JPH03218440A - Birefringence measuring device - Google Patents

Birefringence measuring device

Info

Publication number
JPH03218440A
JPH03218440A JP1387290A JP1387290A JPH03218440A JP H03218440 A JPH03218440 A JP H03218440A JP 1387290 A JP1387290 A JP 1387290A JP 1387290 A JP1387290 A JP 1387290A JP H03218440 A JPH03218440 A JP H03218440A
Authority
JP
Japan
Prior art keywords
birefringence
light
polarized light
optical card
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1387290A
Other languages
Japanese (ja)
Inventor
Akira Matsubara
彰 松原
Kenichirou Urairi
賢一郎 浦入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1387290A priority Critical patent/JPH03218440A/en
Publication of JPH03218440A publication Critical patent/JPH03218440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To simultaneously measure the direction and quantity of birefringence by providing a mechanism for rotating a transparent medium to be measured in accordance with the quantity of light receiving through a polarized light splitting means. CONSTITUTION:The linear polarized light emitted from a laser 11 is passed through the surface layer 13 of an optical card 12 as the transparent medium injected into the card 12 fixed to an optical card mount 14 and reflected. The polarization characteristic is changed in accordance with the birefringence quantity of the surface layer 13, and the light is then passed though a polarized beam splitter 15 and splitted into both polarized beams P and B which are received by polarized light detectors 18 and 19. The card 12 is rotated by a stepping motor 17 in accordance with the quantity of the former beam received. The direction of birefringence is measured from the angle of rotation, and the quantities of beams at their maximums received by the detectors 18 and 19 are then inputted to a computer 20 to calculate the birefringence quantity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光ディスクや光カード等に利用されるポリカ
ーポネート等の表面透明層の複屈折測定装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for measuring birefringence of a surface transparent layer of polycarbonate or the like used in optical discs, optical cards, and the like.

従来の技術 近年、磁気記録媒体に変わるものとして、大容量の記録
が可能な光ディスクや光カード等の光学記録媒体が注目
されるようになってきた.このような光学記録媒体は、
記録面を傷やほこりから守る為に数百ミクロンから数ミ
リの厚さを持ったボリカーポネート等の透明な表面層で
おおわれている。これらポリカーボネート等の透明媒体
は、低コスト化の為に射出成形で造られるものが多く、
一般に複屈折を持つ。従って、光学記録媒体の生産及び
光学記録再生装置の設計において、かかる透明媒体の複
屈折を正確に測定する必要が益々増えてきている。
BACKGROUND OF THE INVENTION In recent years, optical recording media such as optical disks and optical cards that can record large amounts of data have been attracting attention as an alternative to magnetic recording media. Such optical recording media are
In order to protect the recording surface from scratches and dust, it is covered with a transparent surface layer made of polycarbonate or other material with a thickness of several hundred microns to several millimeters. These transparent media such as polycarbonate are often made by injection molding to reduce costs.
Generally has birefringence. Therefore, in the production of optical recording media and the design of optical recording and reproducing devices, there is an increasing need to accurately measure the birefringence of such transparent media.

従来、このような透明媒体の複屈折を測定する場合、偏
向ビームスブリノタを利用した偏向特性による測定が行
なわれている。
Conventionally, when measuring the birefringence of such a transparent medium, measurement has been carried out based on the deflection characteristics using a deflection beam meter.

以下に従来の複屈折測定装置について説明する.第7図
は従来の複屈折測定装置の構成図であり、1はレーザー
、2は光カード、3は光カードの表面層、4は固定台、
5は偏向ビームスプリツタ、6はS偏光ディテクター、
7はP偏光ディテクタ、8は計真器である。
The conventional birefringence measuring device is explained below. FIG. 7 is a configuration diagram of a conventional birefringence measuring device, in which 1 is a laser, 2 is an optical card, 3 is a surface layer of the optical card, 4 is a fixing table,
5 is a polarized beam splitter, 6 is an S polarization detector,
7 is a P polarization detector, and 8 is a meter.

以上のように構成された複屈折測定装置について、以下
、その測定法を説明する. まず、レーザー1より出た光を固定台4に取り?けた光
カード2の測定薇に入射し、ある角度をもって反射させ
る。レーザーlより出た光は直線偏光であるが、光カー
ドの表面層3を逼る際に複屈折を受けるので、光カード
3によって反射された光は楕円偏光となる。次にこの楕
円偏光が偏向ビームスプリノタ5に入射するように固定
台4の角度を調整する。
The measurement method for the birefringence measuring device configured as described above will be explained below. First, take the light emitted from laser 1 to fixed base 4. The beam enters the measurement head of the light card 2 and is reflected at a certain angle. Although the light emitted from the laser 1 is linearly polarized, it undergoes birefringence when passing through the surface layer 3 of the optical card, so the light reflected by the optical card 3 becomes elliptically polarized. Next, the angle of the fixing table 4 is adjusted so that this elliptically polarized light is incident on the polarized beam splitter 5.

第8図に示すように光カードの表面層から出射した楕円
偏光は偏向ビームスプリンタ5でS偏光とP偏光に分か
れ、それぞれS偏光ディテクター6、p偏光ディテクタ
ー7で光量が検出される。
As shown in FIG. 8, the elliptically polarized light emitted from the surface layer of the optical card is split into S-polarized light and P-polarized light by a polarized beam splitter 5, and the amount of light is detected by an S-polarized light detector 6 and a P-polarized light detector 7, respectively.

又、それぞれの受光光量PA,P■を電気信号にして計
算器8に入力すると、計夏器8ではPA,P.より光カ
ードの表面層4の複屈折量(位相差)φを、 なる計蒐式により蒐出し、光カードの表面層4の複屈折
量が測定される。
Also, when the respective received light amounts PA, P■ are converted into electrical signals and inputted to the calculator 8, the summer meter 8 receives the PA, P. The amount of birefringence (phase difference) φ of the surface layer 4 of the optical card is determined by the following calculation formula, and the amount of birefringence of the surface layer 4 of the optical card is measured.

発明が解決しようとする課題 しかしながら、上記の従来の構成では、測定対象である
光カードは、固定台に固定されたままなので、本来ベク
トルで方向と量の特性を持つ複屈折の量だけしか測定で
きない。従って、複屈折の方向が一様にばらついた透明
媒体の複屈折量しか測定できず、射出成形で作成された
ポリカーボネートなどの複屈折の方向のばらつきが一様
でない透明媒体については、測定できないという課題を
有していた。
Problems to be Solved by the Invention However, in the conventional configuration described above, the optical card to be measured remains fixed to a fixed stand, so only the amount of birefringence, which originally has vector characteristics of direction and amount, can be measured. Can not. Therefore, it is only possible to measure the amount of birefringence in transparent media whose direction of birefringence varies uniformly, and it is not possible to measure the amount of birefringence in transparent media where the direction of birefringence does not vary, such as polycarbonate made by injection molding. I had an issue.

本発明は、上記従来の課題を解決するもので、複屈折の
方向のばらつきが一様でない透明媒体についても、複屈
折の方向と量とを同時に測定する?J屈折測定装置を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, and allows simultaneous measurement of the direction and amount of birefringence even in transparent media where the variation in the direction of birefringence is not uniform. The object of the present invention is to provide a J refraction measuring device.

課題を解決するための手段 この目的を達成するために本発明の複屈折測定装置は、
測定する透明媒体を偏光分離手段に対して回転させる機
構を持ち、前記偏光分離手段を通り受光手段によって受
光された光量に応して、上記透明媒体を回転させるよう
に構成したことを特徴とするものである。
Means for Solving the Problems In order to achieve this object, the birefringence measurement device of the present invention has the following features:
It is characterized by having a mechanism for rotating a transparent medium to be measured with respect to the polarization separation means, and configured to rotate the transparent medium in accordance with the amount of light that passes through the polarization separation means and is received by the light reception means. It is something.

作用 この構成によって、透明媒体の複屈折の方向を発光手段
の偏光方向と一致させることができ、透明媒体の複屈折
の方向と量とを同時に測定することができる。
Function: With this configuration, the direction of birefringence of the transparent medium can be matched with the polarization direction of the light emitting means, and the direction and amount of birefringence of the transparent medium can be measured simultaneously.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1回は本発明の第1の実施例における複屈折測定装置
の構成図を示すものである。
The first part shows a configuration diagram of a birefringence measurement apparatus according to a first embodiment of the present invention.

第1図において、11は発光手段であるレーザーを示し
、レーザー11より、直線偏光が出射される.この直線
偏光は透明媒体である光カード12の表面層13を通っ
て光カード取付台l4に取りつけられた光カード12に
入射する。光カード取付台14は第2図に示すように、
回転台22及び固定台16から構成され、ステソピング
モータ17により固定台16に対して光カードl2が取
り付けられた回転台15が、ステンビングモータ17の
軸を中心に回転するように構成されている。円形をした
固定台l6には回転台22の回転角度を示す角度目盛り
がついている。レーザーl1より出射して光カードl2
に入射する光は、光カード取付台l5の回転中心に対し
て入射し、光カード12により反射された後に光カード
の表面層13を通って偏向ビームスプリソタ15に入射
するよう構成されている。偏向ビームスプリソタ15に
入射した光は、偏光特性により、S偏光すなわち反射光
と、P偏光すなわち透過光に分かれ、それぞれS偏光デ
ィテクター18及びp偏光ディテクター19の受光手段
に入射する。各々のディテクター18.19で受光され
た光量は、計算器20に電気信号として入力される。又
、S偏光ディテクター18によって受光された光量は、
電気信号としてモータ制御回路21に入力され、ステノ
ビングモータ17を駆動するように構成されている。
In FIG. 1, numeral 11 indicates a laser which is a light emitting means, and the laser 11 emits linearly polarized light. This linearly polarized light passes through the surface layer 13 of the optical card 12, which is a transparent medium, and enters the optical card 12 mounted on the optical card mount l4. As shown in FIG. 2, the optical card mounting base 14 is
The rotary table 15, which is composed of a rotary table 22 and a fixed table 16, and an optical card l2 is attached to the fixed table 16 by a stenting motor 17, is configured to rotate around the axis of the stevening motor 17. There is. An angle scale indicating the rotation angle of the rotary table 22 is attached to the circular fixed table l6. Emitted from laser l1 and optical card l2
The incident light is incident on the rotation center of the optical card mount l5, is reflected by the optical card 12, and is then incident on the polarized beam splitter 15 through the surface layer 13 of the optical card. . The light incident on the polarized beam splitter 15 is divided into S-polarized light, that is, reflected light, and P-polarized light, that is, transmitted light, depending on the polarization characteristics, and enters the light receiving means of the S-polarized light detector 18 and the P-polarized light detector 19, respectively. The amount of light received by each detector 18, 19 is input to the calculator 20 as an electrical signal. Also, the amount of light received by the S-polarized light detector 18 is
The signal is input as an electric signal to the motor control circuit 21 and is configured to drive the stenobing motor 17.

以上のように構成された複屈折測定装置で、光カードの
表面層13の複屈折の方向と量とを測定する場合の動作
を説明する。
The operation of measuring the direction and amount of birefringence of the surface layer 13 of an optical card using the birefringence measurement apparatus configured as described above will be described.

レーザー11より出射した光は直線偏光であるが、光カ
ードの表面層13を通って光カード12に入射し、光カ
ードl2によって反射され、再び光カードの表面層l3
を通って出射される際に第8図に示すように、光カート
の表面層l3の複屈折の方向に対して、表面層の複屈折
量に応じた量だけ偏向特性が変わり、楕円偏光となる。
The light emitted from the laser 11 is linearly polarized light, which enters the optical card 12 through the surface layer 13 of the optical card, is reflected by the optical card l2, and returns to the surface layer l3 of the optical card.
As shown in FIG. 8, when the light is emitted through the optical cart, the polarization characteristics change by an amount corresponding to the amount of birefringence of the surface layer with respect to the direction of birefringence of the surface layer l3 of the optical cart, and the light becomes elliptically polarized light. Become.

この楕円偏光は、偏向ビームスプリノタ15を通過した
後、S偏光の成分と、p偏光の成分とに分かれるので、
第8図におけるS偏光の成分、及びp偏光の成分はそれ
ぞれS偏光ディテクター18、P偏光ディテクター19
で受光される。
After this elliptically polarized light passes through the polarized beam splitter 15, it is separated into an S-polarized light component and a P-polarized light component.
The S-polarized light component and the p-polarized light component in FIG.
The light is received by

S偏光ディテクター18で受光した光量は、電気信号と
してモータ制御回路21に入力され、S偏光ディテクタ
ーl8の受光光量に応してステンビングモータl7が駆
動され、光カードl2が回転する.すなわち、第3図に
示すように、S偏光ディテクター18の出力が極小値に
なるまで、ステノビングモータl7に、パルス印加後の
位置でのS偏光ディテクター18の出力が印加前の出力
より小さくなるように正又は負のパルス信号を印加し、
パルス印加前の位置でのS偏光ディテクター18の出力
とパルス印加後の出力との差がOvになったとごろでス
テノビングモータl7の回転を止める。ステノピングモ
ータ17は、第2図における矢印の方向に、正パルス、
負パルスによりそれぞれ回転する。
The amount of light received by the S-polarized light detector 18 is input as an electrical signal to the motor control circuit 21, and the stevening motor 17 is driven according to the amount of light received by the S-polarized light detector 18, thereby rotating the optical card 12. That is, as shown in FIG. 3, the output of the S-polarized light detector 18 at the position after the pulse is applied to the stenobing motor l7 becomes smaller than the output before the pulse is applied until the output of the S-polarized light detector 18 reaches the minimum value. Apply a positive or negative pulse signal to
When the difference between the output of the S-polarized light detector 18 at the position before the pulse application and the output after the pulse application reaches Ov, the rotation of the stenobing motor 17 is stopped. The stenoping motor 17 generates positive pulses in the direction of the arrow in FIG.
Each is rotated by a negative pulse.

このとき、光カードの表面層13の複屈折の方向は、第
4図に示すように、レーザー11の偏向方向にそろって
くる。すなわち、レーザー11より発光する直線偏光の
受ける複屈折量は、光カードの表面層13の複屈折の方
向とレーザー光の偏光方向が近づくにつれて小さくなり
、完全に一致したところで、複屈折を受けなくなる。こ
のときS偏光ディテクター18の受光光量が極小値を示
す。このときの光カード取付台14の固定台16につい
た角度目盛りを読むことにより、光カードの表面層l2
の持つ複屈折の方向を測定することができる。
At this time, the direction of birefringence of the surface layer 13 of the optical card is aligned with the direction of deflection of the laser 11, as shown in FIG. That is, the amount of birefringence experienced by the linearly polarized light emitted by the laser 11 decreases as the direction of birefringence of the surface layer 13 of the optical card approaches the polarization direction of the laser beam, and when they completely match, the birefringence is no longer experienced. . At this time, the amount of light received by the S-polarized light detector 18 shows a minimum value. At this time, by reading the angle scale on the fixing base 16 of the optical card mounting base 14, the surface layer l2 of the optical card can be determined.
It is possible to measure the direction of birefringence of.

その方向を測定した後、モータ制御回路2lの極性を切
り換えて、第5図に示すように、今度は、S偏光ディテ
クター18の受光光量が掻大になるまで、ステノピング
モータl7にパルス印加後の位置でのS偏光ディテクタ
ーl8の出力が印加前の出力より大きくなるように正又
は負のパルスを印加する。
After measuring the direction, the polarity of the motor control circuit 2l is switched, and as shown in FIG. A positive or negative pulse is applied so that the output of the S-polarized light detector l8 at the position becomes larger than the output before application.

3偏光ディテクターl8の受光光量が掻大になる所ご、
前記と同様に、光カート取付台14は停止する。
3 When the amount of light received by the polarization detector l8 increases,
As before, the optical cart mount 14 stops.

このときの3偏光ディテクターl8及びp偏光ディテク
ター19の受光光量をP.&びP,として、計算器20
に電気信号として入力されると、計算器20では、 1+a     P,      P,の計算弐で、複
屈折量φを計算する。
At this time, the amount of light received by the 3-polarization detector 18 and the p-polarization detector 19 is determined by P. & and P, the calculator 20
When input as an electrical signal, the calculator 20 calculates the amount of birefringence φ by calculating 1+a P, P.

このとき、第6図に示すように、光カード表面層に入射
する直線偏光は、光カードの表面層l3の複屈折の方向
に対し45度傾いており、上記計算におけるφは、光カ
ード表面層の複屈折量を正確に表わしている。
At this time, as shown in FIG. 6, the linearly polarized light incident on the surface layer of the optical card is inclined at 45 degrees with respect to the direction of birefringence of the surface layer l3 of the optical card, and φ in the above calculation is It accurately represents the amount of birefringence of the layer.

なお、本実施例では、レーザーから出る光を偏向ビーム
スブリノタに通す前に透明媒体に入射したが、レーザー
から出る光を偏向ビームスブリノタを通過させた後に透
明媒体に入射し、ミラーを介して反射光を再び前記偏向
ビームスブリノタに入射する構成としてもよい。また、
透明媒体として、光カートの表面層としたが、透明媒体
とミラーを組み合わせたものでもよく、もちろん透明媒
体だけを用いてレーザーから出る光を1度だけ透明媒体
に透過させて反射させずに偏向ビームスプリンタに入射
し、前記偏向ビームスブリノタの透過光および反射光を
それぞれのディテクタで受光する構成としてもよい。
Note that in this example, the light emitted from the laser was incident on the transparent medium before passing through the deflection beam subunit; however, the light emitted from the laser was incident on the transparent medium after passing through the deflection beam subunit, and then passed through the mirror. Alternatively, the reflected light may be incident on the deflection beam converter again. Also,
The surface layer of the optical cart was used as the transparent medium, but a combination of a transparent medium and a mirror may also be used. Of course, only a transparent medium can be used to allow the light emitted from the laser to pass through the transparent medium only once and be deflected without being reflected. It may also be configured such that the light enters the beam splinter and the transmitted light and reflected light of the deflected beam splitter are received by respective detectors.

発明の効果 以上のように本発明は、偏向ビームスプリンタからの反
射光の光量に応して透明媒体を回転させることにより、
透明媒体の複屈折の方同と量とを同時に測定することが
できる。
Effects of the Invention As described above, the present invention rotates a transparent medium according to the amount of reflected light from a deflection beam splinter.
The direction and amount of birefringence of a transparent medium can be measured simultaneously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における複屈折測定装置
の構成図、第2図は同装置における光カード取付台の構
成斜視図、第3図及び第5図は同装置におけるステンピ
ングモー夕に印加するパルスを示す特性図、第4図は複
屈折の方向を測定する@存偏先のようすを示す理論図、
第6図は複屈折の量を庸定する際の偏光のようすを示す
理論図、第7図は従来の複屈折測定装置の構成図、第8
図は透明媒体の複屈折により、直線偏光が楕円偏光に変
わることを示す理論図である。 11・・・・・・レーザー、l3・・・・・・光カード
の表面層、l5偏向ビームスプリノタ、16・・・・・
・固定台、18・・・・・・S偏光ディテクター、l9
・・・・・・p偏光ディテクター22・・・・・・回転
台。
FIG. 1 is a configuration diagram of a birefringence measuring device according to the first embodiment of the present invention, FIG. 2 is a perspective view of the configuration of an optical card mount in the same device, and FIGS. 3 and 5 are stamping diagrams in the same device. A characteristic diagram showing the pulse applied to the motor, Figure 4 is a theoretical diagram showing the state of biasing, which measures the direction of birefringence.
Fig. 6 is a theoretical diagram showing the state of polarization when determining the amount of birefringence, Fig. 7 is a configuration diagram of a conventional birefringence measurement device, and Fig. 8
The figure is a theoretical diagram showing how linearly polarized light changes to elliptically polarized light due to birefringence of a transparent medium. 11...Laser, l3...Surface layer of optical card, l5 Deflection beam splinter, 16...
・Fixed stand, 18...S polarization detector, l9
...P polarization detector 22 ... Rotating table.

Claims (1)

【特許請求の範囲】[Claims] 発光手段と、偏光分離手段と、受光手段と、前記発光手
段より発光した光を透明媒体に入射し、前記透明媒体と
前記偏光分離手段とを通過して前記受光手段により受光
した光量に応じて、前記透明媒体を前記偏光分離手段に
対して相対的に回転させる手段とを備えた複屈折測定装
置。
a light emitting means, a polarized light separating means, a light receiving means, and the light emitted from the light emitting means is incident on a transparent medium, and the light transmitted through the transparent medium and the polarized light separating means is received by the light receiving means according to the amount of light. , means for rotating the transparent medium relative to the polarization separation means.
JP1387290A 1990-01-24 1990-01-24 Birefringence measuring device Pending JPH03218440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1387290A JPH03218440A (en) 1990-01-24 1990-01-24 Birefringence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1387290A JPH03218440A (en) 1990-01-24 1990-01-24 Birefringence measuring device

Publications (1)

Publication Number Publication Date
JPH03218440A true JPH03218440A (en) 1991-09-26

Family

ID=11845325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1387290A Pending JPH03218440A (en) 1990-01-24 1990-01-24 Birefringence measuring device

Country Status (1)

Country Link
JP (1) JPH03218440A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319194A (en) * 1992-03-10 1994-06-07 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring birefringence without employing rotating mechanism
EP0856840A1 (en) * 1997-01-29 1998-08-05 Victor Company Of Japan, Ltd. Birefringence measuring apparatus for optical disc substrate
WO2002099396A1 (en) * 2001-06-04 2002-12-12 Bookham Technology Plc Optical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319194A (en) * 1992-03-10 1994-06-07 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring birefringence without employing rotating mechanism
EP0856840A1 (en) * 1997-01-29 1998-08-05 Victor Company Of Japan, Ltd. Birefringence measuring apparatus for optical disc substrate
US5956146A (en) * 1997-01-29 1999-09-21 Victor Company Of Japan, Ltd. Birefringence measuring apparatus for optical disc substrate
WO2002099396A1 (en) * 2001-06-04 2002-12-12 Bookham Technology Plc Optical system

Similar Documents

Publication Publication Date Title
CA2004377A1 (en) Optical output controlling method and apparatus therefor
JP2531626B2 (en) Optical characteristic measuring device for optical recording medium substrate
US5528575A (en) Optical pickup apparatus for a magneto-optical recording medium
US5432760A (en) Method of measuring phase difference of opto-magnetic record medium and apparatus for carrying out said method
JPH03218440A (en) Birefringence measuring device
SE506286C2 (en) Device for measuring double refraction in an optical data carrier
JP2996005B2 (en) Magnetic disk positioning signal writing device
JPH0944923A (en) Information reader
JP2603973B2 (en) Optical head
JPH0569374B2 (en)
JPH03221842A (en) Double refraction measuring instrument
SU1474552A1 (en) Device for measuring revolution speed
JP2847546B2 (en) Method for measuring magnetization characteristics of magnetic media
JPH01184444A (en) Birefringence measuring instrument
JPS63103927A (en) Mueller matrix measuring instrument
JPH01267441A (en) Method and apparatus for measurement of double refraction
JPS6029621A (en) Method and device for measuring double refraction
SU1290091A1 (en) Device for measuring double ray refraction of reflecting optical information media
JPH045545A (en) Double refraction index measuring instrument
JPS59195111A (en) Optical track position detector
JPS63103938A (en) Optical pickup device
JPS6398844A (en) Eccentricity measuring instrument
JPS62226454A (en) Photomagnetic recording and reproducing device
JPH11120592A (en) Tilt detecting method of optical disk and device therefor
JPS6371608A (en) Eccentricity measuring instrument