increase the resistivity of the entire structure, which reduces iron loss.

また、第2表において、ZrO2を0.40%添゛加し
た試料層+18.A1□030.60%添加した試料N
(L21及びHfO21,10添加した試料No、 2
4においては、異常粒の成長が認められ。
Also, in Table 2, the sample layer with 0.40% ZrO2 added +18. Sample N with A1□030.60% addition
(Sample No. 2 with L21 and HfO21,10 added
In No. 4, abnormal grain growth was observed.

そのため電力損失が大きくなったと考えられる。This is considered to be the reason for the large power loss.

又、第2表の試料No、 9〜14は、それぞれ添加物
の単独又は2つが0%であり、この場合も電力損失が大
きく効果が薄いことがわかる。
Further, in Samples Nos. 9 to 14 in Table 2, the amount of one or two additives was 0%, and it can be seen that the power loss was large and the effect was weak in this case as well.

以   下   余   白 第 表 以 下 余 白 (実施例3) 実施例2と同様の主成分と従来の副成分範囲を含aする
従来の低損失酸化物磁性材料に、さらに二酸化チタン(
TiO2)、五酸化バナジウム(V20s ) 、及び
酸化ハフニウム(Hf02)の添加物を種々の割合で複
合添加した複数の実施例3の低損失酸化物磁性材料を各
種試作し、この比較例として、上記添加物を添加しない
従来の低損失酸化物磁性材料2及び比較例3として上記
添加物を単独または複合添加した複数の低損失磁性材料
を併せて各種試作した。
Below Margin Table below Margin (Example 3) In addition to the conventional low-loss oxide magnetic material containing the same main components and the conventional range of subcomponents as in Example 2, titanium dioxide (
Various types of low-loss oxide magnetic materials of Example 3 were prepared in which additives of TiO2), vanadium pentoxide (V20s), and hafnium oxide (Hf02) were added in various proportions, and as comparative examples, the above-mentioned A conventional low-loss oxide magnetic material 2 to which no additives were added and a plurality of low-loss magnetic materials to which the above-mentioned additives were added singly or in combination as Comparative Example 3 were both trial-produced.

実施例3.従来例、及び比較例3の試作においては、実
施例2と同様に、それぞれの酸化物原料を所定量秤量し
混合した後、造粒、成形プレスし窒素ガス雰囲気中にお
いて、酸素分圧5.Oat%以下で、1100〜130
0℃の温度で焼成して試料を得た。
Example 3. In the trial production of the conventional example and comparative example 3, similarly to example 2, a predetermined amount of each oxide raw material was weighed and mixed, then granulated and molded and pressed in a nitrogen gas atmosphere at an oxygen partial pressure of 5. Oat% or less, 1100-130
A sample was obtained by firing at a temperature of 0°C.

第3表は試作した実施例3の試料NO,33〜35゜3
7.38,40,41,43.44と、従来例として試
料Nα8.及び比較例3の試料No、 27〜32、随
36,39.42について、それぞれの副成分及び添加
物成分の含有量と1周波数200kllzで最大磁束密
度Bmが100OGの場合の電力損失の試料温度に対す
る最小値を示したものである。
Table 3 shows sample No. 3 of Example 3, 33-35°3.
7.38, 40, 41, 43.44, and sample Nα8. as a conventional example. And for samples No. 27 to 32, No. 36, and 39.42 of Comparative Example 3, the content of each subcomponent and additive component and the sample temperature of power loss when the maximum magnetic flux density Bm is 100OG at one frequency of 200kllz This shows the minimum value for .

第3表によれば、添加物である二酸化チタン(TiO2
)、五酸化バナジウム(V20.)。
According to Table 3, the additive titanium dioxide (TiO2
), vanadium pentoxide (V20.).

及び酸化ハフニウム(Hf 02)の複合添加によって
、従来の比較例の試料No、 28より電力損失が減少
していることがわかる。これは、添加物。
It can be seen that the combined addition of hafnium oxide (Hf 02) and hafnium oxide (Hf 02) reduces power loss compared to Sample No. 28 of the conventional comparative example. This is an additive.

■20.及びHfO2が粒界に析出して粒界の抵抗率を
増大させ、且つ結晶組織を均一にする効果があったと考
えられ、これらの複合作用によって。
■20. It is thought that HfO2 and HfO2 precipitated at the grain boundaries, increased the resistivity of the grain boundaries, and had the effect of making the crystal structure uniform, due to the combined effect of these.

実施例2と同様にして、電力損失を減少せしめたものと
考えられる。
It is considered that power loss was reduced in the same manner as in Example 2.

第3表において、TiO2を0.30重量%添加した試
料随39及びHfO2を1,10重量%添加した試料1
り、42においては、異常粒の成長が認められ、そのた
め電力損失が大きくなったと考えられる。
In Table 3, sample No. 39 with 0.30 wt% TiO2 added and sample 1 with 1.10 wt% HfO2 added.
In No. 42, abnormal grain growth was observed, which is considered to be the reason for the large power loss.

第3表の試料No、 27〜32は、それぞれ添加物の
単独又は2つが096であり、この場合も電力損失が大
きく効果が薄いことがわかる。
Samples Nos. 27 to 32 in Table 3 each contain 096 as one or two additives, and it can be seen that the power loss is large and the effect is weak in these cases as well.

第4表は、従来の試料No、 8と本発明の実施例2の
試料\0.1について、第5表は、従来の試料No、 
8と、実施例3の試料Nα33について、それぞれの初
透磁率μ、飽和磁束密度B15.残留磁束密度Br、及
び抵抗率ρの各電磁気特性について比較したものである
Table 4 shows conventional sample No. 8 and sample \0.1 of Example 2 of the present invention, and Table 5 shows conventional sample No.
8 and sample Nα33 of Example 3, the respective initial magnetic permeability μ and saturation magnetic flux density B15. The electromagnetic characteristics of residual magnetic flux density Br and resistivity ρ are compared.

第4表及び第5表では、μ、B+s、Brについては、
試料NO,8とkl 5.又は、試料111O,33の
いずれも遜色なく、抵抗率のみが実施例2のNo、15
又は実施例3のN(L33のそれぞれが、従来のNα8
の十倍以上の値を示している。この抵抗率の格段の向上
か、渦電流損失を減少せしめた主な原因になっているこ
とが理解される。
In Tables 4 and 5, for μ, B+s, and Br,
Sample No. 8 and kl 5. Alternatively, both samples 111O and 33 are comparable, and only the resistivity is the same as No. 15 of Example 2.
Or N in Example 3 (each of L33 is the conventional Nα8
The value is more than 10 times that of the previous year. It is understood that this marked improvement in resistivity is the main reason for the reduction in eddy current loss.

以  下  余  白 第 表 以 下 余 白 以上1本発明の実施例2.3によって、100kHz以
上の電力損失の低減がなされ、100kHz以上の高周
波におけるスイッチング電源用トランスコア材料として
優れた低損失酸化物磁性材料が得られることが確認され
た。
Table below Margin 1 Example 2.3 of the present invention provides a low-loss oxide magnetic material that reduces power loss at frequencies of 100 kHz or higher and is excellent as a transformer core material for switching power supplies at high frequencies of 100 kHz or higher. It was confirmed that this was obtained.

以  下  余  白 (実施例4) 主成分として、50.0モル%の酸化第二鉄(Fe20
.)、39.0モル%の一酸化マンガン(M n O)
及び8゜0モル%の酸化亜鉛(ZnO)に、副成分とし
て、二酸化ケイ素(S l 02 )酸化カルシウム(
Ca O) 、 酸化ハフニウム(Hf02)、酸化ジ
ルコニウム(ZrO2)。
Margin below (Example 4) As the main component, 50.0 mol% of ferric oxide (Fe20
.. ), 39.0 mol% manganese monoxide (M n O)
and 8°0 mol% of zinc oxide (ZnO), silicon dioxide (S l 02 ) and calcium oxide (
CaO), hafnium oxide (Hf02), zirconium oxide (ZrO2).

三酸化アルミニウム(A1203)、五酸化バナジウム
(V 20 q−)を単独または複合添加し、混合し、
造粒し、成形プレスした後、窒素ガス雰囲気中において
、酸素分圧5.Oat%以下、各組成において、最適焼
結温度である1100〜1300″C温度で焼結した。
Aluminum trioxide (A1203) and vanadium pentoxide (V 20 q-) are added singly or in combination and mixed,
After granulation and molding press, the oxygen partial pressure was reduced to 5. Oat% or less, each composition was sintered at the optimum sintering temperature of 1100 to 1300''C.

第6表は、主成分とし・て53.0モル%酸化第二鉄(
F j203 )、39.0モル%の一酸化マンガン(
M n O)及び8.0モル%の酸化亜鉛(ZnO)を
含有する高透磁率M n−Z nフェライトに1副成分
として二酸化ケイ素(S i O2) 。
Table 6 shows that the main component is 53.0 mol% ferric oxide (
F j203 ), 39.0 mol% manganese monoxide (
High permeability Mn-Zn ferrite containing 8.0 mol% zinc oxide (ZnO) and silicon dioxide (S i O2) as one minor component.

酸化カルシウム(Ca O)を添加し、更に、酸化ハフ
ニウム(Hf02)と酸化ジルコニウム(Z r 02
 ) 、及び選択成分として、酸化アルミニウム(A1
203)と五酸化バナジウム(V 20、)とを複合添
加したときの1周波数がIMHz。
Calcium oxide (CaO) is added, and furthermore, hafnium oxide (Hf02) and zirconium oxide (Zr02) are added.
), and as a selective component aluminum oxide (A1
203) and vanadium pentoxide (V20,) are added in combination, one frequency is IMHz.

最大磁束密度Bの値が500G (ガウス)の場合の電
力損失(鉄損)の60℃付近に於ける夫々の組成に於け
る値を示す。
The values of power loss (iron loss) for each composition at around 60°C when the value of maximum magnetic flux density B is 500G (Gauss) are shown.

本発明の組成と電力損失(鉄損)との値を示す第6表を
参照して説明する。
This will be explained with reference to Table 6 showing the composition and power loss (iron loss) values of the present invention.

第6表に、各副成分の添加量と、電力損失(鉄損)との
関係を示す。
Table 6 shows the relationship between the amount of each subcomponent added and power loss (iron loss).

第6表より二酸化ハフニウム(HfOz)、二酸化ジル
コニウム(Z「0□)、酸化アルミニウム(A 120
3 ’) 、 五酸化バナジウム(V2O5)の複合添
加によって、電力損失の値は、従来の低損失酸化物磁性
材料の値に比べて低い値を示し。
From Table 6, hafnium dioxide (HfOz), zirconium dioxide (Z "0□), aluminum oxide (A 120
3') Due to the combined addition of vanadium pentoxide (V2O5), the power loss value shows a lower value compared to that of conventional low-loss oxide magnetic materials.

特性値は、従来の値に比べてほぼ30%程向上している
ことがわかる。
It can be seen that the characteristic values are improved by approximately 30% compared to the conventional values.

酸化ハフニウム(Hf02)1.10重量%添加(試料
番号52),二酸化ジルコニウム(ZrO□)0.40
重量%添加(試料番号60)、酸化アルミニウム(A 
I203 ) 0.60重量%添加(試料番号63)、
五酸化バナジウム(V2O、)0.25重量%添加(試
料番号66)においては、結晶粒に異常粒の成長が認め
られ、比抵抗ρも劣化し、電力損失が大きくなっている
Addition of 1.10% by weight of hafnium oxide (Hf02) (sample number 52), 0.40% of zirconium dioxide (ZrO□)
wt% addition (sample number 60), aluminum oxide (A
I203) 0.60% by weight added (sample number 63),
When 0.25% by weight of vanadium pentoxide (V2O) was added (sample number 66), abnormal grain growth was observed in the crystal grains, the specific resistance ρ was also deteriorated, and the power loss was large.

(実施例5) 実施例4と同様にして、主成分として。(Example 5) As the main component in the same manner as in Example 4.

50.0モル%の酸化第二鉄(Fe2 o3 )。50.0 mol% ferric oxide (Fe2o3).

39.0モル%の一酸化マンガン(MnO)及び8.0
モル%の酸化亜鉛(ZnO)に、副成分として、二酸化
ケイ素(SiO□)、酸化カルシウム(Cab)、酸化
ハフニウム(HfO2)、酸化ジルコニウム(Zr02
)、及び選択成分として酸化アルミニウム(A I 2
03 ) 、二酸化チタン(T i 02 )を単独ま
たは複合添加し、混合し造粒し、成形プレスした後、窒
素ガス雰囲気中において、酸素分圧5.Qat%以下、
各組成において、最適焼結温度である1100〜 1300℃温度で焼結した。
39.0 mol% manganese monoxide (MnO) and 8.0
Mol% of zinc oxide (ZnO), silicon dioxide (SiO□), calcium oxide (Cab), hafnium oxide (HfO2), zirconium oxide (Zr02) as subcomponents.
), and aluminum oxide (A I 2
03), titanium dioxide (T i 02 ) is added singly or in combination, mixed, granulated, and pressed, and then heated to an oxygen partial pressure of 5.0 in a nitrogen gas atmosphere. Qat% or less,
Each composition was sintered at the optimum sintering temperature of 1100 to 1300°C.

第7表は主成分として53.0モル%の酸化第二鉄(F
e204 )39.0モル%の一酸化マンガン(M n
 O)を含有し、副成分として二酸化ケイ素(Sin2
)、酸化カルシウム(Ca O)を基本とし、さらに酸
化ハフニウム(Hf02)と酸化ジルコニウム(ZrO
2)、及び選択成分として酸化アルミニウム(Al□0
.)と二酸化チタン(T i 02 )とを複合添加し
たときの2周波数がI MHz 、動作磁束密度Bが5
00G (ガウス)の場合の電力損失(鉄損)の60℃
付近に於ける各組成の於ける値を示す。
Table 7 shows 53.0 mol% of ferric oxide (F) as the main component.
e204) 39.0 mol% manganese monoxide (M n
O) and silicon dioxide (Sin2) as a subcomponent.
), calcium oxide (CaO), and furthermore hafnium oxide (Hf02) and zirconium oxide (ZrO2).
2), and aluminum oxide (Al□0
.. ) and titanium dioxide (T i 02 ) are added in combination, the two frequencies are I MHz and the operating magnetic flux density B is 5.
Power loss (iron loss) at 60°C in the case of 00G (Gauss)
The values for each composition in the vicinity are shown.

本発明の組成と、電力損失(鉄損)との値を示す第7表
について説明する。第7表は各副成分の添加量と電力損
失の関係を示す。第7表より、酸化ハフニウム(Hf 
O□)、二酸化ジルコニウム(Z r 021.酸化ア
ルミニウム(A120B)。
Table 7 showing the composition of the present invention and the values of power loss (iron loss) will be explained. Table 7 shows the relationship between the amount of each subcomponent added and power loss. From Table 7, hafnium oxide (Hf
O□), zirconium dioxide (Z r 021. Aluminum oxide (A120B).

二酸化チタン(TiO2)の複合添加によって。By complex addition of titanium dioxide (TiO2).

電力損失が向上していることがわかる。又、電力損失は
2例として前述の通り周波数がIM)Iz、最大磁束密
度500G (ガウス)での測定値を示すが、100k
Hz以上の周波数において、すべて同様の電力損失が見
られる。
It can be seen that power loss has improved. In addition, as two examples of power loss, as mentioned above, the measured values are shown at a frequency of IM)Iz and a maximum magnetic flux density of 500G (Gauss), but at 100K.
All similar power losses are seen at frequencies above Hz.

酸化ハフニウム(Hf O□)1.10重量%添加(試
料番号82)、酸化ジルコニウム(Zr02)0.40
重量%添加(試料番号85)酸化アルミニウム(Al□
03)0.60重量%添加(試料番号88)、二酸化チ
タン(T i O□)0.35重量%添加(試料番号9
1)においては。
Addition of 1.10% by weight of hafnium oxide (HfO□) (sample number 82), 0.40% of zirconium oxide (Zr02)
Weight% addition (sample number 85) Aluminum oxide (Al□
03) Addition of 0.60% by weight (sample number 88), addition of 0.35% by weight of titanium dioxide (T i O□) (sample number 9)
Regarding 1).

結晶粒に異状粒の成長が認められ比抵抗ρも劣化し、電
力損失が大きくなっている。
Growth of abnormal grains was observed in the crystal grains, the specific resistance ρ was also deteriorated, and the power loss was increased.

第8表は、実施例5に於ける試料番号83と。Table 8 shows sample number 83 in Example 5.

従来組成(試料番号47.71)について、初透磁率μ
、飽和磁束密度B19.残留磁束密度Br。
For the conventional composition (sample number 47.71), the initial permeability μ
, saturation magnetic flux density B19. Residual magnetic flux density Br.

比抵抗ρの比較を示す。A comparison of specific resistance ρ is shown.

第8表には、実施例4に於ける試料番号58と。Table 8 shows sample number 58 in Example 4.

従来組成(試料番号69)について、初透磁率μ。Initial permeability μ for conventional composition (sample number 69).

磁化力が150eに於ける飽和磁束密度B15+残留磁
束密度Br、保持力He、比抵抗ρの値を示すが2本発
明による低損失磁性材料の比抵抗の値は。
The values of saturation magnetic flux density B15 + residual magnetic flux density Br, coercive force He, and specific resistance ρ at a magnetizing force of 150e are shown.

従来の組成の低損失磁性材料に比べて、20倍以上の高
い値となっている。
This value is more than 20 times higher than that of low-loss magnetic materials with conventional compositions.

また、第8表において2本発明による実施例5の試料番
号80と従来(試料番号69)について諸特性を比較す
ると、比抵抗ρが約20倍以上となっていることがわか
る。
Further, in Table 8, when comparing various characteristics of sample number 80 of Example 5 according to the present invention and the conventional sample (sample number 69), it is found that the specific resistance ρ is about 20 times or more.

尚、実施例4.実施例5において、窒素ガス雰囲気中酸
素分圧0.5%における焼結温度は。
In addition, Example 4. In Example 5, the sintering temperature at an oxygen partial pressure of 0.5% in a nitrogen gas atmosphere is:

1100〜1300℃の範囲において、最適温度で焼結
した。
Sintering was carried out at an optimum temperature in the range of 1100-1300°C.

以    下    余    白 第 表 第 7 表 第 表 (実施例6) 主成分として53.0モル%の酸化第二鉄(Fe、Os
)、39.0モル%の一酸化マンガン(MnO)、及び
8.0モル%の酸化亜鉛(ZnO)を含有し、副成分と
して、0.010〜0.040重量%、二酸化ケイ素(
SiO2)。
Below Margin Table 7 Table 7 (Example 6) 53.0 mol% of ferric oxide (Fe, Os
), 39.0 mol% manganese monoxide (MnO), and 8.0 mol% zinc oxide (ZnO), and contains 0.010 to 0.040 wt% silicon dioxide (
SiO2).

0.020〜0.15重量%の酸化カルシウム(Cab
、)を含有し、添加成分として0.01〜0.80重量
%の酸化ハフニウム(Hf02)0.005〜0.30
0重量%の酸化タンタル(Ta205)を添加し、これ
らをボールミルにて混合した後、予焼し、粉砕し、造粒
し、成形プレスした後、酸素分圧0〜3%(0を含まず
)。
0.020-0.15% by weight of calcium oxide (Cab
, ), and 0.01 to 0.80% by weight of hafnium oxide (Hf02) as an additive component 0.005 to 0.30
After adding 0% by weight of tantalum oxide (Ta205) and mixing them in a ball mill, pre-baking, pulverizing, granulating, and forming press, the oxygen partial pressure is 0 to 3% (excluding 0). ).

温度1100〜1300℃で1〜4時間焼結し。Sinter at a temperature of 1100-1300°C for 1-4 hours.

酸化物磁性材料を得た。An oxide magnetic material was obtained.

第9表は各組成に於いて焼結条件を変化させて得られた
酸化物磁性材料の中で最も優れたコアロス特性を示した
試料について、二酸化ケイ素(S io 2 ) +酸
化カルシウム(Cab)、酸化/1フニウム(HfO2
)、酸化タンタル(Ta205)をパラメータとしたと
きの温度60℃、砧東密度500Gとしたときの電力損
失PB(mW/cc)を示したものである。
Table 9 shows the samples that showed the best core loss characteristics among the oxide magnetic materials obtained by changing the sintering conditions in each composition. , HfO2
), the power loss PB (mW/cc) is shown when the temperature is 60° C. and the Kinto density is 500 G when tantalum oxide (Ta205) is used as a parameter.

第9表において、試料番号106は主成分として53.
0モル%の酸化第、二鉄(Fe20.)。
In Table 9, sample number 106 has a main component of 53.
0 mole % ferric oxide (Fe20.).

39.0モル%の一酸化マンガン(MnO)、μび8.
0モル?6の酸化亜鉛(Z n O)を含有し。
39.0 mol% manganese monoxide (MnO), μ and 8.
0 mole? Contains 6 zinc oxide (ZnO).

0.030重量%の二酸化ケイ素(Sin2)。0.030% by weight silicon dioxide (Sin2).

0.080重ji 96の酸化カルシウム(Cab)(
副成分とし、酸化ハフニウム(HfO□)、酸イ1タン
タル(Ta20q)を添加していない従来に電源用M 
n −Z n系フェライトである。
0.080 weight ji 96 calcium oxide (Cab) (
Conventional M for power supplies that does not contain hafnium oxide (HfO□) or tantalum oxide (Ta20q) as subcomponents.
n-Z n-based ferrite.

本発明における酸化物磁性材料は、いずれの場合も従来
のもの(試料106)より優れていることがわかる。ま
た、二酸化ケイ素(5102)が0.030重量%、酸
化カルシウム(Ca O)が0.060重量%、酸化ハ
フニウム(HfO2)が0.15重量%、酸化タンタル
(Taz o、)が0.05重量%を添加して作製した
試料番号102は、従来のフェライトと比較して電力損
失PBが約1/2程度になっており、著しい低損失特性
を実現している。
It can be seen that the oxide magnetic material of the present invention is superior to the conventional material (sample 106) in all cases. In addition, silicon dioxide (5102) is 0.030% by weight, calcium oxide (CaO) is 0.060% by weight, hafnium oxide (HfO2) is 0.15% by weight, and tantalum oxide (TazO) is 0.05% by weight. Sample No. 102, which was prepared by adding % by weight, has a power loss PB that is approximately 1/2 that of conventional ferrite, realizing extremely low loss characteristics.

第9表 [発明の効果コ 以上説明したように5本発明によれば、二酸化ケイ素及
び酸化カルシウムを含むZ n−Mnフェライト系酸化
物磁性材料において、添加物として1.00重量%以下
のHfO2スイッチング電源用トランスとして求められ
る諸特性を充分満足するとともに1周波数が100kH
z以上の高周波においても従来ものよりも電力損失を低
減でき。
Table 9 [Effects of the Invention] As explained above, according to the present invention, in the Z n-Mn ferrite oxide magnetic material containing silicon dioxide and calcium oxide, 1.00% by weight or less of HfO2 as an additive. Fully satisfies various characteristics required for a transformer for switching power supplies, and has a single frequency of 100kHz.
Even at high frequencies above z, power loss can be reduced compared to conventional products.

高周波磁心用材料としてスイッチング電源の小型。Small size switching power supply as a material for high frequency magnetic core.

軽量化に十分に適合した材料を提供することができる。It is possible to provide a material that is fully compatible with weight reduction.

また1本発明によれば、このZ n −M nフェライ
ト系酸化物磁性材料において、添加物として。
According to one aspect of the present invention, in this Zn-Mn ferrite-based oxide magnetic material, as an additive.

さらに、0.30重量%以下の酸化ジルコニウム(Z 
r02 )、0.30重量%以下の酸化タンタル(Ta
2o3 )の少なくとも一種を含むことにより、スイッ
チング電源用トランスとして求められる諸特性を更に向
上させることができる。
Furthermore, 0.30% by weight or less of zirconium oxide (Z
r02 ), 0.30% by weight or less tantalum oxide (Ta
2o3), various characteristics required for a transformer for a switching power supply can be further improved.

更に1本発明によれば、これらZ n −M nフェラ
イト系酸化物磁性材料において、0.50重量%以下の
A 1203及び0,30重量%以下のTiO2の少な
くとも一種を含むことにより、更に。
Furthermore, according to one aspect of the present invention, these Zn-Mn ferritic oxide magnetic materials further include at least one of A 1203 of 0.50% by weight or less and TiO2 of 0.30% by weight or less.

電力損失等の諸特性を向上させることができる。Various characteristics such as power loss can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る低損失酸化物磁性材料の
温度と電力損失(Ps)との関係を示す図で、比較例と
して、酸化ハフニウム(HfO2)を添加しない材料(
曲線1)及び1,20重量%の酸化ハフニウム(HfO
2)を添加した材料(曲線7)を併せて示した。
FIG. 1 is a diagram showing the relationship between temperature and power loss (Ps) of a low-loss oxide magnetic material according to an example of the present invention. As a comparative example, a material without hafnium oxide (HfO2) added (
Curve 1) and 1,20% by weight hafnium oxide (HfO
2) is also shown (curve 7).

Claims (3)

【特許請求の範囲】[Claims] 1.主成分として30〜42.0モル%の一酸化マンガ
ン(MnO),4.0〜19モル%の酸化亜鉛(ZnO
),及び残部として酸化第二鉄(Fe_2O_3)を含
み,副成分として0.020〜0.15重量%の酸化カ
ルシウム(CaO)と,0.005〜0.10重量%の
二酸化ケイ素(SiO_2)とを含み,添加物として1
.00重量%以下の酸化ハフニウム(HfO_2)を含
むことを特徴とする低損失酸化物磁性材料。
1. The main components are 30-42.0 mol% manganese monoxide (MnO), 4.0-19 mol% zinc oxide (ZnO).
), and the remainder contains ferric oxide (Fe_2O_3), with 0.020-0.15% by weight of calcium oxide (CaO) and 0.005-0.10% by weight of silicon dioxide (SiO_2) as accessory components. and 1 as an additive.
.. A low-loss oxide magnetic material characterized by containing 00% by weight or less of hafnium oxide (HfO_2).
2.第1の請求項記載の低損失酸化物磁性材料において
,添加物としてさらに0.30重量%以下の酸化ジルコ
ニウム(ZrO_2),0.20重量%以下の酸化バナ
ジウム(V_2O_5),及び0.30重量%以下の酸
化タンタル(Ta_2O_5)の少なくとも一種を含む
ことを特徴とする低損失酸化物磁性材料。
2. In the low-loss oxide magnetic material according to the first claim, further additives include not more than 0.30% by weight of zirconium oxide (ZrO_2), not more than 0.20% by weight of vanadium oxide (V_2O_5), and 0.30% by weight or less. % or less of at least one kind of tantalum oxide (Ta_2O_5).
3.第1又は第2の請求項記載の低損失酸化物磁性材料
において,添加物としてさらに0.50重量%以下のA
l_2O_3,及び0.30重量%以下のTiO_2の
少なくとも一種を含むことを特徴とする低損失酸化物磁
性材料。
3. In the low-loss oxide magnetic material according to the first or second claim, 0.50% by weight or less of A is further added as an additive.
A low-loss oxide magnetic material comprising at least one of l_2O_3 and 0.30% by weight or less of TiO_2.
JP2024364A 1989-02-04 1990-02-05 Low loss oxide magnetic material Expired - Fee Related JP2551491B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69020726T DE69020726T2 (en) 1989-12-26 1990-08-09 OXIDE MAGNETIC MATERIAL WITH LOW LOSS.
PCT/JP1990/001017 WO1991010241A1 (en) 1989-12-26 1990-08-09 Low-loss oxide magnetic material
EP90912078A EP0460215B1 (en) 1989-12-26 1990-08-09 Low-loss oxide magnetic material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2478589 1989-02-04
JP33935889 1989-12-26
JP34127789 1989-12-28
JP1-24785 1989-12-28
JP1-339358 1989-12-28
JP1-341277 1989-12-28

Publications (2)

Publication Number Publication Date
JPH03224204A true JPH03224204A (en) 1991-10-03
JP2551491B2 JP2551491B2 (en) 1996-11-06

Family

ID=27284786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024364A Expired - Fee Related JP2551491B2 (en) 1989-02-04 1990-02-05 Low loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2551491B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248404A (en) * 1990-02-26 1991-11-06 Hitachi Ferrite Ltd Low-loss ferrite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248404A (en) * 1990-02-26 1991-11-06 Hitachi Ferrite Ltd Low-loss ferrite

Also Published As

Publication number Publication date
JP2551491B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
JP2001068326A (en) MnZn BASED FERRITE
JP4279995B2 (en) MnZn ferrite
JP2000286119A (en) Ferrite
JPH1064715A (en) Low loss ferrite magnetic core material
JP2005119892A (en) Low-loss ferrite
JPH06290925A (en) High frequency low loss ferrite for power supply
JPH07297020A (en) Ferrite and ferrite core for power supply
JPH113813A (en) Ferrite material
JPH03224204A (en) Low loss oxide magnetic material
JPH05198416A (en) Mn-zn based ferrite
JPH11238617A (en) Manganese-zinc based ferrite
JPH07142222A (en) Low-loss mn-zn soft ferrite
JP2562061B2 (en) Low loss oxide magnetic material
JPH05267040A (en) Low-loss mn-zn ferrite
JPH10270231A (en) Mn-ni ferrite material
JPH04150007A (en) Low hysteresis loss oxide magnetic material
JPH0254902A (en) Low-loss ferrite
JPH092866A (en) Ferrite with minor electric power loss for liquid crystal backlight
JP3554983B2 (en) Low-loss oxide magnetic material
EP0460215B1 (en) Low-loss oxide magnetic material
JP3499283B2 (en) High permeability oxide magnetic material
JPH03212906A (en) Manufacture of high frequency low loss ferrite for power supply
JP3044666B2 (en) Low loss ferrite for power supply
JPH03166702A (en) Low-loss oxide magnetic material
JPH0786019A (en) Low loss oxide magnetic material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees