JPH03222287A - Thin film el element - Google Patents

Thin film el element

Info

Publication number
JPH03222287A
JPH03222287A JP2017599A JP1759990A JPH03222287A JP H03222287 A JPH03222287 A JP H03222287A JP 2017599 A JP2017599 A JP 2017599A JP 1759990 A JP1759990 A JP 1759990A JP H03222287 A JPH03222287 A JP H03222287A
Authority
JP
Japan
Prior art keywords
layer
refractive index
index material
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017599A
Other languages
Japanese (ja)
Inventor
Shigemi Iura
重美 井浦
Toshiaki Oimizu
利明 生水
Yoshiyuki Mimura
三村 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2017599A priority Critical patent/JPH03222287A/en
Publication of JPH03222287A publication Critical patent/JPH03222287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To cut the reflection from external lights without any reduction in luminous strength from an EL(electroluminescent) element and improve the visibility as a display panel by providing a multilayered reflection preventing film on the glass base surface on the opposite side to the EL element. CONSTITUTION:A thin film EL element is formed by successively laminating a transparent glass base 1, a transparent electrode 2, a first insulating layer 3, an EL luminescent layer 4, a second insulating layer 5 and a back plate 6, and a multilayered reflection preventing layer 7 is provided on the opposition to the glass base plate 1. The multilayered reflection preventing film 7 is constituted in a five-layer structure having a first layer 71, a second layer 72, a third layer 73, a forth layer 74 and a fifth layer 75 in the order from the air side. Namely, the multilayered reflection preventing film 7 is formed by repeating a low refractive index material and a high refractive index material from the air side. As the low refractive index material, either of MgF2 or SiO2 may be used, and as the high refractive index material, one of ZrO2, Ti2O5, TiO2 or CeO2, or a mixture consisting of the combinations thereof may be used. Hence, the reflection from external lights can be cut without any reduction in luminous strength from the thin film EL element, and an improvement in visibility as a display panel can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、交流電流を印加することによりEL発光が得
られる薄膜EL素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film EL element that can obtain EL light emission by applying an alternating current.

〔従来の技術〕[Conventional technology]

近年、情報化社会の進展にともなってフラットデイスプ
レィのニーズは益々高まっており、その一つとして薄膜
EL素子もここ数年で実用期に入ってきている。
In recent years, with the progress of the information society, the need for flat displays has been increasing more and more, and thin film EL devices, as one of them, have come into practical use in the past few years.

従来の代表的な薄膜EL素子の構造は、例えば特開昭6
2−150690号公報に記載されるようなもので、第
5図に示すように、透明なガラス基板1の上に透明電極
2.第1絶縁層3.EL発光層4.第2絶縁層5および
背面電極6を順次積層して構成されている。ここで、透
明電極2としてはITO等の透明導電膜が草着により形
成され、また第1絶縁層3および第2絶縁層5には、発
光特性を改善する目的から高絶縁耐圧かつ高誘電率のバ
ランスのとれた材料としてYzO1A7!zos。
The structure of a typical conventional thin film EL element is, for example, disclosed in Japanese Unexamined Patent Publication No. 6
2-150690, and as shown in FIG. 5, a transparent electrode 2. is disposed on a transparent glass substrate 1. First insulating layer 3. EL light emitting layer 4. It is constructed by sequentially laminating a second insulating layer 5 and a back electrode 6. Here, as the transparent electrode 2, a transparent conductive film such as ITO is formed by weeding, and the first insulating layer 3 and the second insulating layer 5 have a high dielectric strength and a high dielectric constant in order to improve the light emission characteristics. YzO1A7 as a well-balanced material! zos.

TazOs+SiJ’n等が採用され、主にスパッタリ
ングにより形成されている。EL発光層4としては発光
センターとしてMnをドープしたZnS等が蒸着により
形成され、背面電極6には1等の蒸着膜が用いられてい
る。
TazOs+SiJ'n or the like is used and is mainly formed by sputtering. The EL light-emitting layer 4 is formed by vapor deposition of Mn-doped ZnS or the like as a light-emitting center, and the back electrode 6 is a 1st grade vapor deposited film.

このようなFR膜EL素子に関しては、高輝度化をいか
に実現するかが他のフラットデイスプレィ方式であるプ
ラズマデイスプレィ、液晶デイスプレィ等に対しての優
位性、即ち広範囲での実用化につながるとの判断から鋭
意研究がなされている。
Regarding such FR film EL elements, how to achieve high brightness will give them an advantage over other flat display systems such as plasma displays and liquid crystal displays, which will lead to their widespread practical use. Intensive research is being conducted based on this judgment.

一方、薄膜EL素子については、高輝度発光とは別の観
点から、デイスプレィパネルとしての視認性を改善しよ
うという狙いがあり、これに関しては発光体層の後側に
光吸収率の高い層を設けることにより、発光部と非発光
部間とのコントラストを高める方法があり、実用化され
つつある。
On the other hand, with regard to thin-film EL elements, the aim is to improve visibility as a display panel from a different perspective than high-brightness light emission, and in this regard, a layer with high light absorption rate is placed behind the light-emitting layer. There is a method of increasing the contrast between the light-emitting part and the non-light-emitting part by providing such a light-emitting part, and this method is being put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、一般に光吸収性と電気絶縁性とを兼ね備
えた材料は非常に少なく、長期安定性生産性等も考慮す
ると、最適なものはまだ見出されていない。
However, in general, there are very few materials that have both light absorbing properties and electrical insulating properties, and an optimal material has not yet been found in consideration of long-term stability and productivity.

また、ガラス基板の前面に偏光フィルターを設けて外光
からの反射をカントすることにより、視認性を改善する
方法がデイスプレィパネルとして一般に用いられでいる
が、薄膜EL素子においては少しでも高くしたい発光強
度を低下させることになり、最適な方法とはいえない。
In addition, a method of improving visibility is generally used for display panels by installing a polarizing filter on the front of the glass substrate to cant the reflection from outside light, but for thin-film EL elements, it is desirable to improve visibility as much as possible. This is not an optimal method because it reduces the luminescence intensity.

本発明は、かかる従来の問題点に鑑みてなされたもので
、薄膜EL素子からの発光強度を低下させずに、外光か
らの反射をカントし、デイスプレィパネルとしての視認
性を向上させることをができる薄[EL素子を提供する
ことを目的とする。
The present invention has been made in view of such conventional problems, and has an object to improve visibility as a display panel by canting reflection from external light without reducing the intensity of light emitted from a thin film EL element. The purpose of the present invention is to provide a thin EL element that can be used.

〔課題を解決するための手段および作用〕上記目的を達
成するために、本発明は、透明なガラス基板に透明電極
、第1絶縁層、EL発光層。
[Means and effects for solving the problems] In order to achieve the above object, the present invention provides a transparent glass substrate with a transparent electrode, a first insulating layer, and an EL light emitting layer.

第2絶縁層および背面電極を順次積層してなる薄膜EL
素子において、そのガラス基板の反対側に多層反射防止
膜を設けた。
Thin film EL formed by sequentially laminating a second insulating layer and a back electrode
In the device, a multilayer antireflection coating was provided on the opposite side of the glass substrate.

また本発明において、上記多層反射防止膜は空気側より
低屈折率材料と高屈折率材料とのくり返しにより構成さ
れており、その低屈折材料としてMgPzまたはSiO
□のいずれかを、高屈折率材料としてZr0z+Taz
Os+ Ti0zまたはCe0tのいずれかあるいはそ
れらの組合わせからなる混合物を用いるととよい。
Further, in the present invention, the multilayer antireflection film is constituted by repeating a low refractive index material and a high refractive index material from the air side, and the low refractive index material is MgPz or SiO.
Either of □ is used as high refractive index material Zr0z+Taz
It is preferable to use either Os+ TiOz or CeOt or a mixture thereof.

このように、ガラス基板の反対側に多層反射防止膜を形
成することにより、可視光全域にわたる外光からの反射
光を大幅に低減することができる。
By forming the multilayer antireflection film on the opposite side of the glass substrate in this way, it is possible to significantly reduce reflected light from outside light over the entire visible light range.

具体的には、従来の反射防止膜のないガラス基板面に入
射してくる外光は約4%が反射される。
Specifically, about 4% of external light incident on the surface of a conventional glass substrate without an antireflection film is reflected.

これは、発光部、非発光部に拘らず、−律の反射光とな
るため、外光が強い環境においては大きく視認性を損ね
る原因となっている。これに対し、反射防止膜を設けた
本発明の場合、ガラス基板面からの反射は最大でも1%
以下となるため、その視認性は大幅に改善されることに
なる。
This results in uniformly reflected light regardless of whether it is a light-emitting part or a non-light-emitting part, which causes a significant loss of visibility in an environment with strong external light. On the other hand, in the case of the present invention provided with an anti-reflection film, the reflection from the glass substrate surface is at most 1%.
As a result, visibility will be greatly improved.

(実施例) (第1実施例) 第1図に示すように、透明なガラス基+7i 1の上に
ITO透明導電M1000λを蒸着により形成し、スト
ライプ状にパターン化して透明電極2とした。
(Example) (First Example) As shown in FIG. 1, ITO transparent conductive material M1000λ was formed by vapor deposition on a transparent glass substrate +7i 1, and was patterned into a stripe shape to form a transparent electrode 2.

次に、その透明電極2上に、第1絶縁層3としてY!0
33000人をスパッタリングにより形成した後、EL
発光層4としてMnをドープしたZnS5000Åを電
子ビーム蒸着により形成し、さらに第2絶縁層5として
hOs3000人をスパッタリングにより形成した。そ
の後、発光層の輝度向上のため、真空中アニールを55
0°Cにて30分行った。そして、次に背面電極6とし
てA 12000人を蒸着により形成し、前記透明電極
2と直交するようにストライブ状にパターン化した。
Next, on the transparent electrode 2, a first insulating layer 3 is formed of Y! 0
After forming 33,000 layers by sputtering, EL
A light-emitting layer 4 of 5000 Å of Mn-doped ZnS was formed by electron beam evaporation, and a second insulating layer 5 of 3000 Å of hOs was formed by sputtering. After that, in order to improve the brightness of the light emitting layer, annealing was performed in vacuum for 55 minutes.
The test was carried out at 0°C for 30 minutes. Then, 12,000 layers of A were formed as the back electrode 6 by vapor deposition, and patterned into stripes so as to be orthogonal to the transparent electrode 2.

こうして作成した従来タイプの薄膜EL素子に対し、そ
のガラス基Fi1の反対側に電子ビーム蒸着により多層
反射防止膜7を形成した。この多層反射防止膜は、表1
に膜構成を示すように、空気側から順に第1層71.第
2層72.第3層73第4層74.および第5層75と
した5層構造で構成されている。
A multilayer antireflection film 7 was formed by electron beam evaporation on the opposite side of the glass substrate Fi1 to the conventional type thin film EL device thus produced. This multilayer antireflection coating is shown in Table 1.
As shown in the membrane structure, the first layer 71. Second layer 72. Third layer 73 Fourth layer 74. and a fifth layer 75.

(以下余白) 表1 このようにして得られた多層反射防止膜70反射率特性
を第2図に示す。可視域(400〜700r+m)での
反射率は、0.5%以下と低レベルにあり、視認性の改
善に十分な効果あることが判る。
(The following is a blank space) Table 1 The reflectance characteristics of the multilayer antireflection film 70 obtained in this manner are shown in FIG. The reflectance in the visible range (400 to 700 r+m) is at a low level of 0.5% or less, which indicates that it is sufficiently effective in improving visibility.

(第2実施例) 第3図に示すように、最初の工程として透明なガラス基
Fi、lの上に電子ビーム蒸着により多層反射防止膜8
を形威した。この多層反射防止膜8の膜構成は表2に示
すようなもので、空気側から順に第1層81.第2層8
2.第3層83および第4層84とした4層構造で横取
されている。
(Second Embodiment) As shown in FIG. 3, as a first step, a multilayer antireflection film 8 is formed by electron beam evaporation on a transparent glass substrate Fi,l.
It took shape. The film structure of this multilayer antireflection film 8 is as shown in Table 2, in which the first layer 81. 2nd layer 8
2. It has a four-layer structure including a third layer 83 and a fourth layer 84.

表2 このようにして得られた多層反射防止膜8の反射率特性
を第4図に示す。可視域(400〜bの反射率は1%以
下であり、視認性の改善に十分な効果があることが判る
Table 2 The reflectance characteristics of the multilayer antireflection film 8 thus obtained are shown in FIG. It can be seen that the reflectance in the visible range (400-b) is 1% or less, which is sufficient to improve visibility.

ここでの多層反射防止膜8においては、後工程でのエツ
チング液による影響および真空アニールによる熱的影響
を考慮し、低屈折率材料としてMgF、より耐性の大き
いSiO□を採用している。
In the multilayer antireflection film 8 here, MgF is used as a low refractive index material, and SiO□, which has higher resistance, is used in consideration of the influence of etching liquid in the subsequent process and the thermal influence of vacuum annealing.

このように多層反射防止膜8を形威した後、透明なガラ
ス基板lの反対側にITO透明導電膜1000人を蒸着
により形威し、ストライブ状にパターン化して透明電極
2とした。次に、その透明電極2上に第1wA縁層3と
してY!033000人をスパッタリングにより形成し
た後、EL発光層4としてMnをドープしたZnS50
00Åを電子ビーム蒸着により形威し、さらに第2絶縁
層5としてhOJOOO人をスパッタリングにより形成
した。
After forming the multilayer antireflection film 8 in this manner, a 1000 ITO transparent conductive film was formed by vapor deposition on the opposite side of the transparent glass substrate 1, and was patterned into stripes to form the transparent electrode 2. Next, Y! is formed as a first wA edge layer 3 on the transparent electrode 2! After forming 033,000 layers by sputtering, ZnS50 doped with Mn was used as the EL light emitting layer 4.
00 Å was formed by electron beam evaporation, and a second insulating layer 5 of hOJOOOO was formed by sputtering.

この後、発光層の輝度向上のため、真空中アニールを5
50°Cにて30分行った。最後に、背面電極6として
A Q 2000人を蒸着により形威し、前記透明電極
2と直交するようにストライプ状にパターン化して薄膜
EL素子を得た。
After this, in order to improve the brightness of the light emitting layer, annealing was performed in vacuum for 5 minutes.
The test was carried out at 50°C for 30 minutes. Finally, AQ2000 was formed as a back electrode 6 by vapor deposition, and patterned into stripes perpendicular to the transparent electrode 2 to obtain a thin film EL element.

なお、本実施例では多層反射防止膜8の形成を最初に行
っているが、これに限ったものではなく、前後の工程と
の関係で任意に設定できる性質のものである。
In this embodiment, the multilayer anti-reflection film 8 is formed first, but it is not limited to this, and can be arbitrarily set depending on the previous and subsequent steps.

また、両実施例においては、発光材料としてZns、ド
ーパントとしてMnを用いた場合について述べたが、本
発明は他の組合わせ、即ち前者ではSrS、 CaS等
を、後者ではTb、Eu、Ce等を用いてもよい。
Furthermore, in both Examples, the case was described in which Zns was used as the light emitting material and Mn was used as the dopant, but the present invention is applicable to other combinations, that is, in the former case, SrS, CaS, etc. were used, and in the latter case, Tb, Eu, Ce, etc. were used. may also be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の薄膜EL素子によれば、EL素
子とは反対側のガラス基板面に多層反射防止膜を設けて
いるので、EL素子からの発光強度を低下させることな
しに外光からの反射をカットし、デイスプレィパネルと
しての視認性を向上させることができる。また、本発明
における多層反射防止膜は、安価で安定した材料から成
り、蒸着時にEL素子にダメージを及ぼす心配も無いた
め、高い生産性を有するものである。
As described above, according to the thin film EL element of the present invention, since the multilayer antireflection film is provided on the glass substrate surface opposite to the EL element, external light can be absorbed without reducing the intensity of light emitted from the EL element. It is possible to improve visibility as a display panel by cutting reflections from the screen. Furthermore, the multilayer antireflection film of the present invention is made of inexpensive and stable materials, and there is no fear of damaging the EL element during vapor deposition, so it has high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜EL素子の第1実施例を示す縦断
面図、第2図は第1図に示す薄膜EL素子における多層
反射防止膜の反射率特性を示すグラフ、第3図は本発明
の第2実施例を示す縦断面図、第4図は第3図に示す薄
膜EL素子における多層反射防止膜の反射率特性を示す
グラフ、第5図は従来の薄膜EL素子を示す縦断面図で
ある。 1・・・ガラス基板 2・・・透明電極 3・・・第1絶縁層 4・・・EL発光層 5・・・第2絶縁層 6・・・背面電極 7.8・・・多層反射防止膜
FIG. 1 is a vertical cross-sectional view showing a first embodiment of the thin film EL device of the present invention, FIG. 2 is a graph showing the reflectance characteristics of the multilayer antireflection coating in the thin film EL device shown in FIG. 1, and FIG. FIG. 4 is a graph showing the reflectance characteristics of the multilayer anti-reflection coating in the thin film EL device shown in FIG. 3. FIG. 5 is a longitudinal cross section showing the conventional thin film EL device. It is a front view. 1...Glass substrate 2...Transparent electrode 3...First insulating layer 4...EL light emitting layer 5...Second insulating layer 6...Back electrode 7.8...Multilayer antireflection film

Claims (2)

【特許請求の範囲】[Claims] (1) 透明なガラス基板に透明電極,第1絶縁層,E
L発光層,第2絶緑層および背面電極を順次積層してな
る薄膜EL素子において、そのガラス基板の反対側に多
層反射防止膜を設けたことを特徴とする薄膜EL素子。
(1) Transparent electrode, first insulating layer, E on a transparent glass substrate
1. A thin film EL device comprising an L light-emitting layer, a second anti-green layer, and a back electrode stacked one after another, characterized in that a multilayer antireflection film is provided on the opposite side of the glass substrate.
(2) 前記多層反射防止膜は空気側より低屈折率材料
と高屈折率材料とのくり返しにより構成されており、そ
の低屈折材料としてMgF_2またはSiO_2のいず
れかを、高屈折率材料としてZrO_2,Ta_2O_
5,TiO_2またはCeO_2のいずれかあるいはそ
れらの組合わせからなる混合物を用いたことを特徴とす
る請求項1記載の薄膜EL素子。
(2) The multilayer anti-reflection film is composed of a low refractive index material and a high refractive index material repeated from the air side, and the low refractive index material is either MgF_2 or SiO_2, and the high refractive index material is ZrO_2, Ta_2O_
5. The thin film EL device according to claim 1, characterized in that a mixture consisting of either TiO_2 or CeO_2 or a combination thereof is used.
JP2017599A 1990-01-26 1990-01-26 Thin film el element Pending JPH03222287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017599A JPH03222287A (en) 1990-01-26 1990-01-26 Thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017599A JPH03222287A (en) 1990-01-26 1990-01-26 Thin film el element

Publications (1)

Publication Number Publication Date
JPH03222287A true JPH03222287A (en) 1991-10-01

Family

ID=11948351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017599A Pending JPH03222287A (en) 1990-01-26 1990-01-26 Thin film el element

Country Status (1)

Country Link
JP (1) JPH03222287A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757127A (en) * 1994-06-10 1998-05-26 Nippondenso Co., Ltd. Transparent thin-film EL display apparatus with ambient light adaptation means
WO2002073248A2 (en) * 2001-03-07 2002-09-19 Axsun Technologies, Inc. Controlled stress optical coatings for membranes
JP2003195775A (en) * 2001-12-27 2003-07-09 Seiko Epson Corp Electro-optical device, manufacturing method therefor, circuit board, manufacturing method therefor, and electronic equipment
KR20050026845A (en) * 2003-09-10 2005-03-16 삼성에스디아이 주식회사 A substrate of emitting device and emitting device using the same
EP1026924A4 (en) * 1997-05-08 2005-07-20 Sanyo Electric Co Organic electroluminescent device
JP2007261373A (en) * 2006-03-28 2007-10-11 Denso Corp Air component feeder for vehicle
WO2016142579A1 (en) * 2015-03-09 2016-09-15 Beneq Oy A display device and a method for manufacturing such device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757127A (en) * 1994-06-10 1998-05-26 Nippondenso Co., Ltd. Transparent thin-film EL display apparatus with ambient light adaptation means
US5965981A (en) * 1994-06-10 1999-10-12 Nippondenso Co., Ltd Transparent thin-film EL display apparatus
EP1026924A4 (en) * 1997-05-08 2005-07-20 Sanyo Electric Co Organic electroluminescent device
WO2002073248A2 (en) * 2001-03-07 2002-09-19 Axsun Technologies, Inc. Controlled stress optical coatings for membranes
WO2002073248A3 (en) * 2001-03-07 2003-04-10 Axsun Tech Inc Controlled stress optical coatings for membranes
US6692850B2 (en) 2001-03-07 2004-02-17 Axsun Technologies, Inc. Controlled stress optical coatings for membranes
EP1324642A3 (en) * 2001-12-27 2004-06-16 Seiko Epson Corporation Electro-optic device, method for manufacturing electro-optic device and use in an electronic apparatus
JP2003195775A (en) * 2001-12-27 2003-07-09 Seiko Epson Corp Electro-optical device, manufacturing method therefor, circuit board, manufacturing method therefor, and electronic equipment
US7211838B2 (en) 2001-12-27 2007-05-01 Seiko Epson Corporation Apparatus and method for manufacturing electro-optical devices
US7714328B2 (en) 2001-12-27 2010-05-11 Seiko Epson Corporation Apparatus and method for manufacturing electro-optical devices
KR20050026845A (en) * 2003-09-10 2005-03-16 삼성에스디아이 주식회사 A substrate of emitting device and emitting device using the same
JP2007261373A (en) * 2006-03-28 2007-10-11 Denso Corp Air component feeder for vehicle
WO2016142579A1 (en) * 2015-03-09 2016-09-15 Beneq Oy A display device and a method for manufacturing such device
US10111300B2 (en) 2015-03-09 2018-10-23 Beneq Oy Display device and a method for manufacturing such device

Similar Documents

Publication Publication Date Title
US20070259586A1 (en) Electroluminescence light emitting element and manufacturing method thereof
JPH07288183A (en) Electroluminescence device, tfel device, and formation of thih film light absorbing layer
JPH0230155B2 (en)
RU2119274C1 (en) Thin-film high-contrast fluorescent display unit and its manufacturing process
JPH03222287A (en) Thin film el element
US5072152A (en) High brightness TFEL device and method of making same
US9688571B2 (en) Method of fabricating light extraction substrate for organic light emitting device
JPH01315992A (en) Film el element
KR100326464B1 (en) Electroluminescent display device
JPS63116393A (en) Thin film electroluminescence device
JPH0527996U (en) EL display element
JPH11185969A (en) El element and its manufacture
JPH0243190B2 (en)
JPH0460317B2 (en)
JPH0325916B2 (en)
JPH02132791A (en) Thin-film el element
KR950001801B1 (en) Thin film el device
JPH0214711B2 (en)
JPH0326919B2 (en)
JPH0460318B2 (en)
JPS6159388A (en) Display unit
JPS6177883A (en) Thin film el element
JPH0152878B2 (en)
JPH01144595A (en) Thin film el element
JPS6364292A (en) Thin film el display device