JPH03219055A - Stainless steel for engine exhaust gas system material excellent in corrosion resistance - Google Patents
Stainless steel for engine exhaust gas system material excellent in corrosion resistanceInfo
- Publication number
- JPH03219055A JPH03219055A JP32833990A JP32833990A JPH03219055A JP H03219055 A JPH03219055 A JP H03219055A JP 32833990 A JP32833990 A JP 32833990A JP 32833990 A JP32833990 A JP 32833990A JP H03219055 A JPH03219055 A JP H03219055A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- less
- stainless steel
- corrosion
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 104
- 238000005260 corrosion Methods 0.000 title claims abstract description 104
- 239000010935 stainless steel Substances 0.000 title claims abstract description 28
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 28
- 239000000463 material Substances 0.000 title claims description 21
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract 2
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract 2
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 abstract description 9
- 229910052719 titanium Inorganic materials 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 description 29
- 229910000831 Steel Inorganic materials 0.000 description 26
- 239000010959 steel Substances 0.000 description 26
- 230000000694 effects Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003891 environmental analysis Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- -1 nitrate ions Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Exhaust Silencers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、自動車やオートバイのエンジンなどの排気ガ
ス用マフラーやその前後の排気管内(以下総称してマフ
ラーという)で生成する湿潤ガス・排ガス凝縮液中で耐
食性、および局部腐食の発生停止特性の優れた性能を有
するステンレス鋼に関するものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to wet gases and exhaust gases generated in exhaust gas mufflers of automobile and motorcycle engines, and in exhaust pipes before and after the mufflers (hereinafter collectively referred to as mufflers). The present invention relates to stainless steel that has excellent corrosion resistance in condensate and the ability to stop the occurrence of local corrosion.
従来、自動車、オートバイの場合、エンジンで発生した
高温の排気ガスは、エキゾーストマニホ−ルド、コンバ
ーターなどを通過後センターパイプ、マフラー、テール
パイプを経て排気系から排出される。エンジン始動時は
、マフラーの温度が低いために排ガス中の水分が凝縮し
た凝縮液がマフラー内壁面に付着し、また、マフラー底
部に滞留する。このように生成した凝縮液中には、燃焼
排気ガス中にCO3−、NH4” 、5O4−、N(h
−その他C1”や微量の有機物が含まれ、マフラーの耐
食性に影響する。その過程は、排気ガス温度の上昇と共
にマフラーの温度も上昇し、生成した凝縮液中に含まれ
るアンモニアなどが揮発するため、凝縮液の液性はアル
カリ性から酸性に変化していく。Conventionally, in the case of automobiles and motorcycles, high-temperature exhaust gas generated by the engine passes through an exhaust manifold, a converter, etc., and is then discharged from the exhaust system via a center pipe, muffler, and tail pipe. When the engine is started, the temperature of the muffler is low, so condensed liquid, which is water in the exhaust gas, adheres to the inner wall of the muffler and remains at the bottom of the muffler. The condensate thus generated contains CO3-, NH4'', 5O4-, N(h
- Contains other C1" and trace amounts of organic matter, which affect the corrosion resistance of the muffler. This process occurs because as the exhaust gas temperature rises, the muffler temperature also rises, and ammonia etc. contained in the generated condensate evaporates. , the liquid property of the condensate changes from alkaline to acidic.
このような環境に適合したマフラーを作るには、アルカ
リ性から酸性までの環境に対して耐食性を示すAffi
メツキ鋼板やCr含有鋼板が用いられてきた。In order to make a muffler suitable for such environments, Affi, which has corrosion resistance in environments ranging from alkaline to acidic, must be used.
Plated steel plates and Cr-containing steel plates have been used.
[発明が解決しようとする課題〕
しかし、近年の排気ガス規制強化に伴い、マフラーの使
用条件も多様になってきた。このような使用条件に対し
ては、前記の鋼板で構成されたマフラーでも、充分な耐
食性を得ることはできず、比較的短時間で使用寿命に至
るのが現状であり、自動車の安全性、長寿命化の観点か
ら、より優れた耐食性材料が望まれていた。こうした要
求に対して、すでに5%から10%Cr含有鋼(特開昭
63−143240号公報、特開昭63−143241
号公報参照)が提案されているが、近年の長寿命化の要
望に応えきれていないのが現状である。[Problems to be Solved by the Invention] However, with the tightening of exhaust gas regulations in recent years, the usage conditions of mufflers have become more diverse. Under such usage conditions, even a muffler made of the above-mentioned steel plate cannot provide sufficient corrosion resistance, and its service life is reached in a relatively short period of time. From the viewpoint of longer life, materials with better corrosion resistance have been desired. In response to these demands, steels containing 5% to 10% Cr (Japanese Unexamined Patent Application Publications No. 63-143240, No. 63-143241)
However, the current situation is that it has not been able to meet recent demands for longer life.
本発明は、こうした状況を踏まえてあらためて実際に使
用されているマフラーの実態を詳細に(腐食形態・環境
分析など)解析し、その結果に基づいて得られた腐食環
境条件下でステンレス鋼の主要成分であるCr、Mo、
Ti、Nbの成分の影響、さらにNi、Cu、W、
V、 Zr、(:a、Ceのそれぞれ単独、あるいは共
存添加時の耐食性(局部腐食の発生・停止特性;以下耐
食性という)におよぼす影響を検討し、各元素の効果を
明確にすることにより、実際のマフラーへの適用におい
ても優れた耐食性を示し、当該機器の長寿命化・安全性
・環境汚染防止などを長期にわたって確保することを可
能にし、かつ造管装置も普通鋼製造プロセスを利用し、
薄板を製造することによりランクフォード(ti!(F
l、 7以上)を得ることにより板材、管材の加工性の
優れた自動車・オートバイなどのエンジン排ガス用ステ
ンレス鋼を提供することを目的とする。In light of these circumstances, the present invention has analyzed in detail the actual state of mufflers actually used (corrosion morphology, environmental analysis, etc.), and based on the results, we have analyzed the main characteristics of stainless steel mufflers under corrosive environmental conditions. The components Cr, Mo,
The influence of Ti and Nb components, as well as Ni, Cu, W,
By examining the effects of V, Zr, (:a, and Ce) on corrosion resistance (local corrosion initiation/stopping characteristics; hereinafter referred to as corrosion resistance) when added alone or in combination, and by clarifying the effects of each element, It shows excellent corrosion resistance even when applied to actual mufflers, making it possible to ensure long-term lifespan, safety, and prevention of environmental pollution of the equipment, and the pipe making equipment also uses a common steel manufacturing process. ,
Lankford (ti!(F)
The object of the present invention is to provide a stainless steel for use in engine exhaust gas from automobiles, motorcycles, etc., which has excellent workability into plate materials and pipe materials by obtaining 1.
上述のような観点から、従来のマフラーに対比して一段
と優れた耐食性と加工性を示すマフラーを開発すべく研
究を行った結果、以下のような知見によって達成できる
ことを明らかにした。From the above-mentioned perspective, we conducted research to develop a muffler that exhibits better corrosion resistance and workability than conventional mufflers, and as a result, we discovered that this can be achieved through the following knowledge.
■マフラーの凝縮液中での腐食形態は、実際の環境での
腐食形態がCr含有鋼はど局部腐食的となり、実験室的
に評価していくためには、この点を考慮した評価手法を
考慮する必要がある。■The form of corrosion in muffler condensate in the actual environment is localized corrosion on Cr-containing steel, and in order to evaluate it in the laboratory, an evaluation method that takes this point into consideration is required. need to be considered.
■マフラー材として厳しい環境でも長期間使用できる材
料を開発するため、先ず実走行された各地区のマフラー
を調査した。その結果、腐食による穴あき発生は、材料
の母地の局部腐食によるものと結晶粒界が腐食して穴あ
きに至るものの2種類あり、5UH409,5US43
0LX。■In order to develop a muffler material that can be used for a long period of time even in harsh environments, we first investigated mufflers in each area where the vehicle was actually driven. As a result, there are two types of pitting caused by corrosion: one is due to local corrosion of the base material of the material, and the other is corrosion of grain boundaries leading to pitting. 5UH409, 5US43
0LX.
5US436Lは母地が腐食される局部腐食であり、5
UH409(7)溶接部や5US430LXと5US4
36LのTi/C十Nが10未満およびNb/C+Nが
5未満の材料については溶接部に粒界腐食が発生するこ
とを見出した。そして、粒界腐食の原因は溶接冷却時に
結晶粒界に析出したCr、、C,近傍のCr欠乏層であ
ることがわかった。5US436L is local corrosion where the base material is corroded, and 5
UH409 (7) welded parts and 5US430LX and 5US4
It has been found that intergranular corrosion occurs in welded parts for 36L materials in which Ti/C+N is less than 10 and Nb/C+N is less than 5. It was also found that the cause of intergranular corrosion was a Cr-deficient layer near Cr, which precipitated at grain boundaries during welding cooling.
本発明は、このような調査や各種合金の耐食性研究の結
果、母地のCr量は12.0%以上必要なこと、溶接部
に析出するCr23C,を防止するにはTi/C十Nが
10以上、およびNb/ C+ Nが5以上必要である
こと、また、本発明の特徴である造管時の加工性や造管
後の加工性を向上させる方法を探索した結果、Si含有
量を低くし、固溶Stによる硬化をできるだけ抑えるこ
とと普通鋼プロセスの大径ロールによる冷間圧延により
、従来のゼンジマープロセスでは得られない高ランクフ
ォード値(F)を有した薄板製造が可能であることを見
出した。また、TiおよびNb含有量は粒界腐食防止に
必要な量にとどめ、加工性や二次加工性を劣化させず、
また再結晶温度をできるだけ抑え、普通鋼ラインでも製
造できる量とすること等を考慮した。As a result of such investigations and corrosion resistance studies of various alloys, the present invention found that the amount of Cr in the base material needs to be 12.0% or more, and that Ti/C and N are required to prevent Cr23C from precipitating in the weld. 10 or more, and Nb/C+N is required to be 5 or more.Also, as a result of searching for a method to improve the workability during pipe making and the workability after pipe making, which is a feature of the present invention, we found that the Si content was By suppressing the hardening caused by solid solution St as much as possible and cold rolling using large diameter rolls in the ordinary steel process, it is possible to manufacture thin sheets with a high Lankford value (F) that cannot be obtained with the conventional Sendzimer process. I discovered something. In addition, the Ti and Nb contents are kept to the amount necessary to prevent intergranular corrosion, and do not deteriorate workability or secondary workability.
In addition, consideration was given to suppressing the recrystallization temperature as much as possible and making it possible to manufacture the product on an ordinary steel line.
本発明は、このような観点に立って基本的に次のCr;
12〜20.0%、 Mo;0.2〜3.0%の複合添
加を基本に、Nb;5X(C%+N%)〜0.5%、T
i;l0X(C%+N%)〜0.5%の1種または2種
を含有し、残部が実質的にFeと不可避的不純物からな
るステンレス鋼で、エンジン排ガス環境で優れた耐食性
と優れた加工性を示す。これにさらなる耐食性を付与す
るため、Ni;0.1〜1.0%。From this point of view, the present invention basically provides the following Cr;
Based on the combined addition of 12 to 20.0%, Mo; 0.2 to 3.0%, Nb; 5X (C% + N%) to 0.5%, T
i; l0X (C% + N%) ~ 0.5% stainless steel containing one or two types, with the remainder consisting essentially of Fe and unavoidable impurities, and has excellent corrosion resistance in an engine exhaust gas environment. Indicates processability. In order to provide further corrosion resistance to this, Ni; 0.1 to 1.0%.
Cu ; 0.03〜1.0%、 W ; 0.05〜
0.5%、■;0.05〜0.5%、 Zr; 0.0
5〜1.0%をそれぞれ1種または2種以上を含有せし
めたエンジン排ガス環境用ステンレス鋼である。Cu: 0.03~1.0%, W: 0.05~
0.5%, ■; 0.05-0.5%, Zr; 0.0
This is a stainless steel for use in an engine exhaust gas environment containing one or more types of stainless steel in an amount of 5 to 1.0%.
さらに、本発明はCa 、 Ceを局部腐食の発生点と
なり得るMnS系介在物の生成を抑制し、耐食性を改善
するためにそれぞれ0.001%以上0.03%以下で
1種または2種を含有せしめたエンジン排ガス環境用ス
テンレス鋼である。Furthermore, the present invention incorporates Ca and Ce in an amount of 0.001% or more and 0.03% or less, respectively, to suppress the formation of MnS-based inclusions that can cause local corrosion and improve corrosion resistance. This is a stainless steel for use in engine exhaust gas environments.
ステンレス鋼のマフラー環境での腐食挙動を解析し、そ
れに適した材料を開発していくためには、マフラー内の
環境を化学的に解析し、ステンレス鋼の腐食挙動に影響
する環境要因を明確にすべく、実環境をシミュレートし
た試験環境での耐食性評価を行う必要がある。In order to analyze the corrosion behavior of stainless steel in the muffler environment and develop suitable materials, it is necessary to chemically analyze the environment inside the muffler and clarify the environmental factors that affect the corrosion behavior of stainless steel. In order to achieve this, it is necessary to evaluate corrosion resistance in a test environment that simulates the actual environment.
そこで、本発明者らは、マフラー内部の各部位から採取
された内面付着物(腐食生成物)と凝縮液を化学的に解
析し、分析結果に基づいて模擬凝縮液を作製した。また
、マフラー内部の腐食挙動は、八!めっき鋼板の場合、
全面腐食的であるが、Cr含有量の高い鋼板の場合、局
部腐食的となることが明らかとなった。鋼中のCr含有
量が増加するに従って、腐食形態はより局部腐食的とな
ることから、この局部腐食性を評価することが重要であ
る。Therefore, the present inventors chemically analyzed the inner surface deposits (corrosion products) and condensate collected from various parts inside the muffler, and created a simulated condensate based on the analysis results. Also, the corrosion behavior inside the muffler is 8! In the case of plated steel plate,
Although it is generally corrosive, it has become clear that in the case of steel sheets with a high Cr content, it becomes locally corrosive. As the Cr content in steel increases, the form of corrosion becomes more localized, so it is important to evaluate this localized corrosion.
そこで、本発明者らは、分析結果に基づいて凝縮液環境
を硫酸イオン(5000pp僧) 、炭酸イオン(30
00ppm) 、塩化物イオン(1000pp−)、硝
酸イオン(100ppm)、ギ酸(100ppm)を所
定の量添加調整して凝縮液環境シミュレート液を作製し
た。Therefore, based on the analysis results, the present inventors changed the condensate environment to sulfate ions (5000 ppm) and carbonate ions (300 ppm).
A condensate environment simulation liquid was prepared by adding and adjusting predetermined amounts of chloride ions (1000 ppm), chloride ions (1000 ppm), nitrate ions (100 ppm), and formic acid (100 ppm).
この環境での後述する電気化学的な局部腐食評価を12
%から20.0%までのCr含有鋼とさらに、Mo含有
量を0.2%から3%まで変化させた鋼種、およびこれ
にTi、Nb、Ni、Cu、W、 V、 Zr、Ca
+Ceの含有量をそれぞれ変化させた鋼種により試験を
実施した。得られた局部腐食特性値(局部腐食発生特性
値:El)の各合金成分の依存性を多重回帰解析するこ
とにより(局部腐食発生特性値:EIは、合金成分依存
性の形で、El =A+B −CIで整理された)新し
く局部腐食発生抑制に対する各合金成分の依存性を示す
指標として、C1値=Cr+2.0Moの関係を得た。The electrochemical local corrosion evaluation described below in this environment was carried out in 12
% to 20.0% Cr-containing steel, and steel types with Mo content varied from 0.2% to 3%, as well as Ti, Nb, Ni, Cu, W, V, Zr, Ca.
Tests were conducted using steel types with different +Ce contents. By performing multiple regression analysis on the dependence of the obtained local corrosion characteristic value (local corrosion occurrence characteristic value: El) on each alloy component (local corrosion occurrence characteristic value: EI is in the form of alloy component dependence, El = As a new index showing the dependence of each alloy component on local corrosion inhibition (organized as A+B-CI), a relationship of C1 value=Cr+2.0Mo was obtained.
この関係から、表1に示した比較鋼(k22,23.2
4)よりも高い局部腐食発生電位をもつ合金系として、
C5値は12.4以上24.5以下を設定した。From this relationship, the comparative steels (k22, 23.2
4) As an alloy system with a higher local corrosion potential than
The C5 value was set at 12.4 or more and 24.5 or less.
ステンレス系マフラー材料に要求されるもう一つの特性
は、局部腐食の発生し難さと同時に、もし発生しても発
生した局部腐食の板厚方向への進展速度が遅いことが要
求される。これを評価するため、比較鋼に対応してCr
、Mo量をそれぞれ変化させた鋼、およびこれにさらに
Ti、Nb、Ni、Cu、 w。Another characteristic required of stainless steel muffler materials is that not only is local corrosion difficult to occur, but even if local corrosion does occur, the rate of progress of local corrosion in the plate thickness direction is slow. In order to evaluate this, Cr
, steel with varying amounts of Mo, and in addition to these, Ti, Nb, Ni, Cu, and w.
V、 Zr、Ca、Ceを添加した材料について、上記
、模擬凝縮液中で各試料を一定時間浸漬し、試料表面に
生じた局部腐食深さにより評価した。その結果を表1に
示した。Regarding the materials to which V, Zr, Ca, and Ce were added, each sample was immersed in the above-mentioned simulated condensate for a certain period of time, and evaluated based on the depth of local corrosion that occurred on the sample surface. The results are shown in Table 1.
以下に、マフラー材料としての成分限定理由を述べる。The reasons for limiting the components of the muffler material are described below.
CTCは、溶接部の結晶粒界にCrziCaとなって析
出し、粒界腐食の原因となるので低い方がよい。CTC precipitates as CrziCa at the grain boundaries of the weld zone and causes intergranular corrosion, so the lower the CTC is, the better.
また母材の強度や加工性、靭性の点からも低い方が好ま
しいが、製鋼に時間を要し、コストアップとなる。しか
し、本発明の特徴である耐食性および加工性を改善する
ために、特に0.010%以下と極めて低い値に限定し
た。In addition, from the viewpoint of the strength, workability, and toughness of the base metal, a lower value is preferable, but steelmaking takes time and costs increase. However, in order to improve the corrosion resistance and processability, which are the characteristics of the present invention, the content was limited to an extremely low value of 0.010% or less.
Si;Siは、脱酸作用があるが、0.01%未満では
、効果は期待出来ない。また、0.8%を越えると加工
性が著しく劣化する。表面処理性および加工性を考慮す
ると0.2%以下が望ましいことから、0.2%以下と
した。Si: Si has a deoxidizing effect, but if it is less than 0.01%, no effect can be expected. Moreover, when it exceeds 0.8%, workability deteriorates significantly. Considering surface treatment properties and processability, it is desirable that the content be 0.2% or less, so it was set to 0.2% or less.
Mn : Mnは、排ガス凝縮液環境での耐食性に特別
に影響を及ぼさないが、通常の成分含有量として、0.
05%以上1.5%以下を規定した。Mn: Mn does not particularly affect corrosion resistance in an exhaust gas condensate environment, but the normal component content is 0.
05% or more and 1.5% or less.
Cr ; Crは、本発明の基本成分である。凝縮液を
含む環境など高い耐食性を要求される環境では、Moさ
らに必要に応じてNi、Cuなどと共存の形で12%以
上の添加が必要である。多いほど耐食性、耐酸化性は向
上するが、20.0%を越えてもその耐食性は飽和する
。また、作り込みが難しく経済的にも高価となる。Cr; Cr is a basic component of the present invention. In an environment where high corrosion resistance is required, such as an environment containing condensate, it is necessary to add 12% or more of Mo and, if necessary, Ni, Cu, etc. together. Corrosion resistance and oxidation resistance improve as the amount increases, but even if it exceeds 20.0%, the corrosion resistance is saturated. Moreover, it is difficult to manufacture and is economically expensive.
Mo ; Moは、Crさらに必要に応じて、Ni、C
uなどと共存の形で添加され、凝縮液環境での局部腐食
発生、進展を抑制するために必須の元素である。Mo; Mo is Cr, and if necessary, Ni, C
It is added in coexistence with u, etc., and is an essential element for suppressing the occurrence and progression of local corrosion in a condensate environment.
0.2%以上3.0%以下の添加でCr、およびその他
の特許請求の範囲記載の各成分(以下その他元素という
)との共存で極めて効果的となる。Addition of 0.2% or more and 3.0% or less becomes extremely effective in coexistence with Cr and other components described in the claims (hereinafter referred to as other elements).
0.2%未満では、耐食性は、不十分となるが、3.0
%を越えても耐食性の改善にそれほど寄与しないし、且
つ、高価となる。If it is less than 0.2%, the corrosion resistance will be insufficient, but if it is less than 0.2%, corrosion resistance will be insufficient.
%, it does not contribute much to improving corrosion resistance and becomes expensive.
^IHAIは、脱酸剤として、0.1%以下の範囲で添
加される。0.1%を越えると耐食性、熱間加工性を劣
化させる。また、0.005%未満では効果がない。^IHAI is added as a deoxidizing agent in a range of 0.1% or less. If it exceeds 0.1%, corrosion resistance and hot workability will deteriorate. Further, if it is less than 0.005%, there is no effect.
NUNは、ステンレス鋼の耐食性を劣化させる元素で、
少ない程良いので、0.015%以下とした。NUN is an element that deteriorates the corrosion resistance of stainless steel.
Since the less the better, the content was set to 0.015% or less.
FDPは、凝縮液環境における耐食性に影響するので、
少ない程良い。0.025%を越えると耐食性が劣化す
る。FDP affects corrosion resistance in condensate environments, so
The less the better. If it exceeds 0.025%, corrosion resistance will deteriorate.
SO3も、凝縮液環境における耐食性に影響する元素で
低い程よいので、上限を0.010%とした。SO3 is also an element that affects corrosion resistance in a condensate environment, and the lower the better, the upper limit was set at 0.010%.
Tt;Tiは、CまたはNを固定し、ステンレス鋼の耐
食性の劣化を防ぐ。Caと共存してOを固定し、Si、
Mnの酸化物の生成を抑制し、熱間加工性と耐食性を向
上させる。0.5%を越えると熱間加工性を劣化させる
。実走行マフラー調査や粒界耐食性評価の結果Ti量は
、l0X(C%+N%)以上必要であることが明らかと
なったことから、これを下限とした。Tt: Ti fixes C or N and prevents deterioration of the corrosion resistance of stainless steel. Coexists with Ca to fix O, Si,
Suppresses the formation of Mn oxides and improves hot workability and corrosion resistance. If it exceeds 0.5%, hot workability deteriorates. As a result of actual running muffler investigation and grain boundary corrosion resistance evaluation, it became clear that the Ti amount was required to be 10X (C%+N%) or more, so this was set as the lower limit.
Nb 、 Nbは、CまたはNを固定し、ステンレス鋼
の耐食性の劣化を防ぐ。015%を越えると熱間加工性
を劣化させる。粒界腐食性評価結果から、Nb量は、5
×(C%+N%)以上必要であることが明らかとなった
ことから、これを下限とした。Nb, Nb fixes C or N and prevents deterioration of the corrosion resistance of stainless steel. If it exceeds 0.015%, hot workability deteriorates. From the grain boundary corrosion evaluation results, the amount of Nb is 5
Since it became clear that more than ×(C%+N%) was required, this was set as the lower limit.
なお、上記のTi、 Nbは、その1種または2種を添
加する。Note that one or both of the above Ti and Nb are added.
Ni;Niは、本発明ステンレス鋼の選択添加成分であ
る。凝縮液を含む環境など高い耐食性を要求される環境
では、Cr、 Mo、その他元素と共存して用いられる
。局部腐食進展抑制に効果的であるが、0.1%未満で
は効果がなく、1.0%を越えるとその効果は飽和し、
また、経済的にも高価となる。Ni: Ni is a selectively added component of the stainless steel of the present invention. In environments that require high corrosion resistance, such as environments containing condensate, it is used in coexistence with Cr, Mo, and other elements. It is effective in suppressing the progress of local corrosion, but it is ineffective if it is less than 0.1%, and the effect is saturated if it exceeds 1.0%.
It is also economically expensive.
Cu ; Cuは、Cr、 Moをベースとした成分系
、さらにNi、その他元素と共存の形で添加され、凝縮
液を含む環境での耐食性を得るための添加元素である。Cu; Cu is an additive element that is added in the form of a component system based on Cr and Mo, as well as Ni and other elements in coexistence, and provides corrosion resistance in an environment containing condensate.
0.03%以上で共存効果が著しく、また1、0%を越
えると耐食性は飽和し、且つ熱間加工性を劣化させる。At 0.03% or more, the coexistence effect is significant, and at more than 1.0%, corrosion resistance is saturated and hot workability is deteriorated.
W;Wの共存添加は、ステンレス鋼の耐食性、局部腐食
性を向上させるので、必要に応して0.5%以下で添加
する。0.5%を越えるとその効果は飽和する。0.0
5%未満では効果はない。W: Since the co-addition of W improves the corrosion resistance and local corrosion resistance of stainless steel, it is added in an amount of 0.5% or less as necessary. If it exceeds 0.5%, the effect is saturated. 0.0
There is no effect if it is less than 5%.
■:■の共存添加は、ステンレス鋼の耐食性、局部腐食
性を向上させるので、必要に応じて0.5%以下で添加
する。0.5%を越えるとその効果は飽和する。0.0
5%未満では効果はない。■: The co-addition of ■ improves the corrosion resistance and local corrosion resistance of stainless steel, so it may be added in an amount of 0.5% or less as necessary. If it exceeds 0.5%, the effect is saturated. 0.0
There is no effect if it is less than 5%.
Zr ; Zrの共存添加は、ステンレス鋼の耐食性、
局部腐食性を向上させるので、必要に応じて1.0%以
下で添加する。1.0%を越えるとその効果は飽和する
。0.05%未満では効果はない。Zr; The co-addition of Zr improves the corrosion resistance of stainless steel,
Since it improves local corrosion resistance, it is added in an amount of 1.0% or less as necessary. If it exceeds 1.0%, the effect is saturated. There is no effect if it is less than 0.05%.
Ca、 Ce ;Ca、 Ceは、低硫黄鋼中でAlと
共存してOを固定し、凝縮液中での局部腐食の発生起点
となり得るMnS系の介在物の生成を抑制し、耐食性を
改善する。Ca、 Ceは、それぞれ0.001〜0.
03%の範囲で1種または2種が必要に応じて添加され
る。Ca, Ce; Ca, Ce coexists with Al in low sulfur steel and fixes O, suppresses the formation of MnS-based inclusions that can be the starting point of local corrosion in condensate, and improves corrosion resistance. do. Ca and Ce are each 0.001 to 0.
One or two types may be added as necessary within a range of 0.3%.
〔実施例〕−1
本発明のエンジン排ガス用マフラー材料の特性を実施例
により説明する。[Example]-1 The characteristics of the muffler material for engine exhaust gas of the present invention will be explained using an example.
表1に、本発明鋼および比較鋼の化学成分組成を示す。Table 1 shows the chemical composition of the invention steel and comparative steel.
本発明鋼は通常の真空溶解炉を用い、表1に示される成
分組成の鋼を溶製した。インゴットに鋳造後、通常の加
熱条件で熱延し、適切な熱処理後試験に供した。The steel of the present invention was produced by melting steel having the composition shown in Table 1 using an ordinary vacuum melting furnace. After casting into an ingot, it was hot rolled under normal heating conditions and subjected to appropriate heat treatment tests.
表1の局部腐食発生電位は、電気化学的な局部腐食発生
評価試験(A)によって得られた値で、この値が大きい
ほど局部腐食が発生し難いことを示している。The local corrosion occurrence potential in Table 1 is a value obtained by an electrochemical local corrosion occurrence evaluation test (A), and the larger this value is, the more difficult it is for local corrosion to occur.
局部腐食評価試験(A)は、第1図に示した局部腐食評
価試験用試験片を用いた。第1図中、1はリード線、2
は試験面以外をシールした部分、3は試験面、4はポリ
カーボネート製ボルト・ナツトを示す。これにより試験
面上に人工的に隙間を生成し、局部腐食の発生を加速で
きるようにした。この試験片を用いて、模擬凝縮液環境
中で第2図に示すように自然電位(Ecorr)より、
電位をアノード方向に20 mV/+minで掃引した
とき、電流密度が100μA/cdに達した点の電位を
局部腐食発生電位と規定した。この電位が大きい値を示
すほど、局部腐食は発生し難い傾向を示す。For the local corrosion evaluation test (A), the test piece for local corrosion evaluation test shown in FIG. 1 was used. In Figure 1, 1 is a lead wire, 2
3 indicates a sealed portion other than the test surface, 3 indicates a test surface, and 4 indicates a polycarbonate bolt/nut. This created an artificial gap on the test surface, making it possible to accelerate the occurrence of localized corrosion. Using this test piece, in a simulated condensate environment, from the natural potential (Ecorr) as shown in Figure 2,
When the potential was swept in the anode direction at 20 mV/+min, the potential at the point where the current density reached 100 μA/cd was defined as the local corrosion occurrence potential. The larger this potential value is, the less likely local corrosion is to occur.
また、局部腐食深さ試験(B)は、凝縮液環境において
、輻(W) : 50 mm、長さ(f) : 60
+u+。In addition, the local corrosion depth test (B) was conducted in a condensate environment with a radius (W) of 50 mm and a length (f) of 60 mm.
+u+.
板(t)) : 1.2 ms+の形状の試験片を用い
、試験片表面を#320研磨後、脱脂して、試験を行っ
た。Plate (t): Using a test piece in the shape of 1.2 ms+, the test piece surface was polished with #320 polishing and degreased, and then the test was conducted.
試験環境は、硫酸イオン(5000ppm) 、炭酸イ
オン(3000pp+m) 、塩化物イオン(1000
ppm) 、硝酸イオン(100ppm) 、ギ酸(1
00popm)を所定の量添加調整して作製した凝縮液
を用いた。試験方法は、硝子製ビーカー(200cc)
を用い、この中に試験片を立てておき、試験片の半分ま
で浸漬されるように凝縮液100ccを入れた。その後
、ビーカーを沸騰条件で2時間加熱し、24時間静止を
30日間繰り返した。試験後試験片上に観察された局部
腐食の深さをすべて測定し、その内の最大深さで評価し
た。The test environment consisted of sulfate ions (5000ppm), carbonate ions (3000pp+m), and chloride ions (1000ppm).
ppm), nitrate ion (100ppm), formic acid (1
A condensate prepared by adding and adjusting a predetermined amount of 00 popm) was used. The test method is a glass beaker (200cc)
A test piece was placed in the stand, and 100 cc of condensate was poured into the test piece so that it was immersed up to half of the test piece. Thereafter, the beaker was heated under boiling conditions for 2 hours and left at rest for 24 hours, which was repeated for 30 days. After the test, all the depths of local corrosion observed on the test piece were measured, and the maximum depth was evaluated.
〔実施例〕−2
さらに、実製造プロセスによって製造された材料の緒特
性を評価するため、表2に示す化学成分からなるステン
レス鋼を普通鋼製造と同一の設備を用いて、転炉出鋼、
熱間圧延、酸洗、冷間圧延、焼鈍、酸洗、調質圧延を順
次行って、板厚0.61の製品とした。製品の特性を評
価するために、■腐食試験A法(JISZ2371の塩
水噴霧試験6hr−+70°C温風4 hr−+ 49
’C1C108%4hr→−20°C冷凍4hrの繰
り返しを28日間行い、腐食深さを求め、5年程度のマ
フラーとしての耐食性を有するために0.10mm以下
を目標とした。)、■腐食試験B法(0,5%NaC1
+ 0.2%H20□の溶液を用い、JISZ2371
に準拠して4日間行い、発錆ランクをA(良)〜F(不
良)とし、■と同様の理由からA−Cを目標とした。)
、■腐食試験C法(TIG溶接後、J I S 005
75のステンレス鋼の硫酸・硫酸wAl11食試験を1
6時間行った後、内面の半径0.3++uwで曲げを行
い、外面の溶接部、熱影響部の粒界腐食割れの有無を観
察し、■と同様の理由から、割れなしを目標とした。)
、■引張試験(0,2%耐力、伸びを求め、普通鋼製造
ラインでの造管性および板や管としての加工性から、0
.2%耐力は30 kgf/mm2以下、伸びは30%
以上を目標とした。)、■ランクフォード値(管や板材
の加工性の評価基準には、ランクフォード値(F)が用
いられている。普通鋼プロセスを用いることでF(直を
大幅に改善できることから、7値1.70以上を目標と
した。)、■二次加工試験(板厚0.6mmから0.4
2s+sまで冷間圧延で加工を行った後、曲げの綾線が
圧延方向と平行になるように密着的げを行い、割れの程
度により1(割れなし)〜6(激しい割れ)のランク付
を行い、板や管の加工性から、1を目標とした。)の試
験を行った。[Example]-2 Furthermore, in order to evaluate the mechanical properties of the material manufactured by the actual manufacturing process, stainless steel having the chemical composition shown in Table 2 was extracted from a converter using the same equipment used for manufacturing ordinary steel. ,
Hot rolling, pickling, cold rolling, annealing, pickling, and temper rolling were performed in sequence to obtain a product with a plate thickness of 0.61. In order to evaluate the characteristics of the product, ■ Corrosion test method A (JIS Z2371 salt water spray test 6 hr-+70°C warm air 4 hr-+ 49
'C1C108% 4hr → -20°C freezing for 4hr was repeated for 28 days to determine the corrosion depth, and the target was 0.10mm or less in order to have corrosion resistance as a muffler for about 5 years. ), ■ Corrosion test method B (0.5% NaC1
+ Using a 0.2% H20□ solution, JISZ2371
The rusting was conducted for 4 days in accordance with the above, and the rusting ranks were A (good) to F (poor), with A-C being the target for the same reason as (2). )
, ■Corrosion test C method (after TIG welding, JIS 005
75 stainless steel sulfuric acid/sulfuric acid wAl11 food test 1
After 6 hours, the inner surface was bent at a radius of 0.3++uw, and the presence or absence of intergranular corrosion cracking in the welded part and heat affected zone on the outer surface was observed, and for the same reason as (2), the goal was to have no cracking. )
, ■Tensile test (0.2% yield strength and elongation are determined, and from the viewpoint of pipe forming property on the ordinary steel production line and workability as plates and pipes, 0.2% proof stress and elongation are determined.
.. 2% yield strength is 30 kgf/mm2 or less, elongation is 30%
The above was the goal. ), ■Lankford value (The Lankford value (F) is used as an evaluation standard for the workability of pipes and plate materials. By using the ordinary steel process, the F (direction) can be significantly improved, so the 1.70 or higher), ■Secondary processing test (from plate thickness 0.6mm to 0.4
After processing by cold rolling to 2s+s, closely target the bending twill line to be parallel to the rolling direction, and rank it from 1 (no cracking) to 6 (severe cracking) depending on the degree of cracking. The target was 1 from the viewpoint of workability of plates and tubes. ) tests were conducted.
本発明鋼は、表1の局部腐食発生特性、および局部腐食
深さから比較鋼に比べ、いずれの鋼種も優れた耐食性を
示していた。また、表2の実機製造実施例の結果からも
、本発明鋼が耐食性および加工性に優れた特性を有する
ことを示していた。All of the steels of the present invention exhibited superior corrosion resistance compared to the comparative steels based on the local corrosion occurrence characteristics and local corrosion depth shown in Table 1. Furthermore, the results of the actual manufacturing examples shown in Table 2 also showed that the steel of the present invention had excellent characteristics in corrosion resistance and workability.
このことから本発明鋼は、エンジン排ガス環境のような
腐食性の厳しい凝縮液環境において、長期にわたって優
れた耐食性を示し、かつ高加工性を有した材料であり、
実用的に極めて有効であることを示している。Therefore, the steel of the present invention is a material that exhibits excellent corrosion resistance over a long period of time in a highly corrosive condensate environment such as an engine exhaust gas environment, and has high workability.
This shows that it is extremely effective in practical terms.
第1図(a)は、電気化学的な局部腐食発生評価試験に
用いた試験片形状を示す側面図、同(b)は、その正面
図である。
第2図は、電気化学的な局部腐食発生評価試験法を説明
するための線図である。
1・・・リード線、2・・・シール部、3・・・試験面
、4・・・ボルト・ナツト。FIG. 1(a) is a side view showing the shape of a test piece used in an electrochemical local corrosion occurrence evaluation test, and FIG. 1(b) is a front view thereof. FIG. 2 is a diagram for explaining an electrochemical local corrosion evaluation test method. 1... Lead wire, 2... Seal part, 3... Test surface, 4... Bolt/nut.
Claims (3)
またはNb:5×(C%+N%)以上0.5%以下をそ
れぞれ1種または2種を含有し、残部がFeと不可避的
不純物からなることを特徴とする耐食性の優れたエンジ
ン排ガス系材料用ステンレス鋼。(1) In weight%, C: 0.010% or less, Si: 0.2% or less, Mn: 0.05% or more and 1.5% or less, Cr: 12% or more and 20.0% or less, Mo: 0. 2% or more and 3.0% or less, Al: 0.005% or more and 0.1% or less, N: 0.015% or less, P: 0.025% or less, S: 0.010% or less, and Ti: 10×(C%+N%) or more and 0.5% or less,
Or an engine exhaust gas material with excellent corrosion resistance, containing one or two types of Nb: 5 x (C% + N%) or more and 0.5% or less, with the remainder consisting of Fe and inevitable impurities. For stainless steel.
0.03%以上1.0%以下、W:0.05%以上0.
5%以下、V:0.05%以上0.5%以下、Zr:0
.05%以上1.0%以下を1種または2種以上含有す
ることを特徴とする請求項1記載の耐食性の優れたエン
ジン排ガス系材料用ステンレス鋼。(2) Furthermore, Ni: 0.1% or more and 1.0% or less, Cu:
0.03% or more and 1.0% or less, W: 0.05% or more and 0.
5% or less, V: 0.05% or more and 0.5% or less, Zr: 0
.. 2. The stainless steel for engine exhaust gas material having excellent corrosion resistance according to claim 1, characterized in that it contains one or more types of stainless steel of 0.05% or more and 1.0% or less.
以上0.03%以下で1種または2種含有することを特
徴とする請求項1または2記載の耐食性の優れたエンジ
ン排ガス系材料用ステンレス鋼。(3) Furthermore, 0.001% each of Ca or Ce
The stainless steel for engine exhaust gas material having excellent corrosion resistance according to claim 1 or 2, characterized in that the stainless steel contains one or two types in an amount of 0.03% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2328339A JPH0747799B2 (en) | 1989-11-29 | 1990-11-28 | Stainless steel for engine exhaust gas materials with excellent corrosion resistance |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30947689 | 1989-11-29 | ||
JP1-309476 | 1989-11-29 | ||
JP2328339A JPH0747799B2 (en) | 1989-11-29 | 1990-11-28 | Stainless steel for engine exhaust gas materials with excellent corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03219055A true JPH03219055A (en) | 1991-09-26 |
JPH0747799B2 JPH0747799B2 (en) | 1995-05-24 |
Family
ID=26565970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2328339A Expired - Lifetime JPH0747799B2 (en) | 1989-11-29 | 1990-11-28 | Stainless steel for engine exhaust gas materials with excellent corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0747799B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06158232A (en) * | 1992-11-24 | 1994-06-07 | Nippon Steel Corp | Steel sheet excellent in resistance to corrosion by condensate |
JP2002212683A (en) * | 2001-01-17 | 2002-07-31 | Kawasaki Steel Corp | Ferritic stainless steel sheet having excellent high temperature oxidation resistance |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4959022A (en) * | 1972-10-12 | 1974-06-07 | ||
JPS508010A (en) * | 1973-05-28 | 1975-01-28 | ||
JPS50122414A (en) * | 1974-03-07 | 1975-09-26 | ||
JPS50144622A (en) * | 1974-05-11 | 1975-11-20 | ||
JPS52127424A (en) * | 1976-04-19 | 1977-10-26 | Nippon Steel Corp | Ferritic stainless steel with excellent corrosion resistance |
JPS5471026A (en) * | 1977-11-18 | 1979-06-07 | Kawasaki Steel Co | Ferrite stainless steel with excellent weldability |
JPS5577667A (en) * | 1979-11-26 | 1980-06-11 | Yazaki Corp | Selective absorption section of solar heat collector and method of producting the same |
JPS5634626A (en) * | 1979-08-31 | 1981-04-06 | Kureha Chem Ind Co Ltd | Anti-inflammatory |
JPS5635755A (en) * | 1979-08-30 | 1981-04-08 | Nisshin Steel Co Ltd | Ti-containing stainless steel with favorable surface property |
JPS5911659A (en) * | 1982-07-12 | 1984-01-21 | Tamagawa Kikai Kinzoku Kk | Lead material for semiconductor |
JPS6046352A (en) * | 1983-08-25 | 1985-03-13 | Kawasaki Steel Corp | Ferritic stainless steel excellent in corrosion resistance |
JPS62112757A (en) * | 1985-11-05 | 1987-05-23 | ユジンヌ・グ−ニヨン・エス・ア− | Strip or sheet of ferrite stainless steel |
JPS648254A (en) * | 1987-06-27 | 1989-01-12 | Nisshin Steel Co Ltd | Manifold steel for automobile engine |
-
1990
- 1990-11-28 JP JP2328339A patent/JPH0747799B2/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4959022A (en) * | 1972-10-12 | 1974-06-07 | ||
JPS508010A (en) * | 1973-05-28 | 1975-01-28 | ||
JPS50122414A (en) * | 1974-03-07 | 1975-09-26 | ||
JPS50144622A (en) * | 1974-05-11 | 1975-11-20 | ||
JPS52127424A (en) * | 1976-04-19 | 1977-10-26 | Nippon Steel Corp | Ferritic stainless steel with excellent corrosion resistance |
JPS5471026A (en) * | 1977-11-18 | 1979-06-07 | Kawasaki Steel Co | Ferrite stainless steel with excellent weldability |
JPS5635755A (en) * | 1979-08-30 | 1981-04-08 | Nisshin Steel Co Ltd | Ti-containing stainless steel with favorable surface property |
JPS5634626A (en) * | 1979-08-31 | 1981-04-06 | Kureha Chem Ind Co Ltd | Anti-inflammatory |
JPS5577667A (en) * | 1979-11-26 | 1980-06-11 | Yazaki Corp | Selective absorption section of solar heat collector and method of producting the same |
JPS5911659A (en) * | 1982-07-12 | 1984-01-21 | Tamagawa Kikai Kinzoku Kk | Lead material for semiconductor |
JPS6046352A (en) * | 1983-08-25 | 1985-03-13 | Kawasaki Steel Corp | Ferritic stainless steel excellent in corrosion resistance |
JPS62112757A (en) * | 1985-11-05 | 1987-05-23 | ユジンヌ・グ−ニヨン・エス・ア− | Strip or sheet of ferrite stainless steel |
JPS648254A (en) * | 1987-06-27 | 1989-01-12 | Nisshin Steel Co Ltd | Manifold steel for automobile engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06158232A (en) * | 1992-11-24 | 1994-06-07 | Nippon Steel Corp | Steel sheet excellent in resistance to corrosion by condensate |
JP2002212683A (en) * | 2001-01-17 | 2002-07-31 | Kawasaki Steel Corp | Ferritic stainless steel sheet having excellent high temperature oxidation resistance |
Also Published As
Publication number | Publication date |
---|---|
JPH0747799B2 (en) | 1995-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10138796B2 (en) | Ferritic stainless steel for automotive exhaust system, which have excellent corrosion resistance against condensate, moldability, and high-temperature oxidation resistance, and method for manufacturing same | |
KR100526919B1 (en) | Corrosion-resistant fuel tank and fuel-filler tube for motor vehicle | |
US5110544A (en) | Stainless steel exhibiting excellent anticorrosion property for use in engine exhaust systems | |
JP7238161B2 (en) | Ferritic stainless steel plate | |
WO2007129703A1 (en) | Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in crevice corrosion resistance and formability, and ferritic stainless steel excellent in crevice corrosion resistance | |
BRPI0922554B1 (en) | FERRITIC STAINLESS STEEL AND THEIR PRODUCTION METHODS | |
WO2019116520A1 (en) | Steel material | |
JP5047180B2 (en) | Steel plate for automobile muffler with excellent corrosion resistance and method for producing the same | |
KR101485641B1 (en) | Ferritic stainless steel for automotive exhaust system with excellent corrosion resistance for water condensation and formability and the method of manufacturing the same | |
JPH0588306B1 (en) | ||
JP3251672B2 (en) | Ferritic stainless steel for exhaust gas flow path member and manufacturing method | |
JP3631710B2 (en) | Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same | |
US10640839B2 (en) | Low-alloy and corrosion-resistant steel for vehicle, having improved corrosion resistance under corrosive environment, and preparation method thereof | |
JPH03219055A (en) | Stainless steel for engine exhaust gas system material excellent in corrosion resistance | |
KR102561381B1 (en) | High-strength alloyed electro-galvanized steel sheet and manufacturing method thereof | |
JP3485591B2 (en) | Ferritic stainless steel for exhaust gas flow path components and manufacturing method | |
JPH02156048A (en) | Chromium steel excellent in corrosion resistance | |
KR20130074220A (en) | Aluminum plated stainless steel having excellent corrosion resistance and manufacturing method using the same | |
JPH0250979B2 (en) | ||
JPH05311295A (en) | Copper base alloy for heat exchanger and its manufacture | |
KR910006031B1 (en) | Highly corrosion resistant aluminized steel sheet for the manufacture of parts of exhaust gas system | |
JP2008095138A (en) | Austenitic stainless steel | |
JP2009249731A (en) | Steel for high strength bolt excellent in weatherability and delayed fracture resistance characteristic | |
JPS645101B2 (en) | ||
CN114585754A (en) | Low-CR ferritic stainless steel with improved pipe expansion workability and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080524 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090524 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090524 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100524 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110524 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110524 Year of fee payment: 16 |