JPH03222212A - Manufacture of high-temperature superconducting wire-rod - Google Patents
Manufacture of high-temperature superconducting wire-rodInfo
- Publication number
- JPH03222212A JPH03222212A JP2016219A JP1621990A JPH03222212A JP H03222212 A JPH03222212 A JP H03222212A JP 2016219 A JP2016219 A JP 2016219A JP 1621990 A JP1621990 A JP 1621990A JP H03222212 A JPH03222212 A JP H03222212A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- laser beams
- portions
- temperature superconducting
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000010409 thin film Substances 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 abstract description 5
- 238000005096 rolling process Methods 0.000 abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000002887 superconductor Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UZFMKSXYXFSTAP-UHFFFAOYSA-N barium yttrium Chemical compound [Y].[Ba] UZFMKSXYXFSTAP-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は液体窒素温度で働く高温超電導線材の製造方法
、特に交流損失の低減のための細線化に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a high-temperature superconducting wire that operates at liquid nitrogen temperature, particularly to thinning the wire for reducing AC loss.
(従来技術とその問題点)
近時従来の液体ヘリウム温度での低温超電導体に代って
、経済的効果などの各種の利点を有する、所謂高温超電
導体か開発され、各種交流機器例えば電カケープルの線
材、変圧器などの巻線用線材などへの応用が注目されて
いる。(Prior art and its problems) Recently, so-called high-temperature superconductors, which have various advantages such as economic effects, have been developed in place of conventional low-temperature superconductors at liquid helium temperatures, and are used in various AC devices such as power cables. It is attracting attention for its application to wire rods and wire rods for winding wires such as transformers.
ところで例えば超電導電カケ−プルは、超電導への転移
温度を高くして臨界電流を大にするため厚さの薄いテー
プ状とした高温超電導線材を、液体窒素を流しつるよう
にスペーサを介して集合し、これを液体窒素が流される
シェル内に収容して構成されるが、この場合テープの幅
を極力狭くして細線化し、これに流される交流電流にも
とづく発生磁界による交流損失の低減に努めることか強
く要求される。By the way, for example, a superconducting cable is made by gathering thin tape-shaped high-temperature superconducting wires through a spacer as if flowing liquid nitrogen in order to increase the transition temperature to superconductivity and increase the critical current. This is then housed in a shell through which liquid nitrogen is flowed, but in this case the width of the tape is made as narrow as possible to make it a thin wire, in an effort to reduce AC loss due to the magnetic field generated by the AC current flowing through it. It is strongly requested.
しかし従来知られているテープ状超電導線材の製造に当
たってとられている圧延法、即ち銀のパイプ内に超電導
材の粉末を充填したものを線引きして細くしたのち、プ
レスにより圧延して厚さが数十pmの薄いテープ状にす
る機械的方法では、テープの幅を一定値以下に狭くする
ことは困難てあって、細線化による交流損失の低減には
限界かある。However, the rolling method used to manufacture conventionally known tape-shaped superconducting wires involves filling a silver pipe with superconducting material powder, drawing it into a thin wire, and then rolling it using a press to reduce the thickness. With the mechanical method of forming a thin tape of several tens of pm, it is difficult to reduce the width of the tape below a certain value, and there is a limit to the reduction of AC loss by thinning the wire.
(発明の目的)
本発明は上記従来方法より、更に細線化か可能な高温超
電導線材の新しい製造方法を提供し、交流損失か少なく
、しかも熱的安定性の高い高温超電導交流線材を提供て
きるようにしたものである(問題点を解決するための本
発明の手段)長波長レーザにより高温超電導材を照射す
るとその部分か溶解し、照射の停止によって再凝固する
。このときレーザ照射部には超電導相と組成のずれた常
電導相か析出され、これか電気的に半導体である非超電
導部分となることか知られている(例えば“5urfa
ce Modification by CO2La5
erand 5urface Current Cou
centration of 0xideSuperc
onductor 、 H,Nomura、 M、 O
kutomi、 A。(Objective of the Invention) The present invention provides a new method for producing high-temperature superconducting AC wires that can be made even thinner than the conventional method described above, and provides high-temperature superconducting AC wires with less AC loss and high thermal stability. (Means of the present invention for solving the problem) When the high temperature superconducting material is irradiated with a long wavelength laser, that part melts and re-solidifies when the irradiation is stopped. At this time, it is known that a normal conductive phase with a different composition from the superconducting phase is precipitated in the laser irradiated part, and this becomes a non-superconducting part that is electrically a semiconductor (for example, "5urfa").
ce Modification by CO2La5
erand 5surface Current Cou
centration of OxideSuperc
onductor, H, Nomura, M, O
Kutomi, A.
Kikagawa、 and T、 0nishi、
in″Proceedings ofllth In
ternational Conference on
Magnet TechnologY” (1990
9)参照)また一般にレーザビームは集光によってシャ
ープに形成でき、精密加工か容易である。本発明は以上
から着想してなされたちのてあって、その特徴とすると
ころは次の点にある。Kikagawa, and T. 0nishi,
in″Proceedings ofllth In
International Conference on
Magnet Technology” (1990
(See 9)) In general, laser beams can be sharply formed by focusing, and precision processing is easy. The present invention was conceived based on the above, and is characterized by the following points.
即ち第1図に示すように基板(1)、例えば高温超電導
材の被着か容易であって、レーザ照射により変質するこ
との少ない材質である曲げ耐性をもつチタン酸ストロン
チウムによる基板(1)の−面上に、蒸着、スパッタリ
ングなどの公知の手段により、高温超電導材例えばイツ
トリウムバリウムカッパオキサイド(Y、 Ba2Cu
30.)による薄膜(2)を被着した長尺のテープ状材
(3)を用意する(なお図ては説明を判り易くするため
、超電導線材の厚みを誇張して書いている)。そしてそ
の高温超電導材(2)の薄膜面を、第2図のように間隔
をおいて平行に配列された複数本例えば4本の長波長レ
ーザ光、例えば形成すべき超電導部分(5)の数と、得
たい幅に対応してビーム径と各ビームの間隔が選定され
た複数本の長波長レーザ光、例えば炭酸ガスレーザ光(
CO2レーサ波長9.1−11.5μm) (4a)(
4b) (4c) (4d)により長手方向に走査して
、照射部に非超電導部分(6ンを形成し、非照射部に超
電導部分(5)を形成するようにしたことを特徴とする
ものである。That is, as shown in FIG. 1, a substrate (1) made of strontium titanate, which has bending resistance and is a material to which a high-temperature superconducting material can be easily deposited and is less likely to be altered by laser irradiation. A high temperature superconducting material such as yttrium barium kappa oxide (Y, Ba2Cu
30. ) A long tape-like material (3) having a thin film (2) coated thereon is prepared (in order to make the explanation easier to understand, the thickness of the superconducting wire is exaggerated in the figure). Then, the thin film surface of the high-temperature superconducting material (2) is illuminated with a plurality of long wavelength laser beams, for example four, arranged in parallel at intervals as shown in Fig. 2, for example, the number of superconducting parts (5) to be formed. Then, multiple long-wavelength laser beams with beam diameters and beam spacings selected according to the desired width, such as carbon dioxide laser beams (
CO2 laser wavelength 9.1-11.5 μm) (4a) (
4b) A non-superconducting portion (6) is formed in the irradiated portion by scanning in the longitudinal direction according to (4c) and (4d), and a superconducting portion (5) is formed in the non-irradiated portion. It is.
(発明の作用・効果)
以上のようにすれば前記のようにレーザビームは集光に
よってシャープに形成できるので、各レーザビーム(4
aX4b)−−(4d)の幅(ビーム径)と相互間隔を
選定することにより、レーザ光による非照射部分の幅と
間隔を正確に制御でき、非超電導部分(6)の間に残る
超電導部分(5)の幅を任意かつ正確に制御できる。従
って前記従来の圧延法に比べて更に細線化が可能となる
。(Operations and Effects of the Invention) By doing the above, the laser beam can be sharply formed by focusing as described above, so each laser beam (4
aX4b) -- By selecting the width (beam diameter) and mutual spacing of (4d), the width and spacing of the non-irradiated portions by the laser beam can be accurately controlled, and the superconducting portion remaining between the non-superconducting portions (6) The width of (5) can be controlled arbitrarily and accurately. Therefore, it is possible to make the wire thinner than the conventional rolling method.
またテープ状高温超電導材は大量生産的に低コストで製
造でき、しかもレーザ照射のみて製造できるので、低コ
ストで長手方向に平行に位置する複数本の高温超電導線
材を同時に製造できる。また第3図のように1本の長波
長レーザ光によれば1本のテープ状超電導交流線材を形
成できる。Furthermore, since the tape-shaped high temperature superconducting material can be mass-produced at a low cost and can be manufactured only by laser irradiation, a plurality of high temperature superconducting wires located parallel to the longitudinal direction can be simultaneously manufactured at a low cost. Further, as shown in FIG. 3, one tape-shaped superconducting AC wire can be formed using one long wavelength laser beam.
またこの高温超電導線材における超電導部分(5)間に
は、絶縁材てはない非超電導部分(6)か介在する。従
って超電導部分(5)における交流損失による発生熱は
非超電導部分(6)に伝達されて放散されるので、熱的
安定性を向上できる。Also, between the superconducting portions (5) in this high-temperature superconducting wire, there are non-superconducting portions (6) which are not made of an insulating material. Therefore, heat generated due to AC loss in the superconducting portion (5) is transferred to the non-superconducting portion (6) and dissipated, thereby improving thermal stability.
従って例えばこのテープ状高温超電導線材間に、液体窒
素が流れうるように絶縁物製や金属製(電流は超電導部
分の集中して流れるので金属製であってもよい)のスペ
ーサを介して積層したのち、これを液体窒素か流される
シェル内に収容すれば、従来のものに比べて交流損失か
更に少なく熱安定性にすぐれる超電導転移温度が高く臨
界電流の大きい超電導電カケ−プルを提供でき、また上
記各種の利点を備えた巻線材を提供できる。Therefore, for example, spacers made of insulators or metals (metal may also be used since the current flows concentrated in the superconducting part) are interposed between these tape-shaped high-temperature superconducting wires so that liquid nitrogen can flow. If this is then housed in a shell that is flushed with liquid nitrogen, it is possible to provide a superconducting cable with even less AC loss and excellent thermal stability, a high superconducting transition temperature, and a large critical current compared to conventional ones. Moreover, it is possible to provide a winding material having the various advantages described above.
(1)・・・基板、 (2)・・・高温超電導材、(3
)・・・テープ状、 (4a) (4b) (4c)
(4d)−=レーザ光、(5)・・・超電導部分、 (
6)・・・非超電導部分。(1)...Substrate, (2)...High temperature superconducting material, (3
)...Tape-like, (4a) (4b) (4c)
(4d)-=laser light, (5)...superconducting part, (
6)...Non-superconducting part.
Claims (1)
高温超電導薄膜を、1本乃至間隔をおいて平行に配置し
た複数本の長波長レーザ光により長手方向に照射して照
射部分を非超電導化すると共に、前記複数本の長波長レ
ーザ光のビーム径およびその間隔を選定して、前記非超
電導部分間に位置する長波長レーザ光の非照射にもとづ
く超電導部分の幅を制御するようにしたことを特徴とす
る高温超電導線材の製造方法。The high temperature superconducting thin film, which is a tape-shaped material with a high temperature superconducting thin film adhered on the substrate surface, is irradiated in the longitudinal direction with one or a plurality of long wavelength laser beams arranged in parallel at intervals, so that the irradiated part is not exposed. In addition to making the superconducting part superconducting, the beam diameter of the plurality of long wavelength laser beams and the interval thereof are selected to control the width of the superconducting part located between the non-superconducting parts based on the non-irradiation of the long wavelength laser beam. A method for producing a high-temperature superconducting wire, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016219A JPH03222212A (en) | 1990-01-29 | 1990-01-29 | Manufacture of high-temperature superconducting wire-rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016219A JPH03222212A (en) | 1990-01-29 | 1990-01-29 | Manufacture of high-temperature superconducting wire-rod |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03222212A true JPH03222212A (en) | 1991-10-01 |
Family
ID=11910419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016219A Pending JPH03222212A (en) | 1990-01-29 | 1990-01-29 | Manufacture of high-temperature superconducting wire-rod |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03222212A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006196604A (en) * | 2005-01-12 | 2006-07-27 | Masataka Iwakuma | Superconducting coil |
US7453340B2 (en) | 2003-07-17 | 2008-11-18 | International Superconductivity Technology Center, The Juridical Foundation | Superconducting wire and superconducting coil employing it |
JP2012109263A (en) * | 2012-02-08 | 2012-06-07 | Sumitomo Electric Ind Ltd | Manufacturing method of superconducting tape wire rod, superconducting tape wire rod, and superconducting apparatus |
WO2023027149A1 (en) * | 2021-08-26 | 2023-03-02 | 株式会社フジクラ | Superconducting wire material and superconducting coil |
-
1990
- 1990-01-29 JP JP2016219A patent/JPH03222212A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7453340B2 (en) | 2003-07-17 | 2008-11-18 | International Superconductivity Technology Center, The Juridical Foundation | Superconducting wire and superconducting coil employing it |
US7777602B2 (en) | 2003-07-17 | 2010-08-17 | International Superconductivity Technology Center, Juridical Foundation | Superconducting wire and superconducting coil made therewith |
JP2006196604A (en) * | 2005-01-12 | 2006-07-27 | Masataka Iwakuma | Superconducting coil |
JP4558517B2 (en) * | 2005-01-12 | 2010-10-06 | 成卓 岩熊 | Superconducting coil |
JP2012109263A (en) * | 2012-02-08 | 2012-06-07 | Sumitomo Electric Ind Ltd | Manufacturing method of superconducting tape wire rod, superconducting tape wire rod, and superconducting apparatus |
WO2023027149A1 (en) * | 2021-08-26 | 2023-03-02 | 株式会社フジクラ | Superconducting wire material and superconducting coil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3342739B2 (en) | Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same | |
JPH02253517A (en) | Superconducting wire | |
EP0412442B1 (en) | Superconductive conductor | |
JPH03222212A (en) | Manufacture of high-temperature superconducting wire-rod | |
JP2007227771A (en) | Superconductive coil device | |
JP2929622B2 (en) | How to use oxide superconductor | |
JPS61225808A (en) | Manufacture of superconductive coil | |
Solovyov et al. | Electromechanical properties of 1-mm-wide superconducting cables comprised of exfoliated YBCO filaments | |
JPH06290933A (en) | Oxide superconducting double-pancake coil | |
JP2525016B2 (en) | Superconducting wire | |
JPS6129014A (en) | Method of producing compound superconductive lead | |
JPH08106822A (en) | Superconductive wire | |
JPS59172212A (en) | Superconductive coil | |
JPH05234741A (en) | Superconducting magnet structure | |
Solovyov | Low-cost, infinite-length 2G strand for cable-in-conduit fusion magnets | |
Keilin et al. | Plane-turns superconducting magnets: Option for fusion | |
JPS61225809A (en) | Manufacture of superconductive coil | |
JPH10247428A (en) | Oxide superconductive wire | |
Solovyov et al. | High-field Second Generation Cable with Sub-Millimeter Filaments | |
JPH0191407A (en) | Superconducting transformer winding | |
JP2614941B2 (en) | Superconducting element and fabrication method | |
JPS63124310A (en) | Manufacture of nb-ti very fine multi-core superconductive wire | |
JPH05109323A (en) | Superconductive assembled conductor | |
Hintz et al. | AN INORGANICALLY INSULATED SUPER-CONDUCTING SOLENOID FOR OPERATION AT 1| K | |
Britton | Niobium Tin and Related Superconductors |