JPH03218771A - Blood treating device and its production - Google Patents

Blood treating device and its production

Info

Publication number
JPH03218771A
JPH03218771A JP31715590A JP31715590A JPH03218771A JP H03218771 A JPH03218771 A JP H03218771A JP 31715590 A JP31715590 A JP 31715590A JP 31715590 A JP31715590 A JP 31715590A JP H03218771 A JPH03218771 A JP H03218771A
Authority
JP
Japan
Prior art keywords
blood
housing
blood processing
partition wall
hydrophilic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31715590A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hagiwara
和彦 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP31715590A priority Critical patent/JPH03218771A/en
Publication of JPH03218771A publication Critical patent/JPH03218771A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the adaptability to blood and the suppression of the generation of a thrombosis by subjecting the blood-contact surfaces of partition walls to a corona discharge treatment, then coating the surfaces with a hydrophilic resin. CONSTITUTION:The blood-contact surfaces of the partition walls 10, 11 of a blood treating device, such as artificial lung, artificial dialyzer or plasma separator, for example, the hollow yarn membrane type artificial lung 1 having a housing 6, a hollow yarn membrane 2 for gas exchange which is the member for blood treatment inserted into the housing 6, the partition walls 10, 11 which liquidtightly fix both ends of the hollow yarn membrane bundle to both ends of the housing 6, a gas inflow port 13 and gas outflow port 14 which are respectively provided near both ends of the housing 6 and communicate with the space (oxygen chamber 12) formed of the outside surface of the hollow yarn membrane 2, the inside surface of the housing 6, and the partition walls, and a blood inflow port 29 and blood outflow port 28 which are respectively mounted to both ends of the housing 6, are subjected to the corona discharge treatment at the blood contact surfaces of the partition walls 10, 11 and are coated with the hydrophilic resin 40.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、血液処理器およびその製造方法に関するもの
である。詳しくは、血液処理用部材に血液を流通させて
、酸素の付加およひ二酸化炭素の除去などのガス交換を
行う人工肺、血液透析を行う人工透析器、熱交換を行う
熱交換器、血液分離を行う血漿分離器などの血液処理器
およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a blood processing device and a method for manufacturing the same. In detail, there are artificial lungs that circulate blood through blood processing components and perform gas exchange such as adding oxygen and removing carbon dioxide, artificial dialyzers that perform hemodialysis, heat exchangers that exchange heat, and blood The present invention relates to a blood processing device such as a plasma separator that performs separation, and a manufacturing method thereof.

[従来の技術] 従来より、血液処理器として、例えば、中空糸膜型人工
透析器が使用されており、その一般的構造は、透析液の
流入口および流出口を有する筒状ハウジング内に多数の
透析用中空糸膜からなる中空糸膜束が挿入されており、
この中空糸膜束の両端部は、筒状ハウジングの両端部に
ボノティング剤により形成された隔壁により液密に固定
されており、この隔壁の外側に血液流入口および血液流
出口を形成するキャノブ状のへ,グーか取り付けられて
いる。そして、透析用中空糸膜は、銅アンモニアセルロ
ース、酢酸セルロースなどの再生セルロース、ポリアク
リ口ニトリルなどの中空糸膜が使用され、ポッテイング
剤としては、ポリウレタンなどが使用されている。
[Prior Art] Conventionally, for example, a hollow fiber membrane type artificial dialyzer has been used as a blood processing device.The general structure thereof is that a large number of dialyzers are placed in a cylindrical housing having an inlet and an outlet for dialysate. A hollow fiber membrane bundle consisting of hollow fiber membranes for dialysis is inserted,
Both ends of this hollow fiber membrane bundle are fluid-tightly fixed to both ends of the cylindrical housing by partition walls formed with a bonoting agent, and a canopy forming a blood inlet and a blood outlet outside the partition wall. Goo is attached to the state of the body. As hollow fiber membranes for dialysis, hollow fiber membranes such as cuprammonium cellulose, regenerated cellulose such as cellulose acetate, and polyacrylic nitrile are used, and polyurethane or the like is used as the potting agent.

そして、特開昭58−175567号公報には、隔壁を
形成するポリウレタンの血液接触面における血栓の発生
などを防止するために、隔壁の血液接触面に熱可塑性高
分子被覆層を設け、さらに、この熱可塑性樹脂に、ジグ
リシジルメタアクリレートを成分とするグラフト共重合
体を介して、ヘパリンを固定した中空糸膜型血液処理器
が開示されている。
In JP-A-58-175567, a thermoplastic polymer coating layer is provided on the blood-contacting surface of the partition wall in order to prevent the formation of blood clots on the blood-contacting surface of the polyurethane forming the partition wall, and further, A hollow fiber membrane type blood treatment device has been disclosed in which heparin is immobilized on this thermoplastic resin via a graft copolymer containing diglycidyl methacrylate as a component.

[発明が解決しようとする問題点] 上記の特開昭58−175567号公報に開示されてい
る血液処理器において用いている熱可塑性樹脂としては
、シリコーン、テフロン、セグメント化ポリエーテルウ
レタンなどの疎水性樹i、*たはエチルセルロース、セ
ルロースジアセテート、エチレンー酢酸ビニル共重合体
などの親水性樹脂などが使用可能であると開示されいる
[Problems to be Solved by the Invention] The thermoplastic resins used in the blood treatment device disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 175567/1982 include hydrophobic resins such as silicone, Teflon, and segmented polyether urethane. It is disclosed that hydrophilic resins such as ethyl cellulose, cellulose diacetate, and ethylene-vinyl acetate copolymers can be used.

しかし、熱可塑性樹脂として、疎水性樹脂を使用すると
、この疎水性樹脂が溶解可能な有機溶媒を使用し、有機
溶媒を含む疎水性樹脂溶液を隔壁の血液接触面に塗布な
どの方法により接触させなければならない。しかし、こ
の疎水性樹脂溶液を隔壁の血液接触面のみに接触させる
ことは困難であり、血液処理用の中空糸膜にも接触し、
接触した部分の中空糸膜が劣化するという問題点がある
However, when a hydrophobic resin is used as the thermoplastic resin, an organic solvent in which the hydrophobic resin can be dissolved is used, and a hydrophobic resin solution containing the organic solvent is brought into contact with the blood contacting surface of the septum by a method such as coating. There must be. However, it is difficult to bring this hydrophobic resin solution into contact with only the blood-contacting surface of the septum, and it also comes into contact with the hollow fiber membrane for blood treatment.
There is a problem that the hollow fiber membrane in the contact portion deteriorates.

また、親水性樹脂を用いた場合、溶媒としては水性液体
(水、アルコール、またはそれらの混合物)を用いるこ
とができるので、上記のような有機溶媒による中空糸膜
の劣化は、生じないが、逆に使用する樹脂が親水性のた
め、ポリウレタンにより形成され表面が撥水性となって
いる隔壁の血液接触面に均一に親水性樹脂を被覆するこ
とができない。このため、部分的な親水性樹脂の付着し
か行えず、かえって隔壁の血液接触面に微小な凹凸を形
成し、血液適合性の改善、血栓の発生抑制が行えないと
いう問題点を有している。
In addition, when a hydrophilic resin is used, an aqueous liquid (water, alcohol, or a mixture thereof) can be used as the solvent, so the hollow fiber membrane will not be degraded by the organic solvent as described above. On the other hand, since the resin used is hydrophilic, it is not possible to uniformly coat the blood-contacting surface of the partition wall, which is made of polyurethane and has a water-repellent surface, with the hydrophilic resin. For this reason, the hydrophilic resin can only be partially attached, and instead, minute irregularities are formed on the blood contact surface of the septum, resulting in the problem that blood compatibility cannot be improved and thrombus formation cannot be suppressed. .

そこで、本発明は、上記の問題点を解決し、血液処理用
部材である中空糸膜の劣化のおそれのある有機溶媒の使
用が必要な疎水性樹脂を用いることなく、そして、親水
性樹脂か、血液処理用部材をハウジングに固定する隔壁
の血液接触面に均一に被覆され、血液適合性および血栓
発生か改善された血液処理器およびその製造方法を提供
するものである。
Therefore, the present invention solves the above problems and eliminates the use of hydrophobic resins that require the use of organic solvents that may deteriorate the hollow fiber membrane, which is a blood processing member, and uses hydrophilic resins. An object of the present invention is to provide a blood processing device in which the blood contacting surface of a partition wall for fixing a blood processing member to a housing is uniformly coated, thereby improving blood compatibility and thrombus occurrence, and a method for manufacturing the same.

L問題点を解決するための手段] 上記本発明の目的を達成するものは、ハウジングと、該
ハウジング内に挿入された血液処理用部材と、該血液処
理用部材の両端部を前記ハウジングの両端部に液密に固
定する隔壁と、前記ハウジングの両端部付近にそれぞれ
設けられ、前記血液処理用部材の一方の面と前記ハウジ
ングの内面と隔壁とにより形成される空間に連通ずる第
1の流体流入口および流出口と、前記ハウジングの両端
部にそれぞれ取り付けられた血液流入口および血液流出
口とを有する血液処理器であって、前記隔壁の血液接触
面は、コロナ放電処理され、かつ親水性樹脂が被覆され
ている血液処理器である。
Means for Solving Problem L] The object of the present invention described above is achieved by a housing, a blood processing member inserted into the housing, and both ends of the blood processing member being connected to both ends of the housing. a first fluid provided near both ends of the housing and communicating with a space formed by one surface of the blood processing member, the inner surface of the housing, and the partition; A blood processing device having an inlet and an outlet, and a blood inlet and a blood outlet respectively attached to both ends of the housing, wherein the blood contacting surface of the partition wall is corona discharge treated and hydrophilic. This is a blood processing device coated with resin.

そして、前記親水性樹脂の表面には、ヘパリンが固定さ
れていることが好ましい。さらに、前記親水性樹脂は、
前記隔壁と接触している部分の前記血液処理用部材の血
液接触面にも被覆されていることが好ましい。また、前
記血液処理用部材は、例えば、血液処理用多孔質膜また
は血液透析用膜である。また、前記血液処理用多孔質膜
または血液透析用膜は、例えば、中空糸膜または平膜で
ある。さらに、前記親水性樹脂は、水酸基、アミノ基、
カルボキシル基、エポキ゛シ基、インシアネート基、エ
ポキシ基、チオシア不一ト基、酸クロリド基、アルデヒ
ド基および炭素一炭素二重結合のうちのいずれかを有す
るか、もしくは容易にこれら基に変換可能な基を有して
いることが好ましい。
Preferably, heparin is immobilized on the surface of the hydrophilic resin. Furthermore, the hydrophilic resin is
It is preferable that the blood contact surface of the blood processing member that is in contact with the partition wall is also coated. Further, the blood processing member is, for example, a porous blood processing membrane or a hemodialysis membrane. Moreover, the porous membrane for blood treatment or the membrane for hemodialysis is, for example, a hollow fiber membrane or a flat membrane. Furthermore, the hydrophilic resin has a hydroxyl group, an amino group,
Contains or can be easily converted into a carboxyl group, an epoxy group, an incyanate group, an epoxy group, a thiocyanate group, an acid chloride group, an aldehyde group, and a carbon-carbon double bond It is preferable that it has a group.

また、上記目的を達成するものは、ハウジングと、該ハ
ウジング内に挿入された血液処理用部材と、該血液処理
用部材の両端部を前記ノ\ウジングの両端部に液密に固
定する隔壁と、前記ハウンングの両端部付近にそれぞれ
設けられ、前記血液処理用部材の一方の面と前記/%ウ
ジングの内面と隔壁とにより形成される空間に連通ずる
第1の流体流入口および流出口と、前記ノ\ウジングの
両端部にそれぞれ取り付けられた血液流入口および血液
流出口とを有する血液処理器の製造方法において、該血
液処理器の前記隔壁の血液接触面を、コロナ放電処理し
、続いて該コロナ放電処理された血液接触面を水性溶媒
に溶解された親水性樹脂溶液と接触させる血液処理器の
製造方法である。
Further, what achieves the above object includes a housing, a blood processing member inserted into the housing, and a partition wall that liquid-tightly fixes both ends of the blood processing member to both ends of the nozzling. , a first fluid inlet and an outlet that are respectively provided near both ends of the housing and communicate with a space formed by one surface of the blood processing member, the inner surface of the housing, and a partition; In the method for manufacturing a blood processing device having a blood inlet and a blood outlet respectively attached to both ends of the nozzing, the blood contacting surface of the partition wall of the blood processing device is subjected to a corona discharge treatment, and then This is a method for manufacturing a blood treatment device, in which the corona discharge treated blood contact surface is brought into contact with a hydrophilic resin solution dissolved in an aqueous solvent.

そして、前記コロナ放電処理および親水性樹脂溶液の接
触は、前記隔壁と接触している部分の前記血液処理用部
材の血液接触面にも行うことか好ましい。さらに、前記
親水性溶液の接触を行った後、ヘパリン溶液と接触させ
、ヘパリン固定を行うことが好ましい。
Preferably, the corona discharge treatment and the contact with the hydrophilic resin solution are also carried out on the blood contacting surface of the blood processing member that is in contact with the partition wall. Furthermore, after contacting with the hydrophilic solution, it is preferable to contact with a heparin solution to fix heparin.

そこで、本発明の血液処理器を中空糸膜型人工肺に応用
した実施例を用いて、図面を参照して説明する。
Therefore, an embodiment in which the blood processing device of the present invention is applied to a hollow fiber membrane oxygenator will be described with reference to the drawings.

本発明の血液処理器を応用した中空糸膜型人工肺1は、
ハウジング6と、ハウジング6内に挿入された血液処理
用部材であるガス交換用中空糸膜2と、中空糸膜束の両
端部をハウジング6の両端部に液密に固定する隔壁10
. 11と、ハウジング6の両端部付近にそれぞれ設け
られ、血液処理用部材である中空糸膜の外面とハウジン
グ6の内面と隔壁とにより形成される空間(酸素室12
)に連通ずる第1の流体流入口であるガス流入口l3お
よび第1の流体流出口であるガス流出口14と、ハウジ
ング6の両端部にそれぞれ取り付けられた血液流入口2
9および血液流出口28とを有しており、さらに、隔壁
10.11の血液接触面は、コロナ放電処理され、かつ
親水性樹脂が被覆されている。
A hollow fiber membrane oxygenator 1 to which the blood processing device of the present invention is applied is as follows:
A housing 6, a hollow fiber membrane 2 for gas exchange which is a blood processing member inserted into the housing 6, and a partition wall 10 that fixes both ends of the hollow fiber membrane bundle to both ends of the housing 6 in a fluid-tight manner.
.. 11 and a space (oxygen chamber 12
) and a blood inlet 2 attached to both ends of the housing 6, respectively.
9 and a blood outlet 28, and furthermore, the blood contacting surface of the partition 10.11 is treated with corona discharge and coated with a hydrophilic resin.

そこで、第1図ないし第3図を用いて具体的に説明する
Therefore, a specific explanation will be given using FIGS. 1 to 3.

この中空糸膜型人工肺1は、筒状体のハウジング6と、
このハウジング6内全体に広がってガス交換用中空糸膜
2がio, ooo〜60, 000本収納されている
This hollow fiber membrane oxygenator 1 includes a cylindrical housing 6,
60,000 hollow fiber membranes 2 for gas exchange are housed throughout the housing 6.

このガス交換用中空糸膜2は、多孔質膜であり、貫通す
る多数の微細孔3を有している。ガス交換用中空糸膜と
しては、内径100〜1000μ肩、好まし《は100
〜300μl3肉厚5〜80μ肩、好ましくはlO〜6
0μ肩、空孔率20〜80%、好ましくは30〜60%
、また微細孔の孔径は0.01〜5μ次、好ましくは0
.01〜1μ肩程度のものが好適に使用される。また、
中空糸膜に限らず平膜状のものであってもよい。
This hollow fiber membrane 2 for gas exchange is a porous membrane and has a large number of micropores 3 passing through it. The hollow fiber membrane for gas exchange has an inner diameter of 100 to 1000 μm, preferably 100 μm.
~300μl3 wall thickness 5-80μ shoulder, preferably lO~6
0μ shoulder, porosity 20-80%, preferably 30-60%
, and the pore diameter of the micropores is 0.01 to 5μ, preferably 0.
.. A material having a diameter of about 0.01 to 1 μm is preferably used. Also,
The membrane is not limited to a hollow fiber membrane, but may be a flat membrane.

ガス交換用中空糸膜2の材質としては、ボリブロピレン
、ポリエチレン、ポリテトラフルオ口エチレン、ポリス
ルホン、ポリアクリロニトリル、セルロースアセテート
等の疎水性高分子が使用でき、好ましくは、疎水性高分
子であり、特に好ましくは、ポリオレフィン系樹脂であ
り、より好まし《は、ポリプロピレンであり、延伸法ま
たは固液層分離法などにより微細孔を形成させたポリブ
ロビレンが望ましい。
As the material of the hollow fiber membrane 2 for gas exchange, hydrophobic polymers such as polypropylene, polyethylene, polytetrafluoroethylene, polysulfone, polyacrylonitrile, and cellulose acetate can be used. Hydrophobic polymers are preferable, and particularly Preferably, it is a polyolefin resin, more preferably polypropylene, and preferably polypropylene in which micropores are formed by a stretching method or a solid-liquid phase separation method.

この実施例の中空糸膜型人工肺の構造について具体的に
述べると、中空糸膜の両端部は、それぞれの開口が閉塞
されない状態で隔壁10.11によりハウジング6に液
密に固着されている。
To specifically describe the structure of the hollow fiber membrane oxygenator of this embodiment, both ends of the hollow fiber membrane are fluid-tightly fixed to the housing 6 by partition walls 10 and 11 with their respective openings not being closed. .

そして、この隔壁10.11により、ハウジング6内部
は、中空糸膜外壁とハウジング6の内壁と隔壁により形
成される第1の物質移動室である酸素室12と、中空糸
膜内部に形成される第2の物質移動室である血液流通用
空間とに区画される。
Due to the partition wall 10.11, the inside of the housing 6 has an oxygen chamber 12, which is a first mass transfer chamber formed by the outer wall of the hollow fiber membrane, the inner wall of the housing 6, and the partition wall, and an oxygen chamber 12 formed inside the hollow fiber membrane. It is divided into a blood circulation space which is a second mass transfer chamber.

そして、ハウジング6には、その一方の端部付近には酸
素を含むガスの流入ポート13が、多端付近には、その
流出ポート14が設けられている。
The housing 6 is provided with an inflow port 13 for a gas containing oxygen near one end thereof, and an outflow port 14 near the other end thereof.

さらに、隔壁11の外側には、血液流入口29と環状凸
部25を有する流路形成部材19が不シリング23によ
り固定されており、また隔壁10の外側には、血液流出
口28と環状凸部24を有する流路形成部材18がネジ
リング22により固定されている。
Furthermore, a flow path forming member 19 having a blood inflow port 29 and an annular convex portion 25 is fixed to the outside of the partition wall 11 with a sealing ring 23, and a blood flow path forming member 19 having a blood outflow port 28 and an annular convex portion is fixed to the outside of the partition wall 10. A flow path forming member 18 having a portion 24 is fixed by a screw ring 22 .

そして、流路形成部材I8,19の凸部24. 25は
、隔壁10. 11に当接しており、この凸部24. 
25の外側周縁には、ネシリング22. 23のそれぞ
れに設けられた少なくとも2つの孔30, 31, 3
2, 33,の一方よりシール剤が充填され、流路形成
部材18. 19を隔壁10.11に液密に固着してい
る。
Then, the convex portion 24 of the flow path forming member I8, 19. 25 is the partition wall 10. 11, and this convex portion 24.
At the outer periphery of the ring 22. At least two holes 30, 31, 3 provided in each of 23
The sealing agent is filled from one of the flow path forming members 18. 19 is fixed in a liquid-tight manner to the partition wall 10.11.

上記説明において、ネジリングを用いたものにて説明し
たが、これに限らず流路形成部材を直接ハウジングに高
周波、超音波などを用いて融着させてもよく、また接着
剤などを用いて接着してもよい。さらに、上記シール剤
の代わりに、シリコーンゴムなどで形成したOリングを
用いて、流路形成部材を隔壁に液密状態にシールしても
よい。そして、隔壁10.11は、高分子ポノティング
剤、例えば、ポリウレタン、シリコーン、エポキシ樹脂
などにより形成されている。
In the above explanation, the threaded ring is used, but the flow path forming member may be directly fused to the housing using high frequency waves, ultrasonic waves, etc., or may be bonded using an adhesive or the like. You may. Further, instead of the above sealant, an O-ring made of silicone rubber or the like may be used to liquid-tightly seal the flow path forming member to the partition wall. The partition wall 10.11 is formed of a polymeric ponoting agent, such as polyurethane, silicone, or epoxy resin.

また、膜型人工肺の形態としては、上記の中空糸膜に限
らす平膜状のガス交換膜を積層したもの、1枚の平膜状
のガス交換用中空糸膜をコイル状に巻いたもの、ジグザ
グ状に折り畳んだもの等の平膜型人工肺であってよい。
In addition, the forms of membrane oxygenators are limited to the above-mentioned hollow fiber membranes, one in which flat membrane-shaped gas exchange membranes are laminated, and one in which one flat membrane-shaped hollow fiber membrane for gas exchange is wound into a coil shape. It may be a flat-membrane oxygenator, such as a double-layered oxygenator or a zigzag-folded oxygenator.

そして、第1図の中空糸膜型人工肺の隔壁部分は、コロ
ナ放電処理されており、コロナ放電処理することにより
、隔壁10.11の表面(後述する中空糸膜2の細孔付
近に露出する部分を含む)に、水酸基、カルボニル基、
カルボキシル基などが形成される。そして、隔壁表面に
上記のような親水性基が導入されることにより、時的で
はあるが、隔壁表面が親水性状態となる。
The partition wall portion of the hollow fiber membrane oxygenator shown in FIG. 1 has been subjected to corona discharge treatment. ), hydroxyl group, carbonyl group,
Carboxyl groups etc. are formed. Then, by introducing the above-mentioned hydrophilic groups onto the surface of the partition wall, the surface of the partition wall becomes hydrophilic, albeit temporarily.

そして、このコロナ放電処理された隔壁10の表面には
、第1図の中空糸膜型人工肺の隔壁部分の拡大断面図で
ある第2図に示すように、血液接触面である隔壁lOの
端面には、親水性樹脂40が被覆されている。より具体
的に示すと、隔壁部分は第3図に示すように、隔壁10
と接触している部分の中空糸膜2の細孔内には隔壁を形
成する樹脂(例えば、ポリウレタン)が入り混んでおり
、中空糸膜2の内表面あるいはその付近まで露出してい
る。よって、この隔壁10と接触する部分における内面
では、隔壁10を形成する樹脂が血液と接触する。本発
明では、隔壁lOの端面およびこの中空糸膜2と接触し
、中空糸膜2の内面付近に露出している隔壁部分にも親
水性樹脂40を被覆することが好ましく、このようにす
ることにより、隔壁部分全体における血液適合性か改善
される。
As shown in FIG. 2, which is an enlarged sectional view of the partition wall portion of the hollow fiber membrane oxygenator in FIG. The end face is coated with a hydrophilic resin 40. More specifically, as shown in FIG.
The resin (for example, polyurethane) forming the partition wall is mixed in the pores of the hollow fiber membrane 2 in the portion that is in contact with the inner surface of the hollow fiber membrane 2 or the vicinity thereof is exposed. Therefore, on the inner surface of the portion that contacts the partition wall 10, the resin forming the partition wall 10 comes into contact with blood. In the present invention, it is preferable that the hydrophilic resin 40 is also coated on the end face of the partition wall 1O and the partition wall portion that contacts the hollow fiber membrane 2 and is exposed near the inner surface of the hollow fiber membrane 2. This improves blood compatibility throughout the septum.

さらに、第2図および第3図に示すように、親水性樹脂
は、隔壁lOの端面および隔壁1oと接触する部分中空
糸膜2の内面全体に被覆されていることが好ましい。
Furthermore, as shown in FIGS. 2 and 3, it is preferable that the hydrophilic resin coats the end face of the partition wall 1O and the entire inner surface of the partially hollow fiber membrane 2 that contacts the partition wall 1o.

親水性樹脂としては、ポリアルキルスルポン、エチルセ
ルロース、アクリル酸エステル系重合体、メタアクリル
酸エステル系重合体(例えば、ボリHEMA[ボリヒド
ロキシエチルメタクリレート])、疎水性セグメントと
親水性セグメントの両者を有するブロノクまたはグラフ
ト共重合体(例えば、HEMA−スチレン−HEMAの
ブロック共重合体、HEMA−MMA [メチルメタア
クリレートコのブロック共重合体、HEMA−LMA 
[ラウリルメタアクリレート]ノフロック共重合体、P
VP [ポリビニルピロリドン]−MMAのブロック共
重合体、さらに、このブロック共重合体にアミ7基を有
するポリマーを混合したブレンドボリマー)、および含
フッ素樹脂などが使用できる。好ましくは、HEMA−
スチレンーHEMAのブロック共重合体、HEMA−M
MA [メチルメタアクリレートコのブロック共重合体
、さらに、このブロック共重合体にアミノ基を有するボ
リマーを混合したブレンドボリマーである。また、アミ
ノ基を有するポリマーとしては、ポリアミノ、特にPE
I[ポリエチンイミン]が好ましい。
Hydrophilic resins include polyalkyl sulfone, ethyl cellulose, acrylic ester polymers, methacrylic ester polymers (for example, polyHEMA [polyhydroxyethyl methacrylate]), and both hydrophobic and hydrophilic segments. (e.g. block copolymers of HEMA-styrene-HEMA, HEMA-MMA [block copolymers of methyl methacrylate, HEMA-LMA])
[Lauryl methacrylate] Nofloc copolymer, P
A block copolymer of VP [polyvinylpyrrolidone]-MMA, a blend polymer obtained by mixing this block copolymer with a polymer having 7 amino groups), a fluorine-containing resin, and the like can be used. Preferably HEMA-
Styrene-HEMA block copolymer, HEMA-M
MA is a block copolymer of methyl methacrylate, and a blend polymer in which this block copolymer is further mixed with a polymer having an amino group. In addition, as a polymer having an amino group, polyamino, especially PE
I [polyethinimine] is preferred.

そして、後述する抗凝固剤であるヘパリンをこの親水性
樹脂の表面に固定するためには、親水性樹脂は、水酸基
、アミ7基、カルボキシル基、エポキシ基、インシアネ
ート基、エポキシ基、チオシアネート基、酸クロリド基
、アルデヒド基および炭素一炭素二重結合のうちのいず
れかを有するか、もしくは容易にこれら基に変換可能な
基を有していることが好ましい。
In order to fix heparin, which is an anticoagulant described later, on the surface of this hydrophilic resin, the hydrophilic resin must contain hydroxyl groups, amine 7 groups, carboxyl groups, epoxy groups, incyanate groups, epoxy groups, and thiocyanate groups. , an acid chloride group, an aldehyde group, and a carbon-carbon double bond, or a group that can be easily converted into these groups.

そして、上記の親水性樹脂40の表面には、抗凝固剤4
2、例えば、ヘパリンが固定されていることが好ましい
。このヘパリン固定は、上記の親水性樹脂40の表面に
ヘパリン水溶液を接触させた後、グルタールアルデヒド
、テレフタルアルデヒド、ホルムアルデヒドなどのアル
デヒド類、ジフェニルメタンジイソシアネート、2,4
トリレンジイソシア不一ト、カルボジイミド変性ジフェ
ニルメタンジイソシアネート、エビクロルヒドリン、1
,4−ブタンジオールジグリシジルエーテル、ポリエチ
レングリコールジグリシジルエーテルなどの固定化剤と
接触させることにより、上記の親水性樹脂に共有結合さ
せることにより容易に固定される。
Then, an anticoagulant 4 is applied to the surface of the hydrophilic resin 40.
2. For example, it is preferable that heparin is immobilized. This heparin fixation is carried out by bringing an aqueous heparin solution into contact with the surface of the hydrophilic resin 40, and then adding aldehydes such as glutaraldehyde, terephthalaldehyde, and formaldehyde, diphenylmethane diisocyanate, 2,4
Tolylene diisocyanate, carbodiimide modified diphenylmethane diisocyanate, shrimp chlorohydrin, 1
, 4-butanediol diglycidyl ether, polyethylene glycol diglycidyl ether, or the like, and is easily immobilized by covalent bonding to the above-mentioned hydrophilic resin.

そして、この中空糸膜型人工肺lは、使用前に滅菌され
る。滅菌としては、エチレンオキサイドガス滅菌、放射
線滅菌なとの公知の方法が用いられる。
This hollow fiber membrane oxygenator 1 is then sterilized before use. For sterilization, known methods such as ethylene oxide gas sterilization and radiation sterilization are used.

上記説明では、本発明の血液処理器を人工肺に応用した
実施例を用いて説明したが、これに限らず、例えば、人
工透析器、血漿分離器、熱交換器などに収納されている
血液処理用部材(人工透析器においては、透析膜、血漿
分離器においては血漿分離膜、熱交換器においては熱交
換用管体)がハウジングに合成樹脂により形成された隔
壁により固定され、隔壁が血液接触面を有する血液処理
器であれば、どのようなものにも応用することかできる
In the above explanation, the blood processing device of the present invention was explained using an example in which the blood processing device of the present invention was applied to an artificial lung. A processing member (a dialysis membrane in an artificial dialysis machine, a plasma separation membrane in a plasma separator, and a heat exchange tube in a heat exchanger) is fixed to the housing by a partition wall made of synthetic resin, and the partition wall is It can be applied to any blood processing device that has a contact surface.

次に、本発明の血液処理器の製造方法を上述した中空糸
膜型人工肺を用いて説明する。
Next, a method for manufacturing a blood processing device of the present invention will be explained using the above-mentioned hollow fiber membrane oxygenator.

まず、ガス流入口13およびガス流出口l4を側壁に有
する円筒状ハウジング6を作成し、そのハウジング内に
、血液処理用部材である多数のガス交換用中空糸膜より
なる中空糸膜束2を挿入する。そして、中空糸膜束2の
両端部の中空糸膜2を均一に分散させた後、中空糸膜束
2の両端部に、目止め剤を充填した容器を被嵌し、さら
に、この容器をハウジング6の端部に固定する。さらに
、ハウジング6のガス流入口13およびガス流出口14
よりボノティング剤(例えば、ポリウレタン)を遠心注
入し、中空糸膜束のそれぞれの端部をハウジング6に固
定し、上記容器を取り外した後、ポッティング剤部分を
スライスし、それぞれの隔壁10.11を形成する。そ
して、形成された隔壁端面をコロナ放電処理装置を用い
てコロナ放電処理し、隔壁の血液接触面を親水化させる
。コロナ放電処理は、例えば、第4図に示すような、ア
ースとなる金属製の回転板50とその上に設けられたワ
イヤー電極52を有し、ワイヤー電極52には数kv〜
数10kVの電圧を出力する高電圧源、例えば、コロナ
ジエネレータ−62と、このコロナジエネレータ−62
からの電力を高電圧に変換する高圧トランス63が接続
されたコロナ放電処理装置60が用いられる。
First, a cylindrical housing 6 having a gas inlet 13 and a gas outlet l4 on its side wall is created, and a hollow fiber membrane bundle 2 made of a large number of hollow fiber membranes for gas exchange, which is a member for blood treatment, is placed inside the housing. insert. After the hollow fiber membranes 2 at both ends of the hollow fiber membrane bundle 2 are uniformly dispersed, a container filled with a filler is fitted onto both ends of the hollow fiber membrane bundle 2, and this container is then It is fixed to the end of the housing 6. Further, a gas inlet 13 and a gas outlet 14 of the housing 6
After centrifugally injecting a potting agent (for example, polyurethane), fixing each end of the hollow fiber membrane bundle to the housing 6, and removing the container, the potting agent portion is sliced and each partition wall 10.11 is form. Then, the formed end face of the partition wall is subjected to a corona discharge treatment using a corona discharge treatment device to make the blood contacting surface of the partition wall hydrophilic. In the corona discharge treatment, for example, as shown in FIG. 4, a metal rotary plate 50 serving as a ground and a wire electrode 52 provided thereon are used.
A high voltage source that outputs a voltage of several tens of kV, for example, a corona generator 62;
A corona discharge treatment device 60 is used, which is connected to a high voltage transformer 63 that converts electric power from the source into high voltage.

そして、回転板50の端部付近に、第4図に示すように
、上記のように形成された人工肺1が立てた状態に載置
される。回転板の回転速度としては、0.01〜0. 
5rps程度が好ましく、人工肺1を載置したときの、
人工肺1の隔壁端面とワイヤー電極52との距離は0.
5〜5.OI程度が好ましい。さらに、人工肺lがワイ
ヤー電極52の直下に位置したときの処理電力としては
、50〜100W程度が好ましい。さらに、処理速度(
人工肺がワイヤー電極の下を通過する速度)は、0.0
1〜0. 11/s程度が好ましい。
Then, as shown in FIG. 4, near the end of the rotary plate 50, the artificial lung 1 formed as described above is placed in an upright state. The rotation speed of the rotating plate is 0.01 to 0.
Approximately 5 rps is preferable, and when the oxygenator 1 is placed,
The distance between the end surface of the partition wall of the oxygenator 1 and the wire electrode 52 is 0.
5-5. OI level is preferable. Furthermore, the processing power when the artificial lung 1 is located directly below the wire electrode 52 is preferably about 50 to 100 W. In addition, processing speed (
The speed at which the oxygenator passes under the wire electrode) is 0.0
1~0. About 11/s is preferable.

そして、このコロナ放電処理は、1回でもよいが、数回
、具体的には2〜20回行うことが好ましい。そして、
一方の隔壁面のコロナ放電処理が終了した後、人工肺1
を反転させ、反対側の隔壁部分をコロナ放電処理を行う
This corona discharge treatment may be performed once, but preferably several times, specifically 2 to 20 times. and,
After completing the corona discharge treatment on one partition surface, the oxygenator 1
is reversed and corona discharge treatment is applied to the partition wall on the opposite side.

続いて、コロナ放電処理された隔壁部分を親水性樹脂溶
液に浸漬し、隔壁の端面さらには、隔壁に接触する部分
の中空糸膜の内部にも親水性樹脂溶液を充填し、引き上
げ、過剰の親水性樹脂溶液を除去(たとえば中空糸膜内
部には空気を送気し押し出し、さらに端面上の余剰樹脂
溶液も圧搾空気で除去する)し、乾燥させ隔壁の血液接
触面に親水性樹脂を被覆する。また、上記の浸漬のみで
は、親水性樹脂溶液が中空糸膜の内部に流入しない場合
は、ガス流入口および流出口を閉塞し、反対側の隔壁部
分に吸引装置を取り付け、中空糸膜の内部を吸引するこ
とにより流入させてもよい。また、上記の1回の操作で
は、十分に親水性樹脂溶液が中空糸膜に付着しない場合
は、適宜に複数回上記操作を行ってもよい。そして、反
対側の隔壁部分においても同様の操作を行うことにより
、それぞれの隔壁の血液接触面に親水性樹脂をコーティ
ングする。親水性樹脂としては、上述のものが好適に使
用できる。そして、隔壁10.11の外側に、流路形成
部材18および流路形成部材19をネジリング22. 
23を用いて固定する。そして、ヘパリン水溶液、好ま
しくは、pH2. 5〜6.0を血液流入口29より流
入させ、人工肺1の内部にヘパリン水溶液を充填し、血
液流入口29および流出口28を封止し、好ましくは、
室温〜70゜Cの範囲において適当な時間10分〜24
時間放置する。そして、ヘパリン水溶液を排出した後、
グルタルアルデヒド溶液(好ましくは、ヘパリン水溶液
と同じpnを有するもの)を人工肺lの血液流入口28
より流入させて充填し、血液流入口29および流出口2
8を封止し、適当な時間30分〜24時間放置し、ヘパ
リンを固定する。
Next, the corona discharge-treated partition wall portion is immersed in a hydrophilic resin solution, and the end surfaces of the partition wall and the inside of the hollow fiber membrane in the portion that contacts the partition wall are filled with the hydrophilic resin solution, and the excess is removed. The hydrophilic resin solution is removed (for example, air is pumped into the hollow fiber membrane to push it out, and excess resin solution on the end face is also removed with compressed air), dried, and the blood contacting surface of the septum is coated with hydrophilic resin. do. In addition, if the hydrophilic resin solution does not flow into the hollow fiber membrane with the above immersion alone, close the gas inlet and outlet, attach a suction device to the opposite partition wall, and It may also be caused to flow in by suctioning. Moreover, if the hydrophilic resin solution does not adhere to the hollow fiber membrane sufficiently in the above-mentioned one-time operation, the above-mentioned operation may be performed multiple times as appropriate. Then, by performing the same operation on the partition wall portion on the opposite side, the blood contacting surface of each partition wall is coated with a hydrophilic resin. As the hydrophilic resin, those mentioned above can be suitably used. Then, the flow path forming member 18 and the flow path forming member 19 are attached to the outer side of the partition wall 10.11 with a threaded ring 22.
Fix it using 23. and a heparin aqueous solution, preferably at pH 2. 5 to 6.0 is allowed to flow in from the blood inlet 29, the inside of the oxygenator 1 is filled with a heparin aqueous solution, and the blood inlet 29 and the blood outlet 28 are sealed, preferably,
Appropriate time 10 minutes to 24 minutes at room temperature to 70°C
Leave it for a while. Then, after draining the heparin aqueous solution,
A glutaraldehyde solution (preferably one having the same pn as the aqueous heparin solution) is added to the blood inlet 28 of the oxygenator l.
Blood inflow port 29 and blood outflow port 2
8 is sealed and left for an appropriate period of 30 minutes to 24 hours to fix the heparin.

[実施例] 次に、本発明の血液処理器の実施例を説明する。[Example] Next, an embodiment of the blood processing device of the present invention will be described.

[実施例l] ポリカーボネイトにより端部付近にはガス流入ポートお
よび流出ポートを有し、第1図に示すような形状の筒状
のハウジング(内径58xu、長さ120xm)を作成
した。そして、上記のハウジング内に、内径約200μ
l1肉厚約25μ肩、空孔率約45%、平均孔径約70
0人のポリプリピレン製中空糸膜約12000本をハウ
ジングに挿入する。そして、中空糸膜束の両端部の中空
糸膜を均一に分散させた後、中空糸膜束の両端部に、目
止め剤を充填した容器を被嵌し、さらに、この容器をハ
ウジングの端部に固定する。さらに、ハウジングのガス
流入口およびガス流出口よりポリウレタンを遠心注入し
、中空糸膜束のそれぞれの端部をハウジングに固定し、
上記容器を取り外した後、ポッティング剤部分をスライ
スし、それぞれの隔壁を形成した。隔壁の厚さ(最大部
分)は、18zmであった。そして、形成された隔壁端
面をコロナ放電処理装置60 (HVO5−2システム
TANTEC AS株式会社製)の回転板50の端部付
近に、第4図に示すように、上記のように形成した人工
肺を載置し、コロナ放電処理を行った。なお、コロナ放
電処理条件は、回転板50の回転速度を0. lrps
、人工肺1の隔壁端面とワイヤー電極52とのを距離2
 mm,処理電圧を28kV (コロナジェネレータ−
62からの電力を高圧トランス63により変換)、ワイ
ヤー電極52の直下に位置したときの処理電力を79W
1処理速度を0.06m/sとして、連続10回行った
。そして、人工肺を反転させ、他方の隔壁も同様にコロ
ナ放電処理を行った。コロナ放電処理を行ってから、2
分後に、コロナ放電処理された隔壁部分を親水性樹脂溶
液に浸漬した。親水性樹脂溶液としては、P(HEMA
)(平均分子量15, 000)とポリエチレンイミン
(平均分子量200, 000)とがそれぞれ1.25
重量%、1.0重量%混合されたメタノール/メチルセ
ロソルブ/水( 10. 6/1. 0/0. 4)溶
液を用いた。親水性樹脂溶液の浸漬は、シャーレーに上
記の親水性樹脂溶液を入れ、人工肺の隔壁部分を3■、
10秒間浸漬することにより行い、引き上げ、反対面か
ら中空糸内部に空気を吹送しながら、隔壁端面に空気を
吹き付け乾燥させた。他方の隔壁部分においても同様に
処理した。そして、それぞれの隔壁の外側に、流路形成
部材をネジリングを用いて固定し後、pH4.0(0.
1M酢酸緩衝液)の0.5%ヘパリン水溶液を血液流入
口より流入させ、人工肺の内部にヘパリン水溶液を充填
し、血液流入口および流出口を封止し、45℃で4時間
放置した後、ヘパリン水溶液を排出した。続いて、pH
4.0(001M酢酸緩衝液)の2.5%グルタールア
ルデヒド水溶液を人工肺の血液流入口より流入させて充
填し、血液流入口および流出口を封止し、37℃で12
時間放置し、ヘパリンを固定した。
[Example 1] A cylindrical housing (inner diameter 58xu, length 120xm) having a gas inflow port and an outflow port near the end and having a shape as shown in FIG. 1 was made of polycarbonate. Then, inside the above housing, an inner diameter of about 200μ is placed.
l1 Wall thickness: approx. 25μ shoulder, porosity: approx. 45%, average pore diameter: approx. 70
Approximately 12,000 polypropylene hollow fiber membranes are inserted into the housing. After the hollow fiber membranes at both ends of the hollow fiber membrane bundle are uniformly dispersed, a container filled with a filler is fitted onto both ends of the hollow fiber membrane bundle, and this container is then placed at the end of the housing. be fixed to the section. Furthermore, polyurethane is centrifugally injected from the gas inlet and gas outlet of the housing, and each end of the hollow fiber membrane bundle is fixed to the housing.
After removing the container, the potting agent portion was sliced to form each partition wall. The thickness (maximum part) of the partition wall was 18 zm. Then, the end face of the partition wall thus formed is placed near the end of the rotating plate 50 of the corona discharge treatment device 60 (HVO5-2 system manufactured by TANTEC AS Co., Ltd.), as shown in FIG. was placed and subjected to corona discharge treatment. Note that the corona discharge treatment conditions are such that the rotation speed of the rotary plate 50 is 0. lrps
, the distance between the end surface of the septum of the oxygenator 1 and the wire electrode 52 is 2.
mm, processing voltage 28kV (corona generator)
62 is converted by the high voltage transformer 63), and the processing power when located directly under the wire electrode 52 is 79W.
The processing was performed 10 times in succession at a processing speed of 0.06 m/s. Then, the oxygenator was turned over, and the other partition wall was similarly subjected to corona discharge treatment. After corona discharge treatment, 2
After a few minutes, the corona discharge-treated partition wall portion was immersed in a hydrophilic resin solution. As the hydrophilic resin solution, P(HEMA
) (average molecular weight 15,000) and polyethyleneimine (average molecular weight 200,000) are each 1.25
A 1.0% by weight mixed methanol/methyl cellosolve/water (10.6/1.0/0.4) solution was used. For immersion in the hydrophilic resin solution, place the above hydrophilic resin solution in a petri dish, and soak the partition wall of the oxygenator for 3 seconds.
The fibers were immersed for 10 seconds, pulled up, and dried by blowing air into the hollow fibers from the opposite side to the end faces of the partition walls. The other partition wall portion was also treated in the same manner. Then, after fixing the flow path forming member to the outside of each partition using a screw ring, pH 4.0 (0.
A 0.5% aqueous heparin solution (1M acetate buffer) was allowed to flow in from the blood inlet, the heparin aqueous solution was filled inside the oxygenator, the blood inlet and outlet were sealed, and the mixture was left at 45°C for 4 hours. , the heparin aqueous solution was drained. Subsequently, the pH
A 2.5% glutaraldehyde aqueous solution of 4.0 (001M acetate buffer) was injected into the oxygenator through the blood inlet, the blood inlet and outlet were sealed, and the oxygenator was incubated at 37°C for 12 hours.
The heparin was fixed by leaving it for an hour.

このようにして、隔壁の血液接触面に親水性樹脂および
その表面にヘパリンが固定された膜面積0. 8m ”
の第1図に示すような中空糸膜型人工肺を作成した。
In this way, the hydrophilic resin is fixed on the blood-contacting surface of the septum and heparin is fixed on the surface of the membrane with a membrane area of 0. 8m”
A hollow fiber membrane oxygenator as shown in Figure 1 was constructed.

(比較例) コロナ放電処理を行わない以外は、実施例と同様の方法
により膜面積0.8m’の中空糸膜型人工肺を作成した
(Comparative Example) A hollow fiber membrane oxygenator with a membrane area of 0.8 m' was prepared in the same manner as in the example except that the corona discharge treatment was not performed.

(実施例2) 長さ198I、端部内径441l肩、中間部内径32m
gのポリカーポ不−ト製ハウジング内に、内径約200
μ肩、肉厚約12μ次、銅アンモニアセルロース製透析
用中空糸膜約7100本を挿入し、その端部をポリウレ
タンを用いて、固定し隔壁を形成した。隔壁の最も長い
部分(ハウジングと接触する部分)の長さは15131
であった。そして、実施例lと同様にコロナ放電処理、
親水性樹脂の被覆およびヘパリンの固定を行い、膜面積
約08m’の人工透析器を作成した。
(Example 2) Length 198I, end inner diameter 441l shoulder, middle inner diameter 32m
Inside the housing made of polycarbonate, the inner diameter is approximately 200 mm.
Approximately 7,100 dialysis hollow fiber membranes made of copper ammonia cellulose with μ shoulders and a wall thickness of approximately 12 μm were inserted, and their ends were fixed using polyurethane to form a partition wall. The length of the longest part of the partition wall (the part that contacts the housing) is 15131
Met. Then, corona discharge treatment as in Example 1,
A hydrophilic resin coating and heparin fixation were performed to create an artificial dialysis machine with a membrane area of approximately 08 m'.

[実験1] 上記実施例1、比較例の中空糸膜型人工肺および実施例
2の人工透析器の隔壁部分を厚さ約2. 5xxにスラ
イスしたもの、さらに、このスライスされた隔壁部分を
縦に中空糸膜内面が露出するように切断したものをを作
成した。それらを用いて、染色試験を行った。染料とし
ては、.塩基性染料(トルイジンブルー, Mw : 
305.8)を用いて0, 04w/v%のトルイジン
ブルー溶液を作成し、上記の隔壁部分にてスライスした
ものを3分間浸漬し、その後十分水洗を行い、ニコン株
式会社製、実体顕微鏡SMZ−2−Tを用いて観察した
。比較例の人工肺の隔壁部分をスライスしたものでは、
斑点状に紫色に染色されており、親水性樹脂が全体に均
一に被覆されていなかった。さらに、ポリウレタンと接
触している部分の中空糸膜内面はほとんど着色されてお
らず、親水性樹脂がほとんど被覆されていなかった。
[Experiment 1] The partition wall portions of the hollow fiber membrane oxygenators of Example 1 and Comparative Example and the artificial dialyzer of Example 2 were made to a thickness of approximately 2.5 mm. The membrane was sliced into 5xx pieces, and the partition wall portion thus sliced was then cut vertically to expose the inner surface of the hollow fiber membrane. A staining test was conducted using them. As a dye... Basic dye (toluidine blue, Mw:
305.8) was used to prepare a 0.04 w/v% toluidine blue solution, and the slices sliced at the partition wall were immersed in the solution for 3 minutes. After that, they were thoroughly washed with water. Observation was made using -2-T. A slice of the septum of an artificial lung in a comparative example shows
It was dyed purple in spots, and the hydrophilic resin was not evenly coated over the entire surface. Furthermore, the inner surface of the hollow fiber membrane in the portion that was in contact with the polyurethane was hardly colored and was hardly coated with the hydrophilic resin.

これに対し、実施例1の人工肺および実施例2の人工透
析器の隔壁部分をスライスしたものでは、隔壁の端面全
体に均一に紫色に染色されており、親水性樹脂が隔壁端
面全体に均一に被覆されていることがわかった。さらに
、ポリウレタンと接触している部分の中空糸膜内面もほ
ぼ均一に着色されており、親水性樹脂がポリウレタンと
接触する部分の中空糸膜内面にも被覆されていることが
わかった。
In contrast, in the slices of the septum of the artificial lung of Example 1 and the artificial dialysis machine of Example 2, the entire end surface of the septum is uniformly dyed purple, and the hydrophilic resin is uniformly dyed over the entire end surface of the septum. It was found that it was covered with Furthermore, the inner surface of the hollow fiber membrane in the portion in contact with polyurethane was also almost uniformly colored, indicating that the hydrophilic resin was also coated on the inner surface of the hollow fiber membrane in the portion in contact with polyurethane.

[実験2] 上記実施例1、比較例の中空糸膜型人工肺および実施例
2の人工透析器の隔壁部分を厚さ約51にスライスした
ものを作成し、その隔壁端面の表面状態を、走査型電子
顕微鏡(JSM 803,日本電子株式会社製)を用い
て観察した。その結果、比較例のものでは、隔壁端面に
スライスによる荒れが見られたが、実施例lおよび2の
ものでは、表面は平滑であった。
[Experiment 2] The partition walls of the hollow fiber membrane oxygenator of Example 1, the comparative example, and the artificial dialyzer of Example 2 were sliced to a thickness of approximately 51 cm, and the surface condition of the end surface of the partition was determined as follows: Observation was made using a scanning electron microscope (JSM 803, manufactured by JEOL Ltd.). As a result, roughness due to slicing was observed on the end face of the partition wall in the comparative example, but in Examples 1 and 2, the surface was smooth.

[発明の効果] 本発明の液体処理器は、ハウジングと、該ハウオング内
に挿入された血液処理用部材と、該血液処理用部材の両
端部を前記ハウジングの両端部に液密に固定する隔壁と
、前記ハウジングの両端部付近にそれぞれ設けられ、前
記血液処理用部材の一方の面と前記ハウジングの内面と
隔壁とにより形成される空間に連通ずる第1の流体流入
口および流出口と、前記ハウジングの両端部にそれぞれ
取り付けられた血液流入口および血液流出口とを有する
血液処理器であって、前記隔壁の血液接触面は、コロナ
放電処理され、かつ親水性樹脂が被覆されているもので
あるので、血液処理用部材の劣化のおそれのある有機溶
媒の使用が必要な疎水性樹脂を用いることな《、さらに
、親水性樹脂が、血液処理用部材をハウジングに固定す
る隔壁の血液接触面に均一に被覆されているので、血液
適合性および血栓発生抑制が優れている。
[Effects of the Invention] The liquid treatment device of the present invention includes a housing, a blood processing member inserted into the housing, and a partition wall that liquid-tightly fixes both ends of the blood processing member to both ends of the housing. and a first fluid inlet and an outlet, which are respectively provided near both ends of the housing and communicate with a space formed by one surface of the blood processing member, the inner surface of the housing, and the partition wall; A blood processing device having a blood inlet and a blood outlet respectively attached to both ends of the housing, wherein the blood contacting surface of the partition wall is corona discharge treated and coated with a hydrophilic resin. Therefore, it is not necessary to use hydrophobic resins that require the use of organic solvents that may cause deterioration of the blood processing member.Furthermore, hydrophilic resins are used on the blood contacting surface of the partition wall that fixes the blood processing member to the housing. Because it is uniformly coated on the skin, it has excellent blood compatibility and inhibits thrombosis.

また、本発明の血液処理器の製造方法は、ハウジングと
、該ハウジング内に挿入された血液処理用部材と、該血
液処理用部材の両端部を前記ハウジングの両端部に液密
に固定する隔壁と、前記ハウジングの両端部付近にそれ
ぞれ設けられ、前記血液処理用部材の一方の面と前記ハ
ウジングの内面と隔壁とにより形成される空間に連通ず
る第1の流体流入口および流出口と、前4 記ハウジングの両端部にそれぞれ取り付けられた血液流
入口および血液流出口とを有する血液処理器の製造方法
において、該血液処理器の前記隔壁の血液接触面を、コ
ロナ放電処理し、続いて該コロナ放電処理された血液接
触面を水性溶媒に溶解された親水性樹脂溶液と接触させ
るものであるので、上記のような血液適合性および血栓
発生抑制が優れている血液処理器を容易に製造すること
ができる。
Further, the method for manufacturing a blood processing device of the present invention includes a housing, a blood processing member inserted into the housing, and a partition wall that liquid-tightly fixes both ends of the blood processing member to both ends of the housing. a first fluid inlet and a first fluid outlet, which are provided near both ends of the housing and communicate with a space formed by one surface of the blood processing member, the inner surface of the housing, and the partition; 4. In the method for manufacturing a blood processor having a blood inlet and a blood outlet respectively attached to both ends of the housing, the blood contacting surface of the partition wall of the blood processor is subjected to a corona discharge treatment, and then the Since the blood contacting surface treated with corona discharge is brought into contact with a hydrophilic resin solution dissolved in an aqueous solvent, a blood processing device having excellent blood compatibility and thrombus generation prevention as described above can be easily produced. be able to.

【図面の簡単な説明】 第1図は本発明の血液処理器を中空糸膜型人工肺に応用
したー実施例の一部断面図、第2図は、第1図に示した
中空糸膜型人工透析器の隔壁部分の拡大断面図、第3図
は、第1図に示した中空糸膜型人工透析器の隔壁部分の
拡大断面図、第4図は、本発明の血液処理器の製造に用
いられるコロナ放電処理装置の一例を示す図である。 ■・・・血液処理器、  2・・・中空糸膜、6・・・
ハウジング、 10.11・・・隔壁l3・・・ガス流
入口、l4・・・ガス流出口、28・・・血液流出口、
 29・・・血液流入口、40・・・親水性樹脂、 4
2・・・抗凝固剤、50・・・回転板、   52・・
・ワイヤー電極、60・・・コロナ放電処理装置、 62・・・コロナジエネレーター 63・・・高圧トランス 第2図 第8図
[Brief Description of the Drawings] Fig. 1 is a partial sectional view of an embodiment in which the blood processing device of the present invention is applied to a hollow fiber membrane oxygenator, and Fig. 2 is a partial cross-sectional view of an embodiment of the hollow fiber membrane type oxygenator shown in Fig. 1. FIG. 3 is an enlarged sectional view of the partition wall portion of the hollow fiber membrane type artificial dialyzer shown in FIG. It is a diagram showing an example of a corona discharge treatment device used for manufacturing. ■...Blood processing device, 2...Hollow fiber membrane, 6...
Housing, 10.11... Partition wall l3... Gas inlet, l4... Gas outlet, 28... Blood outlet,
29...Blood inlet, 40...Hydrophilic resin, 4
2... Anticoagulant, 50... Rotating plate, 52...
・Wire electrode, 60...Corona discharge treatment device, 62...Corona generator 63...High voltage transformer Fig. 2 Fig. 8

Claims (9)

【特許請求の範囲】[Claims] (1)ハウジングと、該ハウジング内に挿入された血液
処理用部材と、該血液処理用部材の両端部を前記ハウジ
ングの両端部に液密に固定する隔壁と、前記ハウジング
の両端部付近にそれぞれ設けられ、前記血液処理用部材
の一方の面と前記ハウジングの内面と隔壁とにより形成
される空間に連通する第1の流体流入口および流出口と
、前記ハウジングの両端部にそれぞれ取り付けられた血
液流入口および血液流出口とを有する血液処理器であっ
て、前記隔壁の血液接触面は、コロナ放電処理され、か
つ親水性樹脂が被覆されていることを特徴とする血液処
理器。
(1) A housing, a blood processing member inserted into the housing, a partition wall that liquid-tightly fixes both ends of the blood processing member to both ends of the housing, and a partition wall provided near both ends of the housing, respectively. a first fluid inlet and an outlet, which are provided and communicate with a space formed by one surface of the blood processing member, an inner surface of the housing, and a partition; and a first fluid inlet and an outlet, which are attached to both ends of the housing, respectively. 1. A blood processing device having an inlet and a blood outlet, wherein the blood contacting surface of the partition wall is subjected to a corona discharge treatment and coated with a hydrophilic resin.
(2)前記親水性樹脂の表面には、ヘパリンが固定され
ている請求項1に記載の血液処理器。
(2) The blood treatment device according to claim 1, wherein heparin is immobilized on the surface of the hydrophilic resin.
(3)前記親水性樹脂は、前記隔壁と接触している部分
の前記血液処理用部材の血液接触面にも被覆されている
請求項1または2に記載の血液処理器。
(3) The blood processing device according to claim 1 or 2, wherein the hydrophilic resin is also coated on a blood contacting surface of the blood processing member that is in contact with the partition wall.
(4)前記血液処理用部材は、血液処理用多孔質膜また
は血液透析用膜である請求項1ないし3のいずれかに記
載の血液処理器。
(4) The blood processing device according to any one of claims 1 to 3, wherein the blood processing member is a porous membrane for blood processing or a membrane for hemodialysis.
(5)前記血液処理用多孔質膜または血液透析用膜は、
中空糸膜または平膜である請求項1ないし4のいずれか
に記載の血液処理器。
(5) The porous membrane for blood processing or the membrane for hemodialysis,
The blood processing device according to any one of claims 1 to 4, which is a hollow fiber membrane or a flat membrane.
(6)前記親水性樹脂は、水酸基、アミノ基、カルボキ
シル基、エポキシ基、イソシアネート基、エポキシ基、
チオシアネート基、酸クロリド基、アルデヒド基および
炭素−炭素二重結合のうちのいずれかを有するか、もし
くは容易にこれら基に変換可能な基を有している請求項
1ないし5のいずれかに記載の血液処理器。
(6) The hydrophilic resin includes a hydroxyl group, an amino group, a carboxyl group, an epoxy group, an isocyanate group, an epoxy group,
Any one of claims 1 to 5, which has any one of a thiocyanate group, an acid chloride group, an aldehyde group, and a carbon-carbon double bond, or a group that can be easily converted into these groups. Blood processing equipment.
(7)ハウジングと、該ハウジング内に挿入された血液
処理用部材と、該血液処理用部材の両端部を前記ハウジ
ングの両端部に液密に固定する隔壁と、前記ハウジング
の両端部付近にそれぞれ設けられ、前記血液処理用部材
の一方の面と前記ハウジングの内面と隔壁とにより形成
される空間に連通する第1の流体流入口および流出口と
、前記ハウジングの両端部にそれぞれ取り付けられた血
液流入口および血液流出口とを有する血液処理器の製造
方法において、該血液処理器の前記隔壁の血液接触面を
、コロナ放電処理し、続いて該コロナ放電処理された血
液接触面を水性溶媒に溶解された親水性樹脂溶液と接触
させることを特徴とする血液処理器の製造方法。
(7) a housing, a blood processing member inserted into the housing, a partition wall that liquid-tightly fixes both ends of the blood processing member to both ends of the housing, and a partition wall provided near both ends of the housing, respectively; a first fluid inlet and an outlet, which are provided and communicate with a space formed by one surface of the blood processing member, an inner surface of the housing, and a partition; and a first fluid inlet and an outlet, which are attached to both ends of the housing, respectively. In a method for manufacturing a blood processing device having an inlet and a blood outflow port, the blood contacting surface of the partition wall of the blood processing device is subjected to a corona discharge treatment, and then the corona discharge treated blood contacting surface is soaked in an aqueous solvent. 1. A method for producing a blood treatment device, which comprises bringing it into contact with a dissolved hydrophilic resin solution.
(8)前記コロナ放電処理および親水性樹脂溶液の接触
は、前記隔壁と接触している部分の前記血液処理用部材
の血液接触面にも行う請求項7に記載の血液処理器の製
造方法。
(8) The method for manufacturing a blood processing device according to claim 7, wherein the corona discharge treatment and the contact with the hydrophilic resin solution are also performed on a blood contacting surface of the blood processing member that is in contact with the partition wall.
(9)前記親水性溶液の接触を行った後、ヘパリン溶液
と接触させ、ヘパリン固定を行う請求項7または8に記
載の血液処理器の製造方法。
(9) The method for manufacturing a blood processing device according to claim 7 or 8, wherein after contacting with the hydrophilic solution, contacting with a heparin solution is performed to fix heparin.
JP31715590A 1989-11-27 1990-11-20 Blood treating device and its production Pending JPH03218771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31715590A JPH03218771A (en) 1989-11-27 1990-11-20 Blood treating device and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30685589 1989-11-27
JP1-306855 1989-11-27
JP31715590A JPH03218771A (en) 1989-11-27 1990-11-20 Blood treating device and its production

Publications (1)

Publication Number Publication Date
JPH03218771A true JPH03218771A (en) 1991-09-26

Family

ID=26564890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31715590A Pending JPH03218771A (en) 1989-11-27 1990-11-20 Blood treating device and its production

Country Status (1)

Country Link
JP (1) JPH03218771A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443720A (en) * 1977-09-14 1979-04-06 Mitsubishi Paper Mills Ltd Photograph material
JPS58175567A (en) * 1982-04-07 1983-10-14 旭メデイカル株式会社 Hollow yarn membrane type blood treating device and production thereof
JPS6335394A (en) * 1986-07-30 1988-02-16 コニカ株式会社 Card for identification
JPS6388004A (en) * 1978-05-15 1988-04-19 ポール・コーポレーション Polyamide microporous film
JPS63254035A (en) * 1987-04-13 1988-10-20 平和樹脂工業株式会社 Film for printed laminate
JPH01165632A (en) * 1987-11-12 1989-06-29 Korea Res Inst Chem Technol Droplet free high-molecular substance and production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443720A (en) * 1977-09-14 1979-04-06 Mitsubishi Paper Mills Ltd Photograph material
JPS6388004A (en) * 1978-05-15 1988-04-19 ポール・コーポレーション Polyamide microporous film
JPS58175567A (en) * 1982-04-07 1983-10-14 旭メデイカル株式会社 Hollow yarn membrane type blood treating device and production thereof
JPS6335394A (en) * 1986-07-30 1988-02-16 コニカ株式会社 Card for identification
JPS63254035A (en) * 1987-04-13 1988-10-20 平和樹脂工業株式会社 Film for printed laminate
JPH01165632A (en) * 1987-11-12 1989-06-29 Korea Res Inst Chem Technol Droplet free high-molecular substance and production thereof

Similar Documents

Publication Publication Date Title
KR910009393B1 (en) Hollow fiber membrane fluid processor
US4501785A (en) Hydrophilized membrane of porous hydrophobic material and process of producing same
JP5011722B2 (en) Method for producing medical separation membrane and method for producing medical separation membrane module using the medical separation membrane
KR101081640B1 (en) Surface treatment of the membrane and associated product
US6454998B1 (en) Blood circulation apparatus coupling device which improves biocompatibility of inner surfaces with treated blood
JP3928910B2 (en) Polysulfone blood treatment module
JP2717663B2 (en) Hollow fiber membrane dialysis machine
JPH03218771A (en) Blood treating device and its production
CA1299937C (en) Antithrombogenic material
JP3684676B2 (en) Method for producing polysulfone-based hollow fiber artificial kidney and artificial kidney
JP2888607B2 (en) Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same
JPS60190966A (en) Anti-thrombotic material
JP3090701B2 (en) Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same
JP3048652B2 (en) Manufacturing method of membrane oxygenator
JPH0548135B2 (en)
JPH04197266A (en) Blood treating device
JPH1147567A (en) Separation membrane and its preparation
JP3170817B2 (en) Hollow fiber membrane with improved dispersibility and method for producing the same
JPH11169690A (en) Hemocathersis membrane
TW201943430A (en) Engineered heparin bioactive matrix for clinical application of blood contacting surface and method of manufacturing the same
JPS61272057A (en) Dry serum separator
JPH0796030B2 (en) Membrane oxygenator
JP2855725B2 (en) Porous hollow fiber membrane for plasma separation
JPS641149B2 (en)
JPS631861B2 (en)