JPH03222383A - Semiconductor optical element - Google Patents

Semiconductor optical element

Info

Publication number
JPH03222383A
JPH03222383A JP1598890A JP1598890A JPH03222383A JP H03222383 A JPH03222383 A JP H03222383A JP 1598890 A JP1598890 A JP 1598890A JP 1598890 A JP1598890 A JP 1598890A JP H03222383 A JPH03222383 A JP H03222383A
Authority
JP
Japan
Prior art keywords
waveguide
semiconductor
gain
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1598890A
Other languages
Japanese (ja)
Inventor
Masahiro Ikeda
正宏 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1598890A priority Critical patent/JPH03222383A/en
Publication of JPH03222383A publication Critical patent/JPH03222383A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor optical element which is integrated in a two-dimensional arrangement where an optical output can be efficiently taken out upward by a method wherein a part of a resonator composed of semiconductor elements which are provided with a PN junction respectively and arranged in a ring is formed of a waveguide possessed of periodic gain. CONSTITUTION:A part of a resonator composed of semiconductor elements which are provided with a PN junction respectively and arranged in a ring is formed of a waveguide 6 possessed of a periodic gain. When a power supply is connected to an electrode provided onto a P<+>-type semiconductor ohmic contact cap layer 7, the NP junction composed of an N-type semiconductor periodic region 9 and a P-type block layer 10 is reversely biased, so that a current is blocked at the P-type block layer 10, an undoped active layer 11, an N-type buffer layer 12, and an N-type semiconductor substrate 13 under the regions 9. Therefore, a current is periodically injected into the active layer 11, so that gain itself has a period. If this grating period is set as a secondary diffraction condition, an optical output can be efficiently taken out upward.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二次元配置をした半導体光素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor optical device having a two-dimensional arrangement.

〔従来の技術〕[Conventional technology]

二次元配置した半導体光素子として考えられる従来のリ
ングレーザの構成を第3図に示す。第3図において、1
はpn接合を有する半導体利得導波路、2は出力導波路
、3は全反射用反射溝コーナ、4はハーフミラ用反射溝
、5は半導体基板を表わしている。上記のような構成の
半導体光素子における半導体利得導波路1に、順方向電
流を流すことによって、本光素子はリングレーザとして
発振する。そして、・上記リングレーザの光出力を外部
に取出すためには、第3図に示すハーフミラ4と出力導
波路2とが必要である。
FIG. 3 shows the configuration of a conventional ring laser that can be considered as a two-dimensionally arranged semiconductor optical device. In Figure 3, 1
2 is a semiconductor gain waveguide having a pn junction, 2 is an output waveguide, 3 is a corner of a reflection groove for total reflection, 4 is a reflection groove for a half mirror, and 5 is a semiconductor substrate. By passing a forward current through the semiconductor gain waveguide 1 in the semiconductor optical device configured as described above, the present optical device oscillates as a ring laser. In order to extract the optical output of the ring laser to the outside, a half mirror 4 and an output waveguide 2 shown in FIG. 3 are required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記ハーフミラの作製には、溝の深さを
制御して分岐比を決定する必要があり。
However, in manufacturing the above-mentioned half-mirror, it is necessary to control the depth of the groove and determine the branching ratio.

上記制御は0.14以下のエツチング制御技術を必要と
し、非常に制御が困難である。また、光出力を紙面の上
方向に取出すことはさらに難しく、適当な手段が従来な
かった。
The above control requires an etching control technique of 0.14 or less, which is very difficult to control. Furthermore, it is even more difficult to extract the light output upwards from the plane of the paper, and no suitable means has been available in the past.

本発明は、効率よく光出力を上方にも取出せる、二次元
配置によって集積化された半導体光素子を得ることを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to obtain a semiconductor optical device integrated in a two-dimensional arrangement that can efficiently extract optical output upward.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、pn接合を有する半導体光素子であって、
リング形状に形成された共振器の一部を、利得の周期性
をもつ導波路で構成することによって遠戚される。
The above object is a semiconductor optical device having a pn junction,
A distant relative is achieved by configuring a part of the ring-shaped resonator as a waveguide with periodic gain.

〔作用〕[Effect]

回折格子を有するグレーティング導波路で構成されたリ
ングレーザにおける、屈折率に周期性を有する場合の発
振特性を第4図に示す。第4図はよく知られているよう
に、グレーティングの周期で決まるブラッグの周波数を
中心にストップバンドを形成し、対称形の反射損失特性
を示す。一方、リングレーザの発振周波数は1位相条件
からストップバンドを除き左右対称に繰返し現われる。
FIG. 4 shows the oscillation characteristics of a ring laser configured with a grating waveguide having a diffraction grating when the refractive index has periodicity. As is well known, in FIG. 4, a stop band is formed around the Bragg frequency determined by the period of the grating, and symmetrical return loss characteristics are shown. On the other hand, the oscillation frequency of the ring laser repeatedly appears symmetrically except for the stop band under the one-phase condition.

第4図では黒丸で示し、その間隔はリング長4Lで決定
される。ここで、Lは正方形を形成するリング形状導波
路の一辺の長さであり、したがって4Lはリング全長を
表わす。なお、間隔を示すC/4LのCは真空中の光速
を示す6発振周波数は第4図に示すように、反射損失が
最も小さいストップバンドの両端に2個所存在する。こ
のことから、発振モードは単一モードになりにくく、し
かも、ブラッグ周波数では発振しないため、もし上記グ
レーティングが二次の回折格子になっていても、結合効
率が非常に小さく、大きい光出力を紙面の上方向に取出
すことは難しかった6第5図は利得自体が周期性をもつ
場合の反射損失対周波数特性を示す図である。この場合
は、Kogelnik等にによって指摘されているよう
にストップバンドは存在せず1発振周波数はブラッグ周
波数に一致する(参考文献: H,Kogelnika
nd C,V、 5hank:ジャーナル・オブ・アプ
ライド・フィジクス(J 、 Appl、 Phys)
 Vol。
In FIG. 4, they are indicated by black circles, and the interval between them is determined by the ring length 4L. Here, L is the length of one side of the ring-shaped waveguide forming a square, and therefore 4L represents the total length of the ring. Note that C in C/4L, which indicates the interval, indicates the speed of light in vacuum.As shown in FIG. 4, there are two oscillation frequencies at both ends of the stop band where the reflection loss is the smallest. From this, the oscillation mode is difficult to become a single mode, and moreover, it does not oscillate at the Bragg frequency, so even if the above grating is a second-order diffraction grating, the coupling efficiency will be very low, and a large optical output will not be possible in this paper. It was difficult to take it out in the upward direction.6 FIG. 5 is a diagram showing the return loss vs. frequency characteristic when the gain itself has periodicity. In this case, as pointed out by Kogelnik et al., there is no stop band and the single oscillation frequency matches the Bragg frequency (References: H, Kogelnika
nd C, V, 5hank: Journal of Applied Physics (J, Appl, Phys)
Vol.

43、No、5.pp2327−2335.1972)
。したがって、発振モードが単一モードになることはも
ちろんであって、もし、グレーティングが二次の回折格
子になっている場合には、上方向への光出力を効率よく
取出すことができる。
43, No, 5. pp2327-2335.1972)
. Therefore, it goes without saying that the oscillation mode becomes a single mode, and if the grating is a second-order diffraction grating, the optical output in the upward direction can be extracted efficiently.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による半導体光素子の一実施例を示す構
成図、第2図は上記実施例における導波路の断面構造を
示す図である。第1図において、3は全反射用反射溝コ
ーナ、5は半導体基板をそれぞれ示し、6は周期性を持
った利得の導波路を示している。本実施例における利得
が周期性を有する導波路の作製方法について説明する。
FIG. 1 is a block diagram showing an embodiment of a semiconductor optical device according to the present invention, and FIG. 2 is a diagram showing a cross-sectional structure of a waveguide in the above embodiment. In FIG. 1, reference numeral 3 indicates a reflection groove corner for total reflection, 5 indicates a semiconductor substrate, and 6 indicates a waveguide with periodic gain. A method for manufacturing a waveguide with periodic gain in this example will be described.

第1図に示す本実施例はリング形状の共振器を正方形に
形成しているが、上記リング形状共振器の形状は正方形
に限らず、三角形等の直線で形成された他の形状であっ
ても、その作用・効果は同様である。
In the present embodiment shown in FIG. 1, the ring-shaped resonator is formed into a square shape, but the shape of the ring-shaped resonator is not limited to the square shape, but may have other straight shapes such as a triangle shape. The action and effect are the same.

第2図は上記作製方法の一実施例を示す構造断面図であ
る。図において、7はp++半導体のオーミックコンタ
クト用キャップ層、8はp型クラッド層、9はn型半導
体周期領域、10はp型ブロック層、11はアンドープ
のアクティブ層、12はn型バッファ層、 13はn型
半導体基板を示しており、通常のDFBレーザの製作方
法と同様に、エピタキシャル成長法とホトリソプラノィ
技術とにより実現することができる。なお、全反射用反
射溝3は反応性イオンビームエツチング法によるドライ
エツチングで形成する。
FIG. 2 is a structural cross-sectional view showing an embodiment of the above manufacturing method. In the figure, 7 is a p++ semiconductor cap layer for ohmic contact, 8 is a p-type cladding layer, 9 is an n-type semiconductor periodic region, 10 is a p-type block layer, 11 is an undoped active layer, 12 is an n-type buffer layer, Reference numeral 13 denotes an n-type semiconductor substrate, which can be realized by epitaxial growth and photolithography, similar to the manufacturing method of a normal DFB laser. Incidentally, the reflection groove 3 for total reflection is formed by dry etching using a reactive ion beam etching method.

上記のようにして形成した半導体光素子に、順方向電流
を注入するため、上記p+型型半導体オーミックコンタ
クト用キャブ1層の上に設けた電極に、電源を接続する
と、n型半導体周期領域9およびp型ブロック層10の
np接合は逆バイアスされるため、上記n型半導体周期
領域9の下部は電流がブロックされる。したがって、活
性層であるアンドープのアクティブ層11には周期的に
電流が注入されるため、利得自体が周期性を持つことに
なる。このグレーティング周期を二次の回折条件にして
おくと、光出力を上方向に対しても効率よく取出すこと
ができる。
In order to inject a forward current into the semiconductor optical device formed as described above, when a power source is connected to the electrode provided on the first layer of the p+ type semiconductor ohmic contact cab, the n type semiconductor periodic region 9 Since the np junction of the p-type blocking layer 10 is reverse biased, current is blocked under the n-type semiconductor periodic region 9. Therefore, since current is periodically injected into the undoped active layer 11, which is the active layer, the gain itself has periodicity. By setting this grating period to second-order diffraction conditions, optical output can be efficiently extracted in the upward direction as well.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による半導体光素子は、pn接合を
有する半導体光素子であって、リング形状に構成された
共振器の一部を、利得の周期性をもつ導波路で構成した
ことにより、つぎに示すような効果を有している。
As described above, the semiconductor optical device according to the present invention is a semiconductor optical device having a pn junction, and a part of the ring-shaped resonator is formed by a waveguide having periodicity of gain. It has the following effects.

i)効率よく光出力を上方向に取出すことができる。i) Optical output can be efficiently extracted upward.

n)単一周波数で発振する。n) oscillates at a single frequency.

市)二次元に高集積化することができる。city) can be highly integrated in two dimensions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体光素子の一実施例を示す構
成図、第2図は上記実施例における導波路の断面構造を
示す図、第3図は従来のリングレーザの構成を示す図、
第4図は屈折率に周期性がある場合の発振特性説明図、
第5図は利得に周期性がある場合の発振特性説明図であ
る。 6・・・利得の周期性をもつ導波路 9・・・n型半導体周期領域
FIG. 1 is a block diagram showing an embodiment of a semiconductor optical device according to the present invention, FIG. 2 is a diagram showing a cross-sectional structure of a waveguide in the above embodiment, and FIG. 3 is a diagram showing the configuration of a conventional ring laser.
Figure 4 is an explanatory diagram of oscillation characteristics when there is periodicity in the refractive index.
FIG. 5 is an explanatory diagram of oscillation characteristics when the gain has periodicity. 6... Waveguide with periodicity of gain 9... N-type semiconductor periodic region

Claims (1)

【特許請求の範囲】 1、pn接合を有する半導体光素子であって、リング形
状に構成された共振器の一部を、利得の周期性をもつ導
波路で構成した半導体光素子。 2、上記共振器は、直線で形成された形状であることを
特徴とする特許請求の範囲第1項に記載した半導体光素
子。 3、上記利得の周期性をもつ導波路は、二次の回折格子
で構成されていることを特徴とする特許請求の範囲第1
項に記載した半導体光素子。
[Scope of Claims] 1. A semiconductor optical device having a pn junction, in which a part of a ring-shaped resonator is constituted by a waveguide having periodicity of gain. 2. The semiconductor optical device according to claim 1, wherein the resonator has a linear shape. 3. Claim 1, wherein the waveguide with periodicity of gain is composed of a second-order diffraction grating.
The semiconductor optical device described in .
JP1598890A 1990-01-29 1990-01-29 Semiconductor optical element Pending JPH03222383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1598890A JPH03222383A (en) 1990-01-29 1990-01-29 Semiconductor optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1598890A JPH03222383A (en) 1990-01-29 1990-01-29 Semiconductor optical element

Publications (1)

Publication Number Publication Date
JPH03222383A true JPH03222383A (en) 1991-10-01

Family

ID=11904043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1598890A Pending JPH03222383A (en) 1990-01-29 1990-01-29 Semiconductor optical element

Country Status (1)

Country Link
JP (1) JPH03222383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117578A (en) * 2007-11-06 2009-05-28 Rohm Co Ltd Surface-emitting laser diode
JP2013191684A (en) * 2012-03-13 2013-09-26 Nichia Chem Ind Ltd Semiconductor laser element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117578A (en) * 2007-11-06 2009-05-28 Rohm Co Ltd Surface-emitting laser diode
JP2013191684A (en) * 2012-03-13 2013-09-26 Nichia Chem Ind Ltd Semiconductor laser element

Similar Documents

Publication Publication Date Title
JPS60145685A (en) Distributed feedback type semiconductor device
US5862168A (en) Monolithic integrated optical semiconductor component
JPS5940592A (en) Semiconductor laser element
KR100582114B1 (en) A method of fabricating a semiconductor device and a semiconductor optical device
US4716570A (en) Distributed feedback semiconductor laser device
KR100243102B1 (en) Structure and fabrication method of polarization switching surface emitting laser
JPS621296A (en) Multi-terminal type semicondcutor laser element
JPS60102789A (en) Distributed feedback semiconductor laser
JPH03222383A (en) Semiconductor optical element
JPS6284583A (en) Distributed feedback type semiconductor laser
JPS63108788A (en) Optical integrated circuit
JPS6184891A (en) Semiconductor laser element
JPS5839085A (en) Semiconductor laser device
JPS59200484A (en) Semiconductor laser
JPS63164379A (en) Photo output device
JPH03235390A (en) Semiconductor laser
JPS63250886A (en) Manufacture of semiconductor laser element
JPS59184585A (en) Semiconductor laser of single axial mode
JPS62162385A (en) Semiconductor laser device
JPS5856992B2 (en) semiconductor laser equipment
JPH09129955A (en) Optoelectronics device
JPH0584076B2 (en)
JPH0661581A (en) Semiconductor laser and its manufacture
JPH02281681A (en) Semiconductor laser
JPH0311784A (en) Semiconductor optical switch