JPH03221857A - Microelectrode cell for electrochemical measurement - Google Patents

Microelectrode cell for electrochemical measurement

Info

Publication number
JPH03221857A
JPH03221857A JP1598790A JP1598790A JPH03221857A JP H03221857 A JPH03221857 A JP H03221857A JP 1598790 A JP1598790 A JP 1598790A JP 1598790 A JP1598790 A JP 1598790A JP H03221857 A JPH03221857 A JP H03221857A
Authority
JP
Japan
Prior art keywords
electrode
substrate
resist
working electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1598790A
Other languages
Japanese (ja)
Inventor
Masao Morita
雅夫 森田
Tsutomu Horiuchi
勉 堀内
Osamu Niwa
修 丹羽
Hisao Tabei
田部井 久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1598790A priority Critical patent/JPH03221857A/en
Publication of JPH03221857A publication Critical patent/JPH03221857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To make electrochemical measurement at a low cost with high reliability by integrating and forming a working electrode, a counter electrode, a reference electrode, and an operation amplifier for amplifying a working electrode current on the same substrate. CONSTITUTION:The microelectrode cell is formed by integrating the working electrode 4, counter electrode 5 and reference electrode 6 consisting of metals, semiconductors or semimetals, and the operation amplifier (b) for amplifying the working electrode current on the same substrate 15. A resist is applied on the substrate 15 and an image mask having the patterns of the electrodes is superposed thereon or the patterns are directly exposed by using an electron beam or the like and the resist is developed to transfer the patterns onto the resist on the substrate; thereafter, the thin film of the metal, semiconductor or semimetal is formed by a sputtering, vapor deposition or coating method, etc., and the resist is peeled, by which the microelectrochemical cell consisting of the three electrodes is formed on the substrate.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、水中、有機溶媒中、生体中などに含まれるイ
オン、分子の定性分析あるいは定量分析等を電気化学的
に行うために用いる電気化学測定用微小電極セルに関す
る。
Detailed Description of the Invention [Industrial Application Fields] The present invention relates to an electric field used for electrochemically performing qualitative or quantitative analysis of ions and molecules contained in water, organic solvents, living organisms, etc. This invention relates to microelectrode cells for chemical measurements.

[従来の技術および発明が解決しようとする課題]微小
電極は、生体内などの微小領域や微量溶液サンプルの分
析に適していることから、これまで、種々の有機材料ま
たは無機材料と組み合わせて、センサなどへの応用が試
みられているが、これら微小電極の多くはガラス細管中
に金や白金などの金属線、炭素繊維、金属塩化物などを
、、11人して作成したものであり、大量生産に適さな
いこと、くし形状、素子状など任意の電極形状が得られ
ないことなどの欠点があった。
[Prior Art and Problems to be Solved by the Invention] Microelectrodes are suitable for analyzing microscopic areas such as in vivo and microscopic solution samples, so they have been used in combination with various organic or inorganic materials. Attempts have been made to apply them to sensors, etc., but many of these microelectrodes were made by 11 people using metal wires such as gold or platinum, carbon fibers, metal chlorides, etc. in glass capillary tubes. It has disadvantages such as not being suitable for mass production and not being able to obtain arbitrary electrode shapes such as comb-shaped or element-shaped.

また、微小電極を作成する方法として、近年、リソグラ
フィ技術の応用が提案されている。この方法では、基板
にレジストを塗布し、電極パターンを有する画像マスク
を重ね、露光、現像を行い、蒸着法により金属薄膜を形
成した後lノジストを剥離して基板上に微小電極を作成
するリフトオフ法や、絶縁性基板」二に金属薄膜を形成
した後レジストを塗布し、電極パターンを有する画像マ
スクを重ねて露光および現像を行い、さらに、残ったレ
ジスI・をマスクとして露出部分の金属膜をエツチング
して電極パターンを作成するエツチング法が用いられる
。これらの方法による場合、基板上に任意の形状を持つ
微小電極を多量にしかも再現性よく作成することができ
るため、該微小電極作成法を応用してミクロな電気化学
トランジスタ(例えば、Journal of Phy
sical Chemistry、89巻、5133頁
、1985年記載)、くし形白金@極を利用した低分子
または高分子錯体の電気化学測定(例えば、Analy
tical Chemistry、58巻、601頁、
1986年記載)などが行われている。しかしながら、
これらの微小電極は、トランジスタおよび電気化学測定
セルを構成するためには、該微小電極以外に参照電極や
対向電極を必要とし、セル自体では微小領域における電
気化学反応の測定ができないこと、作用電極である微小
電極と参照電極との距離が増大するため固体電解質など
高抵抗系の測定では敏感な応答が得られにくいことなど
の欠点があった。
Furthermore, in recent years, the application of lithography technology has been proposed as a method for creating microelectrodes. In this method, a resist is applied to a substrate, an image mask with an electrode pattern is placed over it, exposed to light, developed, and a thin metal film is formed by vapor deposition.The resist is then peeled off to create microelectrodes on the substrate. After forming a metal thin film on an insulating substrate (2), a resist is applied, an image mask having an electrode pattern is placed over it, exposure and development are performed, and the exposed portions of the metal film are coated using the remaining resist (1) as a mask. An etching method is used to create an electrode pattern by etching. By using these methods, it is possible to fabricate a large number of microelectrodes with arbitrary shapes on a substrate with good reproducibility. Therefore, the microelectrode fabrication method can be applied to microelectrochemical transistors (e.g., Journal of Phys.
89, p. 5133, 1985), electrochemical measurements of low molecules or polymer complexes using comb-shaped platinum @ electrodes (e.g., Analytical
tical Chemistry, Volume 58, Page 601,
(described in 1986). however,
These microelectrodes require a reference electrode and a counter electrode in addition to the microelectrode in order to configure a transistor and an electrochemical measurement cell, and the cell itself cannot measure electrochemical reactions in a microscopic area. However, because the distance between the microelectrode and the reference electrode increases, it is difficult to obtain a sensitive response when measuring high-resistance systems such as solid electrolytes.

この欠点を解消するために、リソグラフィ技術を用いて
所望の形状と大きさを有する作用電極、対向電極、参照
電極を一体化した電気化学測定用電極セルの考案も行わ
れている(例えば、Analytical Chemi
stry、60巻、2770頁、1988年記載など)
In order to overcome this drawback, electrode cells for electrochemical measurements have been devised in which a working electrode, a counter electrode, and a reference electrode having a desired shape and size are integrated using lithography technology (for example, analytical Chemi
stry, vol. 60, p. 2770, 1988, etc.)
.

一方、これらの微小電極を使用する場合、作用電極の面
積が小さいため電流も減少し、例えば直径IO/7II
+の微小ディスクを用いて濃度]、mmol/Ωの試料
を測定した場合電流位は数nA程度のイ直となってしま
い、そのためノイズが大きくなり、S/N比が大幅に低
下するという欠点があった。さらに、電極とポテンシオ
スタットどの間の配線によるキャパシタンスによって信
号遅延が生じ、従って応答時間が長くなり高速の測定が
困難になるという問題もあった。
On the other hand, when using these microelectrodes, the current is also reduced due to the small area of the working electrode, e.g.
When measuring a sample with a concentration of mmol/Ω using a microdisk of +, the current potential will be approximately a few nA, which increases the noise and significantly reduces the S/N ratio. was there. Furthermore, there is a problem in that signal delay occurs due to capacitance due to the wiring between the electrode and the potentiostat, which increases response time and makes high-speed measurement difficult.

本発明の目的は、上記従来技術の有していた課題を解決
して、優れた特性を有しかつ信頼性が高くしかも安価な
電気化学測定用微小電極セルを提供することにある。
An object of the present invention is to solve the problems of the above-mentioned prior art and to provide a microelectrode cell for electrochemical measurements that has excellent characteristics, is highly reliable, and is inexpensive.

[課題を解決するための手段] 上記目的は、金属または半導体もしくは半金属からなる
作用電極、対向電極、参照電極と作用電極電流増幅用の
オペレーションアンプとを同一基板上に一体化して形成
した電気化学d11j定用微小電極セルとすることによ
って達成することができる。
[Means for Solving the Problems] The above object is to provide an electrical system in which a working electrode, a counter electrode, a reference electrode made of a metal, a semiconductor, or a semimetal, and an operational amplifier for amplifying the working electrode current are integrated on the same substrate. This can be achieved by using a chemical d11j microelectrode cell.

ここで、基板としては、表面あるいは全体が絶4− 縁性である基板として酸化膜付きシリコン基板、石英基
板、酸化アルミニウム基板、ガラス基板、プラスチック
基板などを挙げることができる。また、電極用の金属と
しては金、白金、銀、クロム、チタンなどを、電極用の
半導体としてはp型およびn型シリコン、p型およびn
型ゲルマニウム、硫化カドミウム、二酸化チタン、酸化
亜鉛、ガリウムリン、ガリウム砒素、インジウムリン、
カドミウムセレン、カドミウムテルル、二硫化モリブデ
ン、セレン化タングステン、二酸化銅、酸化スズ、酸化
インジウム、インジウムスズ酸化物などを、電極用の半
金属としては導電性カーボンを挙げることができる。ま
た、参照電極上の参照物質としては銀、塩化銀、ポリビ
ニルフェロセンなどを、さらに絶縁膜としては酸化シリ
コン、窒化シリコン、シリコーン樹脂、ポリイミドおよ
びその誘導体、エポキシ樹脂、高分子硬化物などを挙げ
ることができる。
Here, examples of the substrate include a silicon substrate with an oxide film, a quartz substrate, an aluminum oxide substrate, a glass substrate, a plastic substrate, and the like, as substrates whose surfaces or entire surfaces are insulating. In addition, metals for electrodes include gold, platinum, silver, chromium, titanium, etc.; semiconductors for electrodes include p-type and n-type silicon;
type germanium, cadmium sulfide, titanium dioxide, zinc oxide, gallium phosphide, gallium arsenide, indium phosphide,
Cadmium selenium, cadmium telluride, molybdenum disulfide, tungsten selenide, copper dioxide, tin oxide, indium oxide, indium tin oxide, etc., and semimetals for electrodes include conductive carbon. In addition, reference materials on the reference electrode include silver, silver chloride, polyvinylferrocene, etc., and insulating films include silicon oxide, silicon nitride, silicone resin, polyimide and its derivatives, epoxy resin, and cured polymers. I can do it.

[作用] 上記構成の電気化学測定用微小電極をリソグラフィ技術
により作成することによって、同一形状で同一性能、同
一特性を有する電極を安価でしかも大量に作成すること
が可能になる。従って、個々の電極について検定を行う
ことなく使用することが可能になる。また、作用電極、
列内電極、参照電極が基板上に一体化されているため、
これら三つの電極で構成された部分の電気化学的測定が
可能になる。さらに、作用電極と作用電極電流増幅用オ
ペレーションアンプとが一体化されているので作用電極
とオペレーションアンプ間の配線が極めて短く、従って
、ノイズに強く、キャパシタンスによる信号遅延も小さ
い。
[Function] By producing the microelectrode for electrochemical measurement having the above configuration using lithography technology, it becomes possible to produce electrodes having the same shape, the same performance, and the same characteristics at low cost and in large quantities. Therefore, it becomes possible to use the electrodes without testing each individual electrode. In addition, a working electrode,
Because the in-column electrodes and reference electrodes are integrated on the substrate,
Electrochemical measurements can be made on the part made up of these three electrodes. Furthermore, since the working electrode and the operational amplifier for amplifying the working electrode current are integrated, the wiring between the working electrode and the operational amplifier is extremely short, so it is resistant to noise and has little signal delay due to capacitance.

電極の形状、大きさ、電極間距離などについては特に限
定しないが、より敏感な応答を得るためには、作用電極
と参照電極との距離はできるだけ近づけておくことが望
ましい。また、微小領域の電気化学反応を測定する場合
には、その領域内に作用電極、対向電極、参照電極が配
置されるようにマスクなどの設計をする必要がある。
Although there are no particular limitations on the shape and size of the electrodes, the distance between the electrodes, etc., in order to obtain a more sensitive response, it is desirable to keep the distance between the working electrode and the reference electrode as close as possible. Furthermore, when measuring an electrochemical reaction in a minute area, it is necessary to design a mask or the like so that a working electrode, a counter electrode, and a reference electrode are arranged within that area.

微小電極を作成する方法としては、基板上にしシストを
塗布し、電極のパターンを有する画像マスクを重ねるか
あるいは電子線などを用いて直接パターンを露光し、現
像してパターンを基板上のレジストに転写した後、スパ
ッタ、蒸着、CVD、塗布法などにより金属、半導体、
あるいは半金属の薄膜を形成し、その後レジストを剥離
することにより基板上に三電極からなる微小電気化学セ
ルを得るリフトオフ法や、基板上にスパッタ、蒸着、C
VD、塗布法などにより金属、半導体あるいは半金属の
薄膜を形成し、該薄膜上にレジストを塗布し、電極のパ
ターンを有する画像マスクを重ねあるいは電子線などを
用いて直接パターンを露光し、現像してパターンをレジ
ストに転写した後、これをマスクとして下地の金属、半
導体あるいは半金属をエツチングすることにより基板上
に三電極からなる微小電気化学セルを得るエツチング法
を用いることができる。
The method for creating microelectrodes is to apply a cyst onto a substrate, overlay an image mask with an electrode pattern, or directly expose the pattern using an electron beam, develop it, and apply the pattern to the resist on the substrate. After transferring, metals, semiconductors,
Alternatively, a lift-off method can be used to obtain a microelectrochemical cell consisting of three electrodes on a substrate by forming a thin film of a semimetal and then peeling off the resist, or by sputtering, vapor deposition, carbon dioxide, etc. on a substrate.
A thin film of metal, semiconductor, or metalloid is formed by VD, coating method, etc., a resist is applied on the thin film, an image mask having an electrode pattern is overlaid, or the pattern is directly exposed using an electron beam, etc., and developed. After the pattern is transferred to a resist, the underlying metal, semiconductor, or metalloid is etched using this pattern as a mask, thereby obtaining a microelectrochemical cell consisting of three electrodes on the substrate using an etching method.

また、電極およびパッド部分を残して絶縁膜で覆う場合
の絶縁膜パターンの形成方法としては、基板上にレジス
トパターンを形成し、スパッタ、7− 蒸着、CVD、塗布法などにより酸化シリコン、窒化シ
リコン、シリコーン樹脂、ポリイミドおよびその誘導体
、エポキシ樹脂、高分子硬化物等で基板を被覆し、次い
でレジストを剥離するリフトオフ法、スパッタ、蒸着、
CVD、塗布法などにより基板を酸化シリコン、窒化シ
リコン、シリコーン樹脂、ポリイミドおよびその誘導体
、エポキシ樹脂、高分子硬化物などで被覆し、該被覆−
ヒにレジストを塗布してパターンを形成した後、これを
マスクとして絶縁膜をエツチングすることによりパター
ンを得るエツチング法、レジストでパターンを形成した
後レジストを硬化させてそのまま使用する方法などを挙
げることができる。
In addition, as a method for forming an insulating film pattern when leaving the electrode and pad portions and covering them with an insulating film, a resist pattern is formed on the substrate, and silicon oxide or silicon nitride is formed by sputtering, vapor deposition, CVD, coating, etc. , a lift-off method in which a substrate is coated with silicone resin, polyimide and its derivatives, epoxy resin, polymer cured material, etc., and then the resist is peeled off, sputtering, vapor deposition,
The substrate is coated with silicon oxide, silicon nitride, silicone resin, polyimide and its derivatives, epoxy resin, cured polymer, etc. by CVD, coating method, etc.
Examples include an etching method in which a resist is applied to a surface to form a pattern, and then the insulating film is etched using this as a mask to obtain a pattern, and a method in which a pattern is formed with a resist and then the resist is hardened and used as is. I can do it.

なお、参照電極を作成するには、該電気化学セルの内作
用電極以外の一本の電極上に、めっき、電解重合法など
により、支持物質となる金属、有機酸化還元性高分子を
形成することによって作成することができる。
Note that to create a reference electrode, a metal or organic redox polymer serving as a supporting material is formed on one electrode other than the internal working electrode of the electrochemical cell by plating, electrolytic polymerization, etc. It can be created by

[実施例] 以下、本発明の電気化学測定用微小電極セルの構成につ
いて実施例によって具体的に説り」する。
[Example] Hereinafter, the structure of the microelectrode cell for electrochemical measurements of the present invention will be explained in detail with reference to Examples.

但し、本発明はこれらの実施例の内容に限定されるもの
ではない。
However, the present invention is not limited to the contents of these Examples.

実施例 l レジストワーク、イオンドーピング、エツチング、薄膜
形成等のりソグラフィ技術を用いて、シリコン基板上に
一体化して設けたCMO3FETタイプのオペレーショ
ンアンプと作用電極、対向電極、参照電極とからなる電
気化学測定用セルを作成した。第1図にその構成を示す
回路図を、第2図にその概略構造の一例を示す断面図を
、第3図に電極部分の平面拡大模式図を示した。図にお
いて、(a)は電極部、(b)はオペレーションアンプ
部を、また、1はシリコン基板(P−)、2はパッシベ
ーション膜、3はアルミニウム配線、4は作用電極(p
t)、5は対向電極(Pt)、6は参照電極(Ag)、
7は3101wA18は0ウエル、9はPウェル、10
はピポリサイド、11はn+ポリサイド、12はSin
、 トレンチ、13は絶縁膜、14は電極窓、15は酸
化膜付きシリコン基板、16は作用電極用配線、17は
対向電極用配線、18は参照電極用配線を示す。
Example 1 Electrochemical measurement consisting of a CMO3FET type operational amplifier, working electrode, counter electrode, and reference electrode integrated on a silicon substrate using resist work, ion doping, etching, thin film formation, and other lithography techniques. I created a cell for FIG. 1 is a circuit diagram showing its configuration, FIG. 2 is a sectional view showing an example of its schematic structure, and FIG. 3 is an enlarged plan view of the electrode portion. In the figure, (a) is an electrode section, (b) is an operational amplifier section, 1 is a silicon substrate (P-), 2 is a passivation film, 3 is an aluminum wiring, and 4 is a working electrode (P-).
t), 5 is a counter electrode (Pt), 6 is a reference electrode (Ag),
7 is 3101wA18 is 0 well, 9 is P well, 10
is polycide, 11 is n+ polycide, 12 is sin
, a trench, 13 an insulating film, 14 an electrode window, 15 a silicon substrate with an oxide film, 16 a working electrode wiring, 17 a counter electrode wiring, and 18 a reference electrode wiring.

ここで、オペレーションアンプはゲイン33dBの増幅
回路(各回路は10個のFETからなる)を3段直列に
連接した。また、回路全体のサイズは300 X 4o
o、m、トータルの特性は入力インピーダンス10パΩ
、オープンループゲイン97 dB、帯域幅0.1Mt
lzであった。微小電極部分は直径10I!mの作用電
極、その周囲に参照電極と対向電極とを配置して形成し
た。また、セル全体は窒化シリコンからなるパッシベー
ション膜で覆い、電極部分ど外部端子部分のみを露出さ
せた。
Here, the operational amplifier consisted of three stages of amplifier circuits (each circuit consisting of 10 FETs) connected in series with a gain of 33 dB. Also, the size of the entire circuit is 300 x 4o
o, m, total characteristics are input impedance 10paΩ
, open loop gain 97 dB, bandwidth 0.1 Mt
It was lz. The microelectrode part has a diameter of 10I! A reference electrode and a counter electrode were arranged around a working electrode of m, and a reference electrode and a counter electrode were formed. In addition, the entire cell was covered with a passivation film made of silicon nitride, leaving only the external terminals such as the electrodes exposed.

上記のようにして作成した電気化学測定用微小電極セル
をフェロセン10 llmol、/ Q、支持電解質(
テI・ラエチルアンモニウム・バークロレート)10m
mol/Qを溶解したアセトニトリル溶液に浸し、各パ
ッドをそれぞれリード線を介してポテンシオスタットに
接続し、作用電極を0,3Vから0.7’lTまで10
0mV/secで電位走査を行ったところ、第4図に示
す応答が得られた。また、同一形状を有する電極により
同様の実験を行ったところ、何れの電極においても限界
電流が50 pAという結果が得られた。一方、電極部
分の構成は同じでオペレーションアンプのないセルをポ
テンシオスタットに接続し、同様の実験を行ったところ
、ノイズが大きく、正確な限界電流を得ることができな
かった。
The microelectrode cell for electrochemical measurement prepared as above was mixed with 10 llmol of ferrocene, /Q, supporting electrolyte (
TeI laethylammonium barchlorate) 10m
Each pad was immersed in an acetonitrile solution containing mol/Q, connected to a potentiostat via its own lead wire, and the working electrode was heated from 0.3 V to 0.7'lT for 10
When potential scanning was performed at 0 mV/sec, the response shown in FIG. 4 was obtained. Furthermore, when similar experiments were conducted using electrodes having the same shape, a result was obtained in which the limiting current was 50 pA for all electrodes. On the other hand, when a similar experiment was conducted using a cell with the same electrode configuration but no operational amplifier connected to a potentiostat, the noise was large and an accurate limiting current could not be obtained.

実施例 2 実施例1において、電位走査速度をI MV/secと
して測定を行った。その結果、同一基板」二にオペレー
ションアンプを搭載した電極セルの場合には充電電流は
あるものの信号が観測できたのに対し、オペレーション
アンプ持たない電極セルでは電極とポテンシオスタット
間のキャパシタンスのため時定数が長くなり、電位走査
に追従することができなかった。
Example 2 In Example 1, the potential scanning speed was set to I MV/sec and the measurement was performed. As a result, in the case of an electrode cell equipped with an operation amplifier on the same substrate, a signal could be observed although there was a charging current, whereas in an electrode cell without an operation amplifier, a signal could be observed due to the capacitance between the electrode and the potentiostat. The time constant became long and it was not possible to follow potential scanning.

実施例 3 ポリエチレンオキサイド(東ソー製、重量平均分子ff
1570,000) 0.1. g トh ’) フル
、t ロメ’) ンス)l/ホン酸リチウム0.02g
とをアセトニトリル・メタノール(9: ] )混合溶
液10m1に溶解し、該溶液を実施例1と同様にして作
成した電極を大きく覆うよ11− うにたらして溶媒を蒸発させポリマーフィルムを形成し
た。次いで、電極をポテンシオメータに接続し、作用電
極の電位を参照電極に対して0,7Vに設定し、1mm
olのフェロセンを溶解したアセ]・ニトリル溶液を電
極からl cm離れた上記ポリマ一部分に1011滴下
したところ、1分後に作用電極に電流が流れ、フェロセ
ンが検出できた。
Example 3 Polyethylene oxide (manufactured by Tosoh, weight average molecular ff
1570,000) 0.1. g t h') full, t rom') nce) l/lithium phonate 0.02g
was dissolved in 10 ml of an acetonitrile/methanol (9:2) mixed solution, and the solution was poured over an electrode prepared in the same manner as in Example 1 in an amount of 11-ml to largely cover it, and the solvent was evaporated to form a polymer film. The electrode is then connected to a potentiometer and the potential of the working electrode is set at 0,7 V with respect to the reference electrode, with a voltage of 1 mm
When a drop of 1,011 drops of ace].nitrile solution in which ferrocene was dissolved was dropped onto a portion of the above polymer 1 cm away from the electrode, a current flowed through the working electrode after 1 minute, and ferrocene could be detected.

実施例 4 ドーパミン、5−ヒドロキシトリプトファン、アスコル
ビン酸、尿酸をそれぞれpH6,5のりん酸緩衝生理食
塩水に溶解し、」1記と同様の電極を用いて電気化学的
測定を行った。その結果、ドーパミン0.]、4.V、
5−ヒドロキシトリプトファン0.27V、アスコルビ
ン酸0,02V、尿酸0.3Vでそれぞれ酸化還元が観
測された。
Example 4 Dopamine, 5-hydroxytryptophan, ascorbic acid, and uric acid were dissolved in phosphate buffered saline at pH 6 and 5, respectively, and electrochemical measurements were performed using the same electrodes as in Section 1. As a result, dopamine 0. ], 4. V,
Redox was observed at 0.27 V for 5-hydroxytryptophan, 0.02 V for ascorbic acid, and 0.3 V for uric acid.

[発明の効果] 以」二連べてきたように、電気化学測定用微小電極セル
を本発明構成の電極セルとすることによって、従来技術
の有していた課題を解決して、優れた特性を有しかつ信
頼性が高くしかも安価な電気化学測定用微小電極セルを
提供することができた。
[Effects of the Invention] As mentioned above, by using a microelectrode cell for electrochemical measurements as an electrode cell having the structure of the present invention, the problems of the prior art can be solved and excellent characteristics can be achieved. It was possible to provide a highly reliable and inexpensive microelectrode cell for electrochemical measurements.

すなわち、不発明徴小電極セルの場合、作用電極、対向
電極、参照電極をリソグラフィ技術により同一基板上に
一体化して作成されているため、同一性能と同一特性を
有する電極セルを安価にしかも大量に得ることができた
。また、作用電極、対向電極、参照電極を所望の大きさ
、形状に構成することか可能であるため、これらを微小
な領域にまとめることができ、これによって、極めて少
量の試料の測定やその領域の局所的な電気化学反応を測
定することが可能になった。さらに、作用電極にオペレ
ーションアンプが直結された構成となっているため、ノ
イズおよび配線容量による信号遅延を大幅に軽減するこ
とができた。
In other words, in the case of small electrode cells, working electrodes, counter electrodes, and reference electrodes are integrated on the same substrate using lithography technology, so electrode cells with the same performance and characteristics can be produced at low cost and in large quantities. I was able to get it. In addition, since it is possible to configure the working electrode, counter electrode, and reference electrode in a desired size and shape, they can be grouped into a minute area, making it possible to measure a very small amount of sample and to measure that area. It became possible to measure the local electrochemical reactions of Furthermore, since the operational amplifier is directly connected to the working electrode, signal delays due to noise and wiring capacitance can be significantly reduced.

以」二のことは、電気化学測定上極めて顕著な効果を与
えるものである。
The following two things have extremely significant effects on electrochemical measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電気化学測定用微小電極セルの構成を示
す回路図、第2図はその概略構造の一例を示す断面図、
第3図はその電極部分の平面拡大模式図、第4図は不発
明徴小電極セルを用いて41す定したサイクリックポル
タンメトりを示す図である3゜ l・・・シリコン基板、2・パッシベーション膜、3・
・・アルミニウム配線、4・・・作用電極、5・・・対
向電極、     6・・・参照電極、7・・・SjO
,膜、     8・・nウェル、9・・・Pウェル、
     10・・・ビボリサイド、11−n”ポリサ
イド、   12・Si(:l、 hレンチ、13・・
・絶縁膜、     14・・・m極窓、15・・酸化
膜(=jきシリコン基板、16・・・作用電極用配線、
 17・・・対向電極用配線、18・・・参照電極用配
FIG. 1 is a circuit diagram showing the configuration of a microelectrode cell for electrochemical measurement of the present invention, and FIG. 2 is a sectional view showing an example of its schematic structure.
Fig. 3 is an enlarged schematic plan view of the electrode portion, and Fig. 4 is a diagram showing cyclic portametry performed using a small electrode cell. 2. Passivation film, 3.
... Aluminum wiring, 4... Working electrode, 5... Counter electrode, 6... Reference electrode, 7... SjO
, membrane, 8...n well, 9...p well,
10...Vivolicide, 11-n" polycide, 12.Si(:l, h wrench, 13...
・Insulating film, 14... m-pole window, 15... oxide film (=j silicon substrate, 16... wiring for working electrode,
17... Wiring for counter electrode, 18... Wiring for reference electrode

Claims (1)

【特許請求の範囲】[Claims] 1、金属または半導体もしくは半金属からなる作用電極
、対向電極、参照電極と作用電極電流増幅用のオペレー
ションアンプとを同一基板上に一体化して形成したこと
を特徴とする電気化学測定用微小電極セル。
1. A microelectrode cell for electrochemical measurement, characterized in that a working electrode, a counter electrode, a reference electrode made of a metal, a semiconductor, or a metalloid, and an operation amplifier for amplifying the working electrode current are formed integrally on the same substrate. .
JP1598790A 1990-01-29 1990-01-29 Microelectrode cell for electrochemical measurement Pending JPH03221857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1598790A JPH03221857A (en) 1990-01-29 1990-01-29 Microelectrode cell for electrochemical measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1598790A JPH03221857A (en) 1990-01-29 1990-01-29 Microelectrode cell for electrochemical measurement

Publications (1)

Publication Number Publication Date
JPH03221857A true JPH03221857A (en) 1991-09-30

Family

ID=11904016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1598790A Pending JPH03221857A (en) 1990-01-29 1990-01-29 Microelectrode cell for electrochemical measurement

Country Status (1)

Country Link
JP (1) JPH03221857A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10325821A (en) * 1997-05-26 1998-12-08 Nec Corp Electrochemical measuring apparatus
JP2019002727A (en) * 2017-06-13 2019-01-10 株式会社豊田中央研究所 Transistor for sensors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10325821A (en) * 1997-05-26 1998-12-08 Nec Corp Electrochemical measuring apparatus
JP2019002727A (en) * 2017-06-13 2019-01-10 株式会社豊田中央研究所 Transistor for sensors

Similar Documents

Publication Publication Date Title
EP0185941B1 (en) Polymer-based microelectronic pH-sensor
US4721601A (en) Molecule-based microelectronic devices
US5034192A (en) Molecule-based microelectronic devices
Paul et al. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices
US5389215A (en) Electrochemical detection method and apparatus therefor
US5378343A (en) Electrode assembly including iridium based mercury ultramicroelectrode array
EP0569908B1 (en) Electrochemical detection method and apparatus therefor
US4895705A (en) Molecule-based microelectronic devices
Hanazato et al. Glucose sensor based on a field-effect transistor with a photolithographically patterned glucose oxidase membrane
EP0366566B1 (en) Reference electrodes
US4909921A (en) Electrochemical sensor facilitating repeated measurement
US20040035699A1 (en) Method and fabrication of the potentiometric chemical sensor and biosensor based on an uninsulated solid material
US7638157B2 (en) Method of fabricating electrode assembly of sensor
US6833059B2 (en) Field-effect transistor
JPH03179248A (en) Fine pore array electrode for electrochemical analysis and manufacture thereof
JPH03221857A (en) Microelectrode cell for electrochemical measurement
JP2556993B2 (en) Micropore electrode cell for electrochemical measurement and method for producing the same
US6455873B1 (en) Devices having a semiconductor/conducting polymer interface
JP2622589B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JP2590002B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JPS58167951A (en) Chlorine ion sensor
Gianti et al. Low‐cost fabrication of indium tin oxide (ITO) FETs for sodium detection in electrolytes and human urine
JPH01301159A (en) Very small electrode cell for electrochemical measurement and production thereof
JP3047048B2 (en) Wall jet type electrochemical detector and method of manufacturing the same
JPH0219758A (en) Comb-shaped modified micro-electrode cell and its production