JPH03221121A - Decomposition of halogenated hydrocarbons - Google Patents

Decomposition of halogenated hydrocarbons

Info

Publication number
JPH03221121A
JPH03221121A JP2013953A JP1395390A JPH03221121A JP H03221121 A JPH03221121 A JP H03221121A JP 2013953 A JP2013953 A JP 2013953A JP 1395390 A JP1395390 A JP 1395390A JP H03221121 A JPH03221121 A JP H03221121A
Authority
JP
Japan
Prior art keywords
halogenated hydrocarbons
reaction
oxygen
decomposition
radical scavenger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013953A
Other languages
Japanese (ja)
Inventor
Kotaro Ogura
興太郎 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2013953A priority Critical patent/JPH03221121A/en
Publication of JPH03221121A publication Critical patent/JPH03221121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To make halogenated hydrocarbons such as CFCs harmless efficiently and accurately in a mild state by a method wherein the halogenated hydrocarbons are irradiated with light energy in the presence of oxygen to react with radical scavenger. CONSTITUTION:The halogenated hydrocarbons contg. CFCs, chloroform and carbon tetrachloride, e.g. 1,1,2-trichloro-1,2,2-trifluoroethane (flon 113) and trichloromonofluoromethane (flon 11), are irradiated with light energy in the presence of oxygen to react with a radical scavenger such as zinc, iron and Devarda's alloy. By this method, the radical rebinding can be prevented accurately and the halogenated hydrocarbons can be efficiently decomposed in its entirety. The aforesaid reaction is conducted in a closed circulation or a flow system, preferably at a temp. of 60-100 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はハロゲン化炭化水素類類の分解方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for decomposing halogenated hydrocarbons.

[従来技術] ハロゲン化炭化水素類は種々の有用な化合物が知られて
おり、例えば塩素化フッ素化炭化水素(以下フロンとい
う)は毒性が少なく、不燃で化学的に安定であり、各種
用途に幅広く使用されているがこの安定性からある種の
フロンは成層圏でのオゾン破壊が問題となっており、近
年その使用が制限されている。これら特定フロンについ
ては使用量の削減とともに、確実にかつ工業的に分解す
ることにより、これら環境問題に対処することも重要で
ある。この分解方法としては熱プラズマ反応法あるいは
触媒法、燃焼法等が知られているが、工業的に実施する
ためには確実性、有害物質の発生がないこと、あるいは
発生物質を確実に除去し得ること、さらには低コストで
あること等が要求され、現在までこれらの要求を完全に
満足する方法がないのが実状である。また、フロン以外
のハロゲン化炭化水素においても、確実に分解する技術
がなく、公害対策上からも確実に分解する方法が求めら
れているものである。
[Prior art] Various useful compounds of halogenated hydrocarbons are known. For example, chlorinated fluorinated hydrocarbons (hereinafter referred to as fluorocarbons) are less toxic, nonflammable, and chemically stable, and are used for various purposes. Although they are widely used, their use has been restricted in recent years due to the problem of ozone destruction in the stratosphere due to their stability. It is important to address these environmental problems by reducing the amount of these specific fluorocarbons used and by ensuring that they are decomposed industrially. Thermal plasma reaction method, catalytic method, combustion method, etc. are known as methods for this decomposition, but in order to implement it industrially, it must be reliable, that no harmful substances will be generated, or that the generated substances must be reliably removed. In reality, there are demands such as high performance and low cost, and to date there is no method that completely satisfies these demands. Furthermore, there is no technology for reliably decomposing halogenated hydrocarbons other than chlorofluorocarbons, and a method for reliably decomposing them is required from the viewpoint of pollution control.

[問題点を解決するための具体的手段]本発明者らはか
かる現状に鑑み鋭意検討の結果、ある種の化合物の存在
下で、光反応により、極めて効率的にハロゲン化炭化水
素を分解できることを見出し本発明に到達した。すなわ
ち本発明は、ハロゲン化炭化水素類を酸素存在下、光照
射してラジカル捕捉剤と反応させることを特徴とするハ
ロゲン化炭化水素類の分解方法である。
[Specific Means for Solving the Problems] In view of the current situation, the present inventors have conducted intensive studies and have found that halogenated hydrocarbons can be decomposed extremely efficiently by photoreaction in the presence of certain compounds. This discovery led to the present invention. That is, the present invention is a method for decomposing halogenated hydrocarbons, which is characterized by irradiating the halogenated hydrocarbons with light in the presence of oxygen to cause the halogenated hydrocarbons to react with a radical scavenger.

本発明において、対象とするハロゲン化炭化水素として
は現在問題となっている1、1.21リクロロ−1,2
,2−)リフルオロエタン(フロン113)、トワクロ
ロモノフルオロメタン(フロン11)、ジクロロジフル
オロエタン(フロン12) 等のフロンのほか、クロロ
ホルム、四塩化炭素、メチルクロロホルム等の塩素化炭
化水素等各種の化合物が挙げられる。
In the present invention, the halogenated hydrocarbons targeted are 1, 1.21-lichloro-1,2, which is currently a problem.
, 2-) In addition to chlorofluorocarbons such as refluoroethane (Freon 113), dichloromonofluoromethane (Freon 11), and dichlorodifluoroethane (Freon 12), various chlorinated hydrocarbons such as chloroform, carbon tetrachloride, and methylchloroform. The following compounds are mentioned.

本発明においては、反応に光エネルギーを用いるもので
あるが、光源としては特に限定されず、一般に用いられ
る低圧水銀ランプ等でよい。
In the present invention, light energy is used for the reaction, but the light source is not particularly limited and may be a commonly used low-pressure mercury lamp or the like.

本発明の分解反応は、光エネルギーを用いるものである
が、光エネルギーのみでは逆反応も促進されるため効率
よく分解反応を進行させることはできない。本発明にお
いては反応系にラジカル捕捉剤を存在させて反応をおこ
なうものであり、光分解により炭素−塩素および(また
は、一部の)炭素−ツノ集結合を切断し、塩素および一
部のフッ、!ラジカルを発生させ、これをラジカル捕捉
剤と反応させることにより炭素−ハロゲンの再結合を停
止させる。ラジカル捕捉剤としては特に限定されず、種
々のものを用いることができるが、金属、合金、例えば
亜鉛、鉄、デバルダ合金等を例示することができる。こ
のラジカル捕捉剤は光反応ゾーンに存在させるほか、反
応生成ガス中のラジカルが再結合しない範囲で、光反応
ゾーンより下流に存在させることもできる。このラジカ
ル捕捉剤の存在により、光反応により生成した、ラジカ
ルの再結合を確実に防止することができ、全体としての
分解効率を向上させることができるものである。また、
系に酸素および水を若干存在させれば、ハロゲンラジカ
ルの担体として働き、ラジカルは効率よく捕捉剤と反応
する。炭素由来のラジカルの主崩壊プロセスは酸素分子
との反応による炭酸ガスの生成であり、本発明において
は、効率よく分解をおこなうためには、この酸素の存在
は、非常に重要である。また、反応生成ガスはラジカル
捕捉剤との反応の後、水トラツプで処理することにより
、反応ガス成分中の水溶解成分等を捕捉することができ
るため、有用な手段であるが、この処理により、循環系
で反応をおこなう場合には、反応系に若干の水を導入す
ることができ、前述のように、反応効率面でも有用であ
る。
Although the decomposition reaction of the present invention uses light energy, the decomposition reaction cannot proceed efficiently with light energy alone because it also promotes the reverse reaction. In the present invention, the reaction is carried out in the presence of a radical scavenger in the reaction system, and carbon-chlorine and (or some) carbon-horn collective bonds are cut by photolysis, and chlorine and some fluorine are ,! Carbon-halogen recombination is stopped by generating radicals and reacting them with a radical scavenger. The radical scavenger is not particularly limited and various types can be used, but metals and alloys such as zinc, iron, Devarda alloy, etc. can be exemplified. In addition to being present in the photoreaction zone, this radical scavenger can also be present downstream of the photoreaction zone as long as the radicals in the reaction product gas do not recombine. The presence of this radical scavenger makes it possible to reliably prevent the recombination of radicals generated by photoreaction, thereby improving the overall decomposition efficiency. Also,
If some oxygen and water are present in the system, they act as carriers for halogen radicals, and the radicals react efficiently with the scavenger. The main decay process of carbon-derived radicals is the production of carbon dioxide gas through reaction with oxygen molecules, and in the present invention, the presence of oxygen is very important for efficient decomposition. In addition, by treating the reaction product gas with a water trap after the reaction with a radical scavenger, water-soluble components in the reaction gas components can be captured, which is a useful method. When the reaction is carried out in a circulating system, a small amount of water can be introduced into the reaction system, which is also useful in terms of reaction efficiency, as described above.

反応は閉鎖循環系あるいは流通系でおこない、反応は常
温〜100℃の範囲で可能であるが、反応が発熱反応で
あるので反応中濃度が上昇するため、通常は60〜10
0℃が好ましい。
The reaction is carried out in a closed circulation system or a flow system, and the reaction is possible in the range of room temperature to 100°C, but since the reaction is exothermic and the concentration increases during the reaction, it is usually 60 to 100°C.
0°C is preferred.

本発明の方法によれば、フロンの分解においてガス成分
に原料フロン以外にフッ素成分は存在せず、固体状の含
フツ素重合体および金属フッ化物として固定される。ま
た、反応系に水トラツプを用いた場合には、若干のフッ
集録が水トラツプに捕捉される。また塩素は、大部分が
金属塩化物として固定され、水トラツプなしの場合には
、ガス成分に塩素が存在するが、水トラツプを用いた場
合には、この水トラツプに、捕捉されるため、ガス成分
には塩素は存在しないものとなる。
According to the method of the present invention, in the decomposition of fluorocarbons, no fluorine components exist in the gas components other than the raw material fluorocarbons, and the fluorine components are fixed as solid fluorine-containing polymers and metal fluorides. Furthermore, when a water trap is used in the reaction system, some fluorine is trapped in the water trap. In addition, most of chlorine is fixed as metal chloride, and if there is no water trap, chlorine will be present in the gas component, but if a water trap is used, it will be captured in the water trap, so No chlorine is present in the gas components.

以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

実施例1 50Wの低圧水銀ランプを備えた容積2.5dmの円筒
形光反応セルを用いて反応をおこなった。1゜1.2−
)ジクロロ−1,2,2−)リフルオロエタン8%酸素
2%−窒素90%の混合ガスをガス循環速度200 m
l/n+inで導入し、100℃で2時間反応をおこな
った。この結果を表に示した。フロン−酸素−窒素混合
ガス系に水トラツプを適用しない場合(第1表〉とする
場合(第2表)について、ラジカル捕捉剤を用いる場合
(亜鉛、鉄、デバルダ合金)と用いない場合についてお
こなった。
Example 1 The reaction was carried out using a 2.5 dm volume cylindrical photoreaction cell equipped with a 50 W low pressure mercury lamp. 1゜1.2-
) Dichloro-1,2,2-)lifluoroethane 8% Oxygen 2% - Nitrogen 90% mixed gas at a gas circulation speed of 200 m
The mixture was introduced at l/n+in, and the reaction was carried out at 100°C for 2 hours. The results are shown in the table. This was carried out for cases in which a water trap is not applied to a fluorocarbon-oxygen-nitrogen mixed gas system (Table 1), cases in which radical scavengers are used (zinc, iron, Devarda alloy), and cases in which they are not used. Ta.

なお、ガス威分量はガスクロマトグラフィーにて測定し
、分解率は、原料フロンの残存量より算出した。(以下
同様である。) (以下参白+ヨ 注、反応時間;2時間、反応温度;100℃、ガス循環
速度;200m1ノminラジカル補足剤はすべて粉末
で3gである。
The amount of gas was measured by gas chromatography, and the decomposition rate was calculated from the remaining amount of raw material Freon. (The same applies hereinafter.) (Note: Reaction time: 2 hours, reaction temperature: 100° C., gas circulation rate: 200 ml/min) All radical scavengers were 3 g in powder form.

注、 反応時間;2時間、反応温度;100℃、ガス循環速度
;200m1/winラジカル捕捉剤はすべて粉末で3
gである。
Note: Reaction time: 2 hours, reaction temperature: 100℃, gas circulation rate: 200ml/win.All radical scavengers are powdered.
It is g.

鉄(1)はラジカル捕捉剤を4段の捕捉管に分け、各捕
捉管にそれぞれに鉄を1gずつ入れた場合。
For iron (1), the radical scavenger is divided into four trapping tubes, and 1 g of iron is placed in each trapping tube.

表中、−はガスクロマトグラフィーにて非検出。In the table, - means not detected by gas chromatography.

実施例2 対象化合物としてcctaおよびCHC13を用いて、
実施例1と同様にして分解反応をおこなった。この結を
第3表に示した。この表から明らかなとおりそれぞれ9
9.8%、96.0%の転換率を示しており、検出され
た塩素イオン中、塩化鉄になっている塩素はCCl4で
は90%以上であるのに対してCHCl3ではHCIと
して離脱するためであり、HCIの金属による捕捉反応
速度はC1の場合よりも遅いことを示している。
Example 2 Using ccta and CHC13 as target compounds,
A decomposition reaction was carried out in the same manner as in Example 1. The results are shown in Table 3. As is clear from this table, each
It shows a conversion rate of 9.8% and 96.0%, and among the detected chlorine ions, more than 90% of chlorine becomes iron chloride in CCl4, whereas in CHCl3 it is separated as HCI. , indicating that the reaction rate of metal capture of HCI is slower than that of C1.

し−ニー」 [発明の効果] 本発明によれば、環境問題が提起されているフロン等の
ハロゲン化炭化水素を温和な条件で効率よく確実に無害
なものに転化することができるという著効を有する。
[Effects of the Invention] The present invention has the remarkable effect that halogenated hydrocarbons such as chlorofluorocarbons, which pose environmental problems, can be efficiently and reliably converted into harmless substances under mild conditions. has.

Claims (1)

【特許請求の範囲】[Claims]  ハロゲン化炭化水素類を酸素存在下、光照射してラジ
カル捕捉剤と反応させることを特徴とするハロゲン化炭
化水素類の分解方法。
A method for decomposing halogenated hydrocarbons, which comprises irradiating the halogenated hydrocarbons with light in the presence of oxygen to cause the halogenated hydrocarbons to react with a radical scavenger.
JP2013953A 1990-01-24 1990-01-24 Decomposition of halogenated hydrocarbons Pending JPH03221121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013953A JPH03221121A (en) 1990-01-24 1990-01-24 Decomposition of halogenated hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013953A JPH03221121A (en) 1990-01-24 1990-01-24 Decomposition of halogenated hydrocarbons

Publications (1)

Publication Number Publication Date
JPH03221121A true JPH03221121A (en) 1991-09-30

Family

ID=11847575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013953A Pending JPH03221121A (en) 1990-01-24 1990-01-24 Decomposition of halogenated hydrocarbons

Country Status (1)

Country Link
JP (1) JPH03221121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277205A (en) * 1991-11-21 1993-10-26 Tokyo Electric Power Co Inc:The Method and device for continuously decomposing and separating chlorofluorocarbons
JP2001198436A (en) * 2000-01-19 2001-07-24 Tokai Univ Method for decomposition of hardly decomposable organic halogen compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165072A (en) * 1974-12-04 1976-06-05 Tsutomu Kagitani HISANKASEIKAGOBUTSUNO SANKABUNKAISHORIHO
JPH03111065A (en) * 1989-09-26 1991-05-10 Tokai Univ Method for cracking gaseous fluorocarbon and method for forming fluoro plastic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165072A (en) * 1974-12-04 1976-06-05 Tsutomu Kagitani HISANKASEIKAGOBUTSUNO SANKABUNKAISHORIHO
JPH03111065A (en) * 1989-09-26 1991-05-10 Tokai Univ Method for cracking gaseous fluorocarbon and method for forming fluoro plastic film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277205A (en) * 1991-11-21 1993-10-26 Tokyo Electric Power Co Inc:The Method and device for continuously decomposing and separating chlorofluorocarbons
JP2001198436A (en) * 2000-01-19 2001-07-24 Tokai Univ Method for decomposition of hardly decomposable organic halogen compound

Similar Documents

Publication Publication Date Title
EP0968739B1 (en) Method for decomposing halogenated aliphatic and aromatic compounds
Toy et al. Photosonochemical decomposition of aqueous 1, 1, 1‐trichloroethane
JP2560233B2 (en) Halogenated hydrocarbon decomposition method
CA1068472A (en) Process for removing ethylenically unsaturated chlorinated hydrocarbons from gas streams
Sakai et al. Formation and emission of non-ortho CBs and mono-ortho CBs in municipal waste incineration
JPH03221121A (en) Decomposition of halogenated hydrocarbons
JP3796618B2 (en) Purification method of flon combustion exhaust gas
JP2000070401A (en) Non-heating dehalogenation method for organic halogen compound
JP2617144B2 (en) Method for plasma decomposition treatment of halogenated organic compounds
Maeda et al. Degradation of organoarsenic compounds by a hydrothermal or photo‐oxidation process
JPH0724081A (en) Decomposing method of organohalogen compounds by high frequency induction plasma and its equipment
JP3216868B2 (en) Decomposition method of halide gas
JP3228459B2 (en) Decomposition method of halide gas
Ogura et al. Complete photodecomposnion of CFC‐113, CHCl3 and CCl4, and scavenging of generated reactive species
JPH10216479A (en) Detoxifying method of gaseous nitrogen trifluoride
JP2000334062A (en) Microwave-solvothermal treatment of harmful organic compound
JPH0693927B2 (en) CFC decomposition method
JP3474349B2 (en) Decomposition method of halogen-containing organic compounds
JP3734963B2 (en) Detoxification method for organochlorine compounds, etc. with mixed molten salt
JP3219775B2 (en) Decomposition method of chlorinated aromatic compounds
JPH08270922A (en) Method for making fluorocarbon harmless
JPH0483515A (en) Method for decomposing fluorocarbon type cooling medium
JPH03242158A (en) Cracking treatment of fluorocarbon
JP3499657B2 (en) How to treat chlorine gas
JP3565742B2 (en) Method for treating fluorine-containing compound gas