JPH03219513A - Vacuum-type circuit breaker - Google Patents

Vacuum-type circuit breaker

Info

Publication number
JPH03219513A
JPH03219513A JP1362490A JP1362490A JPH03219513A JP H03219513 A JPH03219513 A JP H03219513A JP 1362490 A JP1362490 A JP 1362490A JP 1362490 A JP1362490 A JP 1362490A JP H03219513 A JPH03219513 A JP H03219513A
Authority
JP
Japan
Prior art keywords
current
roller
opening
vacuum
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1362490A
Other languages
Japanese (ja)
Inventor
Kiyobumi Otobe
乙部 清文
Kunio Yokokura
邦夫 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1362490A priority Critical patent/JPH03219513A/en
Publication of JPH03219513A publication Critical patent/JPH03219513A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H2009/307Means for extinguishing or preventing arc between current-carrying parts with slow break, e.g. for AC current waiting for a zero crossing

Abstract

PURPOSE:To shut a large electric current without any apparatus for protection from surge current by specifying pole opening speed 200-400mus before and after poles are opened. CONSTITUTION:When a trip signal is input, a motor starts working to rotate a cum 9 clockwise, and a roller 10a moves from the position where a tip stopping part is locked to the position where it is locked at a first step part. As soon as the roller 10a comes is contact with the first step part, a wipe is removed by a wipe spring 12 and during the roller 10a moves from the base part to the end part, the stroke of the roller 10a increases slowly and pole opening speed is made high. The speed of a contact of a vacuum valve 4 is set to 0.03m/s or less for 200-400mus after pole opening and to 1m/s or more after that. Consequently, high frequency electric current due to arc regeneration becomes small and large current can be shut off without installing an apparatus for protection from surge current.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、開閉サージを抑制する真空遮断器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a vacuum circuit breaker that suppresses switching surges.

(従来の技術) 真空遮断器で誘導性負荷電流を遮断すると、特異な開閉
サージを発生することが知られている。
(Prior Art) It is known that when an inductive load current is interrupted by a vacuum circuit breaker, a peculiar switching surge is generated.

この開閉サージは、その発生メカニズムより■ 電流裁
断サージ ■ 多重再発弧(繰り返し再発fi)サージ■ 3相同
時遮断(3相誘発裁断)サージの3種類に分類できる。
This opening/closing surge can be classified into three types based on its generation mechanism: ■ Current cutting surge ■ Multiple re-ignition (repetitive recurrence fi) surge ■ Three-phase simultaneous cut-off (three-phase induced cutting) surge.

■は、AC電流の自然零点を待たずに、強制的に電流が
遮断される現象で、負荷のインダクタンスに蓄えられて
いる電磁エネルギーが回路の漂遊キャパシタンスの静電
エネルギーに変換される過程で発生する。■は、電流遮
断後に真空バルブ極間に発生する過渡回復電圧が極間耐
圧を土建ると、極間で再発弧が起こる。この時極間を流
れる高周波電流が消弧されると、再び過渡回復電圧があ
られれ、また極間で放電が起こるというように再発弧と
高周波電流消弧を繰り返し発生する過程で、徐々に極間
電圧が上昇していく現象である。(3)は、遮断第1相
の極間で再発弧が発生すると、この時流れる高周波電流
が回路の漂遊キャパシタンスを介して他相のAC電流に
重畳し、強制的に電流零点を形成し、その零点で遮断さ
れる現象をいう。この時、他相は見掛上、負荷電流相当
の電流を裁断したことと同じになり、大きなサージ電圧
が発生する。
■ is a phenomenon in which the current is forcibly cut off without waiting for the natural zero point of the AC current, and occurs during the process in which electromagnetic energy stored in the inductance of the load is converted to electrostatic energy in the stray capacitance of the circuit. do. (2) When the transient recovery voltage that occurs between the electrodes of the vacuum valve after the current is cut off exceeds the withstand voltage between the electrodes, a re-ignition occurs between the electrodes. When the high-frequency current flowing between the electrodes is extinguished at this time, a transient recovery voltage is generated again, and a discharge occurs between the electrodes. This is a phenomenon in which the voltage between the two ends increases. (3) When a re-ignition occurs between the poles of the first phase of interruption, the high frequency current flowing at this time is superimposed on the AC current of other phases via the stray capacitance of the circuit, forcibly forming a current zero point, This refers to a phenomenon that is interrupted at that zero point. At this time, the other phase appears to be the same as cutting a current equivalent to the load current, and a large surge voltage is generated.

これら開閉サージを抑制する方法としては、(イ)真空
バルブの接点を、裁断電流値の低い材料から形成する。
As a method for suppressing these opening/closing surges, (a) the contacts of the vacuum valve are formed from a material with a low cutting current value.

(ロ)  CRサージサプレッサや避雷器等のサージ保
護装置を設置する。
(b) Install surge protection devices such as CR surge suppressors and lightning arresters.

の2種類に大別できる。(イ)の方法は、真空コンタク
タのように大電流遮断を必要としない機器に適用されて
いる。(ロ)の方法は、真空遮断器のように事故時の大
電流遮断を必要とする機器で採用されている(電気学会
論文集VoL93. Nα8参照)。
It can be roughly divided into two types. Method (a) is applied to equipment that does not require large current interruption, such as vacuum contactors. The method (b) is used in devices that require large current interruption in the event of an accident, such as vacuum circuit breakers (see Proceedings of the Institute of Electrical Engineers of Japan Vol. 93. Nα8).

(発明が解決しようとする課題) 一般に真空遮断器における開閉サージの保護は、CRサ
ージサプレッサや避雷器等のサージ保護装置を設置する
ことにより行っている。しかしながら、これらサージ保
護装置を設置することは、機器のスペースファクタを悪
化させると共に、真空遮断器の適用される回路に適した
サージ保護装置を選定するという作業が必要となり、シ
ステムエンジニアの作業を煩わし、選定誤り等の発生が
懸念される。
(Problems to be Solved by the Invention) Generally, switching surge protection in a vacuum circuit breaker is performed by installing a surge protection device such as a CR surge suppressor or lightning arrester. However, installing these surge protectors worsens the space factor of the equipment and requires the work of selecting a surge protector suitable for the circuit to which the vacuum circuit breaker is applied, which burdens the work of system engineers. , there is a concern that selection errors may occur.

そこで、本発明の目的は、大電流遮断が可能でかつサー
ジ保護装置を必要としない真空遮断器を提供するもので
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a vacuum circuit breaker that is capable of interrupting large currents and does not require a surge protection device.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、IO−” P a以下の高真空容器中で一対
の接点を開閉する真空バルブを備えた真空遮断器におい
て、開極時の開極速度を、開極後200〜400μs以
前では0.03m/s以下とし、200〜400μs以
後は1m/s以上としたものである。
(Means for Solving the Problems) The present invention provides a vacuum circuit breaker equipped with a vacuum valve that opens and closes a pair of contacts in a high-vacuum container with a pressure below IO-''Pa, in which the opening speed at the time of opening is The speed is 0.03 m/s or less before 200 to 400 μs after opening, and 1 m/s or more after 200 to 400 μs.

(作用) 開極後200〜400μSまでは接点間のギャップ長が
3〜12μsと小さく、絶縁回復電圧は数百ポル1−以
下と低く抑えられる。しかし、開極後200〜400μ
s以後では接点間のギャップ長が1m/s以上の速さで
増太し、絶縁回復電圧が10 X 106ボルト/秒以
上の速さで増大して再発弧を防ぐことができる。
(Function) The gap length between the contacts is as small as 3 to 12 μs until 200 to 400 μS after contact opening, and the insulation recovery voltage is suppressed to a low value of several hundred pol 1 − or less. However, 200~400μ after opening
After s, the gap length between the contacts increases at a rate of 1 m/s or more, and the insulation recovery voltage increases at a rate of 10 x 106 volts/sec or more, making it possible to prevent re-ignition.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。第
1図は、本発明の一実施例を示す側面断面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view showing one embodiment of the present invention.

3− 同図において、真空遮断器は、車輪1aを設けて移動自
在とした架台1と、この架台1に固定された絶縁支持枠
2と、この絶縁支持枠2の正面側に固定された操作機構
3と、絶縁支持枠2の背面側に固定された真空バルブ4
で構成され、この真空バルブ4は、図示しない固定接点
の固定軸を上部側口出端子5に接続し、図示しない可動
接点の可動軸6を可撓導体7aを介して下部側口出端子
7に接続している。
3- In the same figure, the vacuum circuit breaker consists of a mount 1 which is provided with wheels 1a and is movable, an insulating support frame 2 fixed to the mount 1, and an operation panel fixed to the front side of the insulating support frame 2. A mechanism 3 and a vacuum valve 4 fixed to the back side of the insulating support frame 2
In this vacuum valve 4, a fixed shaft of a fixed contact (not shown) is connected to an upper outlet terminal 5, and a movable shaft 6 of a movable contact (not shown) is connected to a lower outlet terminal 7 via a flexible conductor 7a. is connected to.

一方、操作機構3には、内部に取付けたモータ(図示し
ない)と適宜のトルク伝達手段により連結された主軸8
が設けられ、この主軸8にカム9が一体に回転するよう
に取付けられており、このカム9は、ローラ10a を
介してリンク10と連結している。このリンク10は、
絶縁支持枠2に回動自在に支持され、−側(上側)を操
作ロッド11およびワイプばね12を介して真空バルブ
4の可動軸6に連結すると共に、他側(下側)を張力の
調整を可能とした復帰ばね13に連結している。
On the other hand, the operating mechanism 3 includes a main shaft 8 connected to an internally mounted motor (not shown) and an appropriate torque transmission means.
A cam 9 is attached to the main shaft 8 so as to rotate together with the main shaft 8, and the cam 9 is connected to a link 10 via a roller 10a. This link 10 is
It is rotatably supported by the insulating support frame 2, and the - side (upper side) is connected to the movable shaft 6 of the vacuum valve 4 via the operating rod 11 and wipe spring 12, and the other side (lower side) is for tension adjustment. It is connected to a return spring 13 that makes it possible to

また、カム9には、第2図に示すように第1の4− 段部9aと第2の段部9bが設けられている。しかして
、第1の段部9aは、その基部(主軸8の中心から半径
rの位置)が先端係止部9cからワイプばね12のワイ
プ量に相当する分の段差を有し、半径rの円弧(点線で
示す)に対し中心向きに傾斜を設けた円弧で形成されて
いる。第2の段部9bは、その基部が真空バルブ4の開
閉ストロークから第1の段部9aで開閉する分を差引い
た開閉ストロークに相当する分の段差を、第1の段部9
aの端部との間に設けている。
Further, the cam 9 is provided with a first four-step portion 9a and a second step portion 9b, as shown in FIG. Therefore, the first step portion 9a has a step at its base (a position at a radius r from the center of the main shaft 8) from the tip locking portion 9c by an amount corresponding to the wipe amount of the wipe spring 12, and has a radius r. It is formed by a circular arc (indicated by a dotted line) that is inclined toward the center. The base of the second step 9b has a step difference corresponding to the opening/closing stroke of the vacuum valve 4 minus the amount of opening/closing at the first step 9a.
It is provided between the end of a.

次に、以上のように構成された実施例の作用を説明する
。第1図に示す真空遮断器の投入状態でトリップ信号が
入力されると、モータ(図示しない)が起動しカム9を
同図で時計方向に回転させる。このカム9の回転により
ローラ10aは、先端係止部9cで係止されている位置
から第1の段部9aで係止される位置に移動する。この
時、第1の段部9aの基部にローラ10aが接触した瞬
間にワイプばね12によるワイプが除去され、ローラ1
0aが基部から端部まで移動する間は、ローラ10aの
ストローラは緩かに増大し、真空バルブ4の接点は開極
後200〜400μsまでの間は0.03m/s以下の
開極速度で開極する。このときの真空バルブ4の接点間
のギャップ長は、6〜12p以下と小さく絶縁回復電圧
は数百ボルト以下と低く抑えられる。一方、開極後20
0〜400IIS以後にはローラ10aは、第1の段部
9aから離れて第2の段部9bへ移動する。この時には
、真空バルブ4の接点間のギャップ長は急速に増大し、
1m/s以上の速さで開極する。このときの絶縁回復電
圧は10 X 10Gボルト/秒以上の速さで増大する
Next, the operation of the embodiment configured as above will be explained. When a trip signal is input with the vacuum circuit breaker in the closed state shown in FIG. 1, a motor (not shown) is started and rotates the cam 9 clockwise in the figure. This rotation of the cam 9 moves the roller 10a from the position where it is locked by the tip locking part 9c to the position where it is locked by the first step part 9a. At this time, the moment the roller 10a comes into contact with the base of the first step 9a, the wipe by the wipe spring 12 is removed, and the roller 1
While 0a moves from the base to the end, the stroke of the roller 10a increases slowly, and the contact point of the vacuum valve 4 is opened at an opening speed of 0.03 m/s or less from 200 to 400 μs after opening. Open the pole. At this time, the gap length between the contacts of the vacuum valve 4 is as small as 6 to 12p or less, and the insulation recovery voltage is kept low as several hundred volts or less. On the other hand, after opening 20
After 0 to 400 IIS, the roller 10a moves away from the first step 9a and moves to the second step 9b. At this time, the gap length between the contacts of the vacuum valve 4 increases rapidly,
Opens at a speed of 1 m/s or more. The insulation recovery voltage at this time increases at a rate of 10 x 10 G volts/second or more.

以上のように接点開極後200〜400卯を境にして前
後で開極速度を異らせたのは、次の理由による。
The reason why the opening speed was varied before and after 200 to 400 m after the contact was opened as described above is as follows.

すなわち、開極速度が0.03m/s程度の非常に遅い
速度で開極した場合、200〜400μs以前では絶縁
回復が非常に遅<1×10Gボルト/秒以下であるのに
対し、接点間のギャップ長の増大速度は同じでも開極後
200〜400μs以後では10 X 10’ボルト/
秒程度の速さで絶縁回復電圧が増大する。この時開極速
度が大きければ絶縁回復の速さもそれに応じて増大する
。開極後の経過時間と絶縁回復電圧の関係を調査したと
ころ、第3図に示す結果(実線)を得た。同図からも明
らかなように開極後200〜400μsで特性が急変し
ているのが分かる。なお、同図の点線は、開極速度が2
00〜400μs以後も0.03m/sと遅い場合の特
性を示す。
In other words, when the contact is opened at a very slow opening speed of about 0.03 m/s, the insulation recovery is very slow <1 x 10 G volt/s or less before 200 to 400 μs, but the Even if the gap length increases at the same rate, after 200 to 400 μs after opening, it increases by 10 x 10' volts/
The insulation recovery voltage increases at a rate of about seconds. At this time, if the opening speed is large, the speed of insulation recovery increases accordingly. When the relationship between the elapsed time after contact opening and the insulation recovery voltage was investigated, the results shown in FIG. 3 (solid line) were obtained. As is clear from the figure, the characteristics suddenly change 200 to 400 μs after opening. Note that the dotted line in the same figure indicates that the opening speed is 2.
The characteristics when the speed is as slow as 0.03 m/s even after 00 to 400 μs are shown.

したがって、上記した実施例によれば次の効果を得られ
る。
Therefore, according to the embodiment described above, the following effects can be obtained.

真空遮断器で遅れ力率の/11電流を遮断すると、電流
裁断サージ、繰り返し再発弧サージ、3相同時遮断サー
ジ等、特異なサージが発生する。この中で最も大きなサ
ージを発生するのが3相同時遮断である。これは、遮断
第1相が再発弧したときに発生した高周波電流が、他相
電流に重畳して電流零点が形成され、その零点で電流が
消弧されるために発生する現象である。本実施例による
絶縁回復特性は、第8図に示すように200〜400μ
Sを境にして以前は絶縁回復電圧が数百ボルト以下とな
っており、もし遮断第1相が再発弧したとしても発生す
る高周波電流は小さく、他相の交流電流を=7− 強制的に零点を作ることはなく、3相同時遮断は起こら
ない。また、200〜400μs以後では遮断第1相で
発生する電流裁断サージは、絶縁回復電圧が十分大きい
ため再発弧することはない。これにより、回路に最も苛
酷な3相同時遮断によるサージの発生がなくなる。
When a vacuum circuit breaker interrupts a current with a lagging power factor of /11, unique surges occur, such as current cutting surges, repeated re-ignition surges, and three-phase simultaneous interruption surges. Among these, simultaneous three-phase shutdown generates the largest surge. This is a phenomenon that occurs because the high-frequency current generated when the first phase of interruption is re-ignited is superimposed on the other phase current to form a current zero point, and the current is extinguished at that zero point. The insulation recovery characteristics according to this example are 200 to 400μ as shown in FIG.
Previously, the insulation recovery voltage was several hundred volts or less after S, and even if the first phase of the shutdown were to fire again, the high frequency current that would be generated would be small, and the alternating current of the other phases would be forced to No zero point is created and three-phase simultaneous shutdown does not occur. Furthermore, after 200 to 400 μs, the current cutting surge that occurs in the first phase of interruption will not re-ignite because the insulation recovery voltage is sufficiently large. This eliminates the occurrence of surges caused by simultaneous three-phase interruption, which is the most severe problem in the circuit.

なお、本発明は、上記実施例に限定されるものではなく
、第3図に示すような絶縁回復特性が得られるように開
極後200〜400μsを境にしてその前後で開極速度
を規定するものであればよく、その他の手段で実施する
ようにしてもよい。
It should be noted that the present invention is not limited to the above embodiments, but the opening speed is defined around 200 to 400 μs after opening so that the insulation recovery characteristics as shown in FIG. 3 can be obtained. Any method may be used as long as it is carried out, and it may be carried out by other means.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上のように構成されているから、遅れ小電
流を遮断した時に遮断第1相が開極後200〜400I
J5以内で再発弧したときには絶縁回復電圧は数百ボル
ト以下であり、再発弧により発生した高周波電流は小さ
く、他相の交流電流に強制的に零点を作ることはなく、
3相同時遮断は起こらない。また、200〜400μs
以後では遮断第1相で発生する電流裁断サージは、絶縁
回復電圧が十分大8− きいため再発弧することはない。これにより、回路に最
も苛酷な3相同時遮断によるサージの発生をなくすこと
ができ、サージ保護装置の選定の煩わしさをなくし、そ
の設置スペースを不要とすることができる。
Since the present invention is configured as described above, when a delayed small current is interrupted, the first phase of interruption is 200 to 400 I after opening.
When a re-ignition occurs within J5, the insulation recovery voltage is several hundred volts or less, and the high frequency current generated by the re-ignition is small and does not forcibly create a zero point in the alternating current of other phases.
Three-phase simultaneous shutdown does not occur. Also, 200 to 400 μs
Thereafter, the current cutting surge that occurs in the first phase of interruption will not cause a re-ignition because the insulation recovery voltage is sufficiently large. As a result, it is possible to eliminate the occurrence of surges caused by simultaneous three-phase interruption, which is the most severe problem in a circuit, and the troublesome selection of a surge protection device can be eliminated, as well as the need for installation space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す側面断面図、第2図は
本発明の一実施例の要部を示す詳細図、第3図は本発明
の一実施例の絶縁回復特性図である。
Fig. 1 is a side sectional view showing an embodiment of the present invention, Fig. 2 is a detailed view showing the main parts of an embodiment of the invention, and Fig. 3 is a diagram of insulation recovery characteristics of an embodiment of the invention. be.

Claims (1)

【特許請求の範囲】[Claims] 10^−^2Pa以下の高真空容器で一対の接点を開閉
する真空バルブを備えた真空遮断器において、開極時の
開極速度を、開極後200〜400μs以前では0.0
3m/s以下とし、200〜400μs以後は1m/s
以上としたことを特徴とする真空遮断器。
In a vacuum circuit breaker equipped with a vacuum valve that opens and closes a pair of contacts in a high vacuum container of 10^-^2 Pa or less, the opening speed at the time of opening is set to 0.0 within 200 to 400 μs after opening.
3m/s or less, 1m/s after 200~400μs
A vacuum circuit breaker characterized by the above.
JP1362490A 1990-01-25 1990-01-25 Vacuum-type circuit breaker Pending JPH03219513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1362490A JPH03219513A (en) 1990-01-25 1990-01-25 Vacuum-type circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1362490A JPH03219513A (en) 1990-01-25 1990-01-25 Vacuum-type circuit breaker

Publications (1)

Publication Number Publication Date
JPH03219513A true JPH03219513A (en) 1991-09-26

Family

ID=11838389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1362490A Pending JPH03219513A (en) 1990-01-25 1990-01-25 Vacuum-type circuit breaker

Country Status (1)

Country Link
JP (1) JPH03219513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613035U (en) * 1991-12-13 1994-02-18 金星計電株式会社 Vacuum circuit breaker for arc prevention

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613035U (en) * 1991-12-13 1994-02-18 金星計電株式会社 Vacuum circuit breaker for arc prevention

Similar Documents

Publication Publication Date Title
JP2892717B2 (en) Power switching controller
US4550356A (en) Circuit breaker
JP3589061B2 (en) Vacuum switchgear and method for opening and closing vacuum switchgear
RU2410788C2 (en) Electric switching device
US3731149A (en) Arc suppression, motor protection and dynamic braking network for a.c. motors
JPH03219513A (en) Vacuum-type circuit breaker
Farag et al. Guidelines for the application of vacuum contactors
JP3369228B2 (en) High-speed reclosable earthing switch
JP3372054B2 (en) High-speed reclosable grounding device
JP3337749B2 (en) High-speed reclosable earthing switch
JP3372055B2 (en) High-speed reclosable grounding device
JPH0334228A (en) Vacuum circuit breaker
RU2321129C2 (en) Distributing power network
Pardeshi et al. Overview of condition monitoring system for circuit breaker
JP3369224B2 (en) High-speed reclosable earthing switch
Kurtz et al. General guidelines for vacuum circuit breaker application
JP3292783B2 (en) DC circuit breaker
RU2037229C1 (en) Three-pole vacuum switch
Schoonenberg et al. Switching voltages in MV networks: Their natures, characteristics and methods to prevent their occurrence or to limit their values
JPH03257727A (en) Trip control device for buffer type gas-blast circuit-breaker
WO2023134854A1 (en) Dc-current breaker switch
JPH07105800A (en) High speed reclosing and grounding switch
JPH06124627A (en) High speed re-closing path earthed switch
Chaly et al. The peculiarities of interruption of the medium voltage motors by VCB with CuCr contacts [vacuum circuit breakers]
JPS58165223A (en) Protecting device