JPH03221842A - Double refraction measuring instrument - Google Patents

Double refraction measuring instrument

Info

Publication number
JPH03221842A
JPH03221842A JP1834390A JP1834390A JPH03221842A JP H03221842 A JPH03221842 A JP H03221842A JP 1834390 A JP1834390 A JP 1834390A JP 1834390 A JP1834390 A JP 1834390A JP H03221842 A JPH03221842 A JP H03221842A
Authority
JP
Japan
Prior art keywords
birefringence
double refraction
polarized light
surface layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1834390A
Other languages
Japanese (ja)
Inventor
Akira Matsubara
彰 松原
Kenichirou Urairi
賢一郎 浦入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1834390A priority Critical patent/JPH03221842A/en
Publication of JPH03221842A publication Critical patent/JPH03221842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To simultaneously measure the direction and the quantity of double refraction even concerning a transparent medium in which the variance of the directions of the double refraction is not uniform by constituting a device so that the double refraction quantity of a double refraction variable means may be changed in accordance with the received light quantity while the transparent medium which is a measured object is rotated with reference to an emitted light and polarized light separation means. CONSTITUTION:Linearly polarized light projected from a laser 11 passes the surface layer 13 of an optical card 12 which is the transparent medium and is reflected by the optical card 12 to pass through the surface layer 13 again. It becomes elliptically polarized light because its deflection characteristic is changed in accordance with the direction and the quantity of the double refraction of the layer 13 and is adjusted by a Babinet-Soleil compensator 23 so that the s-polarized light component may be maximum, then it becomes the linearly s-polarized light at a point where the double refraction direction of the surface layer 13 and the crystal axis of the compensator 23 coincide with each other. At such a time, the direction and the quantity of the double refraction of the surface layer 13 are measured based on the rotational angle of a turntable 22 and the crystal axis direction of the compensator 23 and based on the double refraction adjusting quantity known from the moving scale of a 2nd stepping motor 24 respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光ディスクや光カード等に利用されるポリカ
ーボネート等の表面透明層の複屈折測定装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for measuring birefringence of a transparent surface layer of polycarbonate or the like used in optical discs, optical cards, and the like.

従来の技術 近年、磁気記録媒体に変わるものとして、大容量の記録
が可能な光ディスクや光カード等の光学記録媒体が注目
されるようになってきた。このような光学記録媒体は、
記録面を傷やほこりから守る為に数百ミクロンから数ミ
リの厚さを持ったポリカーボネイト等の透明な表面層で
おおわれている。これらポリカーボネート等の透明媒体
は、低コスト化の為に射出成形て造られるものが多く、
一般に複屈折を持つ。従って、光学記録媒体の生産及び
光学記録再生装置の設計において、かかる透明媒体の複
屈折を正確に測定する必要が益々増えてきている。
2. Description of the Related Art In recent years, optical recording media such as optical disks and optical cards capable of recording large amounts of data have been attracting attention as an alternative to magnetic recording media. Such optical recording media are
To protect the recording surface from scratches and dust, it is covered with a transparent surface layer of polycarbonate or other material with a thickness of several hundred microns to several millimeters. These transparent media such as polycarbonate are often made by injection molding to reduce costs.
Generally has birefringence. Therefore, in the production of optical recording media and the design of optical recording and reproducing devices, there is an increasing need to accurately measure the birefringence of such transparent media.

従来、このような透明媒体の複屈折を測定する場合偏向
ビームスプリッタを利用した偏向特性による測定が行わ
れている。
Conventionally, when measuring the birefringence of such a transparent medium, measurement has been performed based on polarization characteristics using a polarization beam splitter.

以下に従来の複屈折測定装置について説明する。A conventional birefringence measuring device will be explained below.

第6図は従来の複屈折測定装置の構成図であり、1はレ
ーザー、2は光カード、3は光カードの表面層、4は固
定台、5は偏向ビームスプリッタ、6はS偏光ディテク
ター、7はp偏光ディテクター、8は計算器である。
FIG. 6 is a configuration diagram of a conventional birefringence measuring device, in which 1 is a laser, 2 is an optical card, 3 is a surface layer of the optical card, 4 is a fixing table, 5 is a polarization beam splitter, 6 is an S polarization detector, 7 is a p-polarized light detector, and 8 is a calculator.

以上のように、構成された複屈折測定装置について、以
下、その測定法を説明する。
The measuring method for the birefringence measuring device configured as described above will be explained below.

まずレーザー1より出た光を固定台4に取りつけた光カ
ード2の測定点に入射し、ある角度をもって反射させる
。レーザー1より出た光は直線偏光であるが、光カード
の表面層3を通る際に複屈折を受けるので、光カード3
によって反射された光は楕円偏光となる。次にこの楕円
偏光が偏向ビームスプリッタ5に入射するように固定台
4の角度を調整する。第7図に示すように光カードの表
面層から出射した楕円偏光は偏光ビームスプリッタ5で
S偏光とP偏光に分かれ、それぞれ、S偏光ディテクタ
ー6、p偏光ディテクター7で光量が検出される。又、
それぞれの受光光量PA +paを電気信号にして計算
器8に入力すると、計算器8では、P八、PBより光カ
ードの表面層4の複屈折量(位相差)φを、 なる計算式により算出し、光カードの表面層4の複屈折
量か測定される。
First, light emitted from a laser 1 is incident on a measurement point of an optical card 2 attached to a fixed base 4, and is reflected at a certain angle. Although the light emitted from the laser 1 is linearly polarized, it undergoes birefringence when passing through the surface layer 3 of the optical card.
The light reflected by becomes elliptically polarized light. Next, the angle of the fixing table 4 is adjusted so that this elliptically polarized light is incident on the polarizing beam splitter 5. As shown in FIG. 7, the elliptically polarized light emitted from the surface layer of the optical card is split into S-polarized light and P-polarized light by a polarization beam splitter 5, and the amount of light is detected by an S-polarized light detector 6 and a P-polarized light detector 7, respectively. or,
When each received light amount PA + pa is converted into an electric signal and inputted to the calculator 8, the calculator 8 calculates the amount of birefringence (phase difference) φ of the surface layer 4 of the optical card from P8 and PB using the formula: Then, the amount of birefringence of the surface layer 4 of the optical card is measured.

発明が解決しようとする課題 しかしながら、上記の従来の構成では、測定対象である
光カードは、固定台に固定されたままであるので、本来
ヘクトルで方向と量の特性を持つ複屈折の量だけしか測
定できない。従って、複屈折の方向が一様にばらついた
透明媒体の複屈折量しか測定できず、射出成形で作成さ
れたボリノJ−ポネイトなどの複屈折の方向のばらつき
が一様でない透明媒体については測定てきないという問
題点を有していた。
Problems to be Solved by the Invention However, in the conventional configuration described above, the optical card to be measured remains fixed to the fixed stand, so only the amount of birefringence, which originally has the characteristics of direction and quantity in hectors, is measured. Cannot be measured. Therefore, it is only possible to measure the amount of birefringence in transparent media whose direction of birefringence varies uniformly, and it is not possible to measure the amount of birefringence in transparent media where the direction of birefringence does not vary, such as borino J-ponate made by injection molding. The problem was that it could not be used.

本発明は、上記従来の問題点を解決するもので、複屈折
の方向のばらつきが一様でない透明媒体についても、複
屈折の方向と量とを同時に測定する複屈折測定装置を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a birefringence measurement device that simultaneously measures the direction and amount of birefringence even for transparent media in which the dispersion in the direction of birefringence is not uniform. purpose.

課題を解決するための手段 この目的を達成するために本発明の複屈折測定装置は、
複屈折を連続的に可変する複屈折可変手段を持ち、発光
手段及び偏光分離手段に対して測定対象である透明媒体
を回転させながら、受光手段による光量に応して複屈折
可変手段の複屈折量を変化させるように構成したことを
特徴とするものである。
Means for Solving the Problems In order to achieve this object, the birefringence measurement device of the present invention has the following features:
It has a birefringence variable means that continuously varies the birefringence, and while rotating the transparent medium to be measured with respect to the light emitting means and the polarization separation means, the birefringence of the birefringence variable means is adjusted according to the amount of light from the light receiving means. It is characterized by being configured to change the amount.

作用 この構成によって、透明媒体のもつ複屈折の方向と量を
同時に測定することができ、複屈折の方向が一様にばら
ついていない透明媒体の複屈折をも測定することができ
る。
Function: With this configuration, the direction and amount of birefringence of a transparent medium can be measured simultaneously, and the birefringence of a transparent medium in which the direction of birefringence does not vary uniformly can also be measured.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例における複屈折測定装置
の構成図を示すものである。
FIG. 1 shows a configuration diagram of a birefringence measurement apparatus according to a first embodiment of the present invention.

第1図において、11は発光手段であるレーザーを示し
、レーザー11より、直線偏光が出射される。この直接
偏光は透明媒体である光カードの表面層13を通って光
カード取付台14に取りつけられた光カード12に入射
する。光カード取付台14は、第2図に示すように;回
転台22及び固定台16から構成され、第1ステツピン
グモータ17により固定台16に対して光カード12か
取り付けられた回転台22が第1ステツピングモータ1
7の軸を中心に回転するように構成している。円形をし
た固定台16には回転台22の回転角度を示す角度目盛
りがつけである。
In FIG. 1, numeral 11 indicates a laser which is a light emitting means, and the laser 11 emits linearly polarized light. This directly polarized light passes through the surface layer 13 of the optical card, which is a transparent medium, and enters the optical card 12 mounted on the optical card mount 14 . As shown in FIG. 2, the optical card mounting base 14 is composed of a rotary base 22 and a fixed base 16. First stepping motor 1
It is configured to rotate around the 7 axis. The circular fixed base 16 is provided with an angle scale indicating the rotation angle of the rotary base 22.

レーザー11より出射して光カード12に入射する光は
、光カード取付台14の回転中心に対して入射し、光カ
ード12により反射された後、光ノJ−ドの表面層13
を通って、複屈折可変手段であるバビネソレイユ補整板
23を通り、偏光分離手段である偏向ヒームスプリツタ
15に入射するように構成されている。バビネソレイユ
補整板23(以下補整板)は、第3図に示すように、2
つの異なる複屈折板A、Bを相対的に矢印aの方向にず
らすことにより、矢印すに示す結晶軸方向にそった複屈
折量を連続的に可変させることができる。本実施例にお
いて、補整板23は矢印aの方向に第2ステツピングモ
ータ24によって動かされ、移動量に応した複屈折量が
可変できる。又、補整板23の結晶軸方向は第3図に示
すようにレーザー11の発光する偏向方向ど45°の角
を威している。偏向ビームスプリッタ15に入射した光
は偏光特性により、S偏光すなわち反射光と、p偏光す
なわち透過光に分かれ、ディテクター18によりS偏光
が受光される。ディテクター18に受光された光量は電
気信号としてモータ制御回路25に入力され、受光光量
に応して第2ステツピングモータ24を駆動するように
構成している。
The light emitted from the laser 11 and incident on the optical card 12 is incident on the rotation center of the optical card mount 14, and after being reflected by the optical card 12, the light is reflected on the surface layer 13 of the optical node J-card.
The beam passes through the Babinet-Soleil compensating plate 23, which is a birefringence variable means, and is incident on the polarization beam splitter 15, which is a polarization separation means. The Babinet Soleil correction plate 23 (hereinafter referred to as the correction plate) has two
By relatively shifting the two different birefringent plates A and B in the direction of arrow a, the amount of birefringence along the crystal axis direction shown by arrow a can be continuously varied. In this embodiment, the compensation plate 23 is moved in the direction of arrow a by the second stepping motor 24, and the amount of birefringence can be varied according to the amount of movement. Further, the crystal axis direction of the compensating plate 23 is at an angle of 45° with respect to the deflection direction in which the laser 11 emits light, as shown in FIG. The light incident on the polarization beam splitter 15 is divided into S-polarized light, that is, reflected light, and p-polarized light, that is, transmitted light, depending on the polarization characteristics, and the S-polarized light is received by the detector 18. The amount of light received by the detector 18 is input as an electrical signal to a motor control circuit 25, and the second stepping motor 24 is driven in accordance with the amount of received light.

以上のよ・うに構成された複屈折測定装置で、光カート
の表面層13の複屈折の方向と量を測定する場合の動作
を説明する。
The operation of measuring the direction and amount of birefringence of the surface layer 13 of the optical cart using the birefringence measurement apparatus configured as described above will be explained.

レーザー11より出射した光はM線偏光であるが、光カ
ードの表面層13を通って光カード12に入射し、光カ
ード12によって反射され、再び光カードの表面層13
を通って出射される際に第7図に示すように、光カード
の表面層13の複屈折の方向に複屈折量に応して偏向特
性が変わり、楕円偏光となる。この楕円偏光は、補整板
23を通過する際、補整板23の結晶軸方向にそって、
再び複屈折を受(Jる。補整板23の結晶軸方向にそっ
た複屈折量は第2ステツピングモータ24によって変化
させることがてきるので、補整板23は光カード12よ
り出射する楕円偏光を完全に補整するように動かされる
。すなわち、偏向ビームスプリッタ15て反射されたS
偏光成分が極大になるように動かされる。第2ステツピ
ングモータ24を駆動するために印加するパルスを第5
図に示す。最初に、パルスを印加すると、ステッピング
モータ24はパルスの正負に応して、第3図における矢
印aの方向にそって動く。パルス印加後のディテクタ1
8の出力がパルス印加前の出力より大きくなるように正
又は負のパルスを印加し続ける。パルス印加後のディテ
クタ18の出力と印加前の出力との差が○となった時に
第2ステツピングモータ24を止めると、ディテクタ1
8で受光するS偏光成分が極大となる。
The light emitted from the laser 11 is M-line polarized light, which enters the optical card 12 through the surface layer 13 of the optical card, is reflected by the optical card 12, and returns to the surface layer 13 of the optical card.
As shown in FIG. 7, when the light is emitted through the optical card, the polarization characteristics change depending on the amount of birefringence in the direction of birefringence of the surface layer 13 of the optical card, and the light becomes elliptically polarized light. When this elliptically polarized light passes through the compensating plate 23, it follows the crystal axis direction of the compensating plate 23,
The amount of birefringence along the crystal axis direction of the compensating plate 23 can be changed by the second stepping motor 24, so the compensating plate 23 absorbs the elliptically polarized light emitted from the optical card 12. In other words, the S reflected by the polarizing beam splitter 15
It is moved so that the polarization component becomes maximum. The fifth pulse is applied to drive the second stepping motor 24.
As shown in the figure. First, when a pulse is applied, the stepping motor 24 moves along the direction of arrow a in FIG. 3, depending on whether the pulse is positive or negative. Detector 1 after pulse application
Positive or negative pulses are continued to be applied so that the output of No. 8 is greater than the output before pulse application. When the second stepping motor 24 is stopped when the difference between the output of the detector 18 after the pulse is applied and the output before the pulse is applied, the detector 1
At 8, the S polarized light component received reaches its maximum.

以上の動作を行いながら、第ニスチッピングモータ17
に第1図において示すような入力パルスを印加して、光
カードの表面層13を回転させてゆくと、各回転角に対
応したS偏光の極大値に次)7と補整される。このS偏
光の極大値は第4図に示すように、光カードの表面層1
3が回転して複屈折の方向と補整板23の結晶軸(矢印
b〉とが一致したときに最大になる。すなわち、レーザ
11より出た光カード12への入射直線偏光は光カード
の表面層13を通り出射する際に楕円偏光となり、補整
板23により前記のようにS偏光成分が極大になるよう
に補整され、光カードの表面層13の複屈折の方向と補
整板23の結晶軸が一致したところで補整された光は直
線S偏光となるのである。このとき、第2図における回
転台22の回転角を示す角度目盛と、補整板23の結晶
軸の方向との差より光カードの表面層13の複屈折の方
向が測定できる。又、このとき、補整板23による補整
量が光カードの表面層13の複屈折量に対応するので、
第3図における第2ステツピングモータ24の移動を示
す目盛により、補整板23による複屈折の補整量がわか
り、複屈折量も同時に測定することができる。
While performing the above operations, the varnish chipping motor 17
When the surface layer 13 of the optical card is rotated by applying an input pulse as shown in FIG. As shown in Figure 4, the maximum value of this S-polarized light is
3 is rotated so that the direction of birefringence coincides with the crystal axis (arrow b) of the compensating plate 23, and the maximum value is reached.In other words, the linearly polarized light incident on the optical card 12 emitted from the laser 11 is reflected by the surface of the optical card. When it passes through the layer 13 and exits, it becomes elliptically polarized light, and is corrected by the correction plate 23 so that the S-polarized component becomes maximum as described above, and the direction of birefringence of the surface layer 13 of the optical card and the crystal axis of the correction plate 23 are corrected. The corrected light becomes linear S-polarized light when the The direction of birefringence of the surface layer 13 of the optical card can be measured. Also, at this time, since the amount of compensation by the compensation plate 23 corresponds to the amount of birefringence of the surface layer 13 of the optical card,
The scale indicating the movement of the second stepping motor 24 in FIG. 3 indicates the amount of birefringence compensation by the compensation plate 23, and the amount of birefringence can also be measured at the same time.

なお、本実施例てはレーザーから出る光を偏光ヒームス
プリツタを通す前に透明媒体に入射したが、レーザーか
ら出る光を偏光ヒームスプリツタを通過させた後に透明
媒体に入射し、ミラーを介して反射光を再び前記偏光ビ
ームスプリッタに入射する構成としてもよい。また、透
明媒体として光カートの表面層としたが、透明媒体とミ
ラーを組み合わせたちのてもよく、もちろん透明媒体だ
けを用いてレーザー光から出る光を1度だけ透明媒体に
透過させて、反射させずに補整板、偏光ビームスプリッ
タに入射し、前記偏光ビームスプリッタの反射光をディ
テクタで受光する構成としてもよい。
Note that in this example, the light emitted from the laser was incident on the transparent medium before passing through the polarizing heam splitter, but the light emitted from the laser was incident on the transparent medium after passing through the polarizing heam splitter, and the reflected light was reflected via a mirror. A configuration may also be adopted in which the light is incident on the polarizing beam splitter again. In addition, although we used the surface layer of the optical cart as a transparent medium, it is also possible to combine a transparent medium and a mirror, and of course, use only a transparent medium to allow the light emitted from the laser beam to pass through the transparent medium once and reflect it. It may also be configured such that the light is incident on a compensating plate and a polarizing beam splitter without causing the polarizing beam splitter, and the reflected light from the polarizing beam splitter is received by a detector.

また、偏光分離手段として偏光ヒームスプリツタを用い
たが、偏光フィルタでもよい。複屈折可変手段はバビネ
ソl/イユ補整板としたが、傾きに応じて複屈折量を可
変できるヘレック波長板としてもよい。
Furthermore, although a polarizing heam splitter is used as the polarization separating means, a polarizing filter may also be used. Although the birefringence variable means is a Babineso I/I compensation plate, it may also be a Herec wavelength plate that can vary the amount of birefringence depending on the inclination.

発明の効果  0 以上のように本発明は、透明媒体を回転させながら、偏
向ビームスプリッタからの反射光量に応じて、複屈折可
変手段の複屈折を可変することにより、透明媒体の複屈
折の方向と量とを同時に測定することができる。
Effects of the Invention 0 As described above, the present invention changes the direction of birefringence of a transparent medium by varying the birefringence of the birefringence variable means according to the amount of reflected light from a polarizing beam splitter while rotating the transparent medium. and quantity can be measured simultaneously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における複屈折測定装置
の構成図、第2図は同装置における光カード取付台の構
成斜視図、第3図は同装置に・おけるバビネソレイユ補
整板の構成図、第4図は光カードの表面層の複屈折の方
向が補整板の結晶軸とそろった時の偏光のようすを示す
理論図、第5図は同装置における第2ステツピングモー
タに印加するパルスを示す特性図、第6図は従来の複屈
折測定装置の構成図、第9図は透明媒体の複屈折により
直線偏光が楕円偏光に変わることを示す理論図である。 11・・・・・・レーザー 13・・・・・・光カード
の表面層、16・・・・・・固定台、18・・・・・・
ディテクター、22・・・・・・回転台、23・・・・
・・バビネソレイユ補整板。 1
Fig. 1 is a configuration diagram of a birefringence measurement device according to a first embodiment of the present invention, Fig. 2 is a perspective view of the configuration of an optical card mount in the same device, and Fig. 3 is a Babinet Soleil compensation plate in the same device. Fig. 4 is a theoretical diagram showing the state of polarization when the direction of birefringence of the surface layer of the optical card is aligned with the crystal axis of the compensation plate, and Fig. 5 is a diagram showing the structure of the second stepping motor in the same device. A characteristic diagram showing applied pulses, FIG. 6 is a configuration diagram of a conventional birefringence measurement device, and FIG. 9 is a theoretical diagram showing how linearly polarized light changes into elliptically polarized light due to birefringence of a transparent medium. 11...Laser 13...Surface layer of optical card, 16...Fixing stand, 18...
Detector, 22... Turntable, 23...
... Babinet Soleil correction plate. 1

Claims (1)

【特許請求の範囲】[Claims] 発光手段と、偏光分離手段と、複屈折を連続的に可変す
る複屈折可変手段と、受光手段と、前記発光手段より発
光した光を透明媒体に入射し、前記透明媒体を前記偏光
分離手段に対して相対的に回転させる手段とを備え、前
記偏光分離手段を通して前記受光手段により受光した光
量に応じて前記複屈折可変手段の複屈折量を変化するよ
うに構成した複屈折測定装置。
a light emitting means, a polarization separation means, a variable birefringence means for continuously varying birefringence, a light receiving means, the light emitted from the light emission means is incident on a transparent medium, and the transparent medium is connected to the polarization separation means. and means for rotating the birefringence variable means relative to the polarization separation means, and configured to change the amount of birefringence of the variable birefringence means in accordance with the amount of light received by the light receiving means through the polarization separation means.
JP1834390A 1990-01-29 1990-01-29 Double refraction measuring instrument Pending JPH03221842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1834390A JPH03221842A (en) 1990-01-29 1990-01-29 Double refraction measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1834390A JPH03221842A (en) 1990-01-29 1990-01-29 Double refraction measuring instrument

Publications (1)

Publication Number Publication Date
JPH03221842A true JPH03221842A (en) 1991-09-30

Family

ID=11969014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1834390A Pending JPH03221842A (en) 1990-01-29 1990-01-29 Double refraction measuring instrument

Country Status (1)

Country Link
JP (1) JPH03221842A (en)

Similar Documents

Publication Publication Date Title
CA2004377A1 (en) Optical output controlling method and apparatus therefor
DE69221565T2 (en) Head positioning device
JP2531626B2 (en) Optical characteristic measuring device for optical recording medium substrate
JP2706128B2 (en) Magneto-optical reproducing device
JP2000268398A (en) Optical pickup, information recording device, and information reproducing device
JPH0693302B2 (en) Magneto-optical recording / reproducing device
JPH02276045A (en) Magneto-optical reproducing device
US5432760A (en) Method of measuring phase difference of opto-magnetic record medium and apparatus for carrying out said method
JPH0468309A (en) Optical system provided with polarization
JPH03221842A (en) Double refraction measuring instrument
JP2943995B2 (en) Adjustment mechanism of coercive force measurement optical system
JPH03218440A (en) Birefringence measuring device
CN1207532C (en) Detector of optical wave plate
Smeethe et al. An electronically controlled Fabry-Perot spectrometer
CN2515652Y (en) Measurer for measuring thickness of optical wave plate
JPS6361936A (en) Double reflection measuring instrument
JP2797618B2 (en) Recording signal reproducing apparatus for magneto-optical recording medium
JPS62112234A (en) Rotating optical system
JPS63187438A (en) Magneto-optical reproducer
JPH0569374B2 (en)
JPS6226655A (en) Return light quantity adjusting method for light pick-up and its device
JPH01267441A (en) Method and apparatus for measurement of double refraction
JPH01184444A (en) Birefringence measuring instrument
JPS63103927A (en) Mueller matrix measuring instrument
JPH056510A (en) Method and device for adjusting positioning composite type magnetic head in its fitting position