JPH032185B2 - - Google Patents

Info

Publication number
JPH032185B2
JPH032185B2 JP13639482A JP13639482A JPH032185B2 JP H032185 B2 JPH032185 B2 JP H032185B2 JP 13639482 A JP13639482 A JP 13639482A JP 13639482 A JP13639482 A JP 13639482A JP H032185 B2 JPH032185 B2 JP H032185B2
Authority
JP
Japan
Prior art keywords
rubber
carbon black
kneading
rubber composition
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13639482A
Other languages
Japanese (ja)
Other versions
JPS5927932A (en
Inventor
Yasumi Kawaguchi
Eiji Mineki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP13639482A priority Critical patent/JPS5927932A/en
Publication of JPS5927932A publication Critical patent/JPS5927932A/en
Publication of JPH032185B2 publication Critical patent/JPH032185B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はタイヤトレツド用ゴム組成物の製造
法に関し、とくに該ゴム組成物に特定のカーボン
ブラツクが特定のジエン系ゴムに偏在するミクロ
の複合構造を与え、これによつてタイヤトレツド
の耐ウエツト性、耐摩耗性および耐発熱性を、こ
れら3特性のいずれかの少なくとも低下を伴うこ
となく、均衡して改良したタイヤトレツド用ゴム
組成物の製造方法に関する。 タイヤトレツド用配合の開発に当つて、最近と
くに耐発熱性、耐ウエツト性等の安全性と耐摩耗
性、耐転動抵抗性等の経済性の両方を均衡して改
良することが望まれるようになつた。 しかしながら、従来の方法では、耐摩耗性と耐
発熱性を改良すると耐ウエツト性が低下し、耐ウ
エツト性と耐摩耗性を改良すると耐発熱性が低下
するなどという不利がおこるので、これらの安全
性と経済性を均衡して改良することは成功してい
ない。 かかる諸特性の均衡した改良を目指すものとし
て、耐摩耗性および耐ウエツト性の改良をトレツ
ドゴムによつて行ない、これに伴う耐発熱性等の
低下は耐摩耗性および耐ウエツト性に影響しない
トレツドゴム以外の部分で対策をする新しい試み
が挙げられるが、この場合も別な均衡をこわした
り製造工程を複雑化する等の新たな問題がおこり
到底満足すべきものではない。 別に特開昭54−50545号公報記載のガラス転移
温度の異なる重合体をブレンドする方法が見られ
るが、この場合ガラス転移温度50〜70℃の重合体
を使用するので耐発熱性が低下するため大型タイ
ヤへの適用は困難である。 また特開昭56−32527号公報記載の発明によれ
ば耐転動抵抗性を改良するためにトレツドゴムと
してハロゲン化ブチルを使用し、そのために起こ
る耐摩耗性の低下をカーボンの分散を良くする目
的でカーボンブラツクを2度に分けて投入混練す
る2段混練で補う方法もあるが、発明者らの試験
ではこれでは大型タイヤの耐摩耗性の低下は補い
きれないことがわかつた。 この発明の目的は、バイクなどの小型タイヤか
ら建設車両用大型タイヤに至るまでのすべてのタ
イヤに適用でき、耐摩耗性、耐ウエツト性および
耐発熱性のいずれをも少なくとも低下させること
なく、これらの特性を均衡して顕著に改良するこ
とのできるタイヤトレツド用ゴム組成物の製造法
を提供することである。 この発明の目的は、前記のごとく従来の方法で
は未だ達成されていないが、発明者らは、ゴムの
混合およびこれとカーボンブラツクとの混合につ
いて研究を重ねているうちに、種類の異なるゴム
およびカーボンブラツクを均一に分散させるとい
うゴム組成物製造法の従来の概念を越えて、特定
のゴムと特定のカーボンブラツクとの補強関係を
混練後もできるだけ維持するミクロの複合構造を
トレツド用ゴム組成物に付与することによつてゴ
ムの性能改良の新たな可能性を探るべきであると
いう考えに到達した。 そこでかかる特別のミクロの複合構造を実現す
る方法とこれを前記のこの発明の目的の達成に結
びつけることについて種々検討した結果この発明
に到達したのである。 この発明はガラス転移温度が10℃以上異なる少
なくとも2種のジエン系ゴムと平均粒子径が5mμ
以上異なる少なくとも2種のカーボンブラツクを
含む加硫可能なタイヤトレツド用ゴム組成物の製
造において、 (イ) ガラス転移温度が低い方のジエン系ゴムと平
均粒子径が大きい方のカーボンブラツクを選
び、かつこのカーボンブラツクの量を該ゴム組
成物に含まれる全カーボンブラツク量の15重量
%以上用いる、 (ロ) ガラス転移温度が高い方のジエン系ゴムと平
均粒子径が小さい方のカーボンブラツクを選
び、かつこのカーボンブラツクの量を該ゴム組
成物に含まれる全カーボンブラツク量の10重量
%以上用いる、 ことの少なくともいずれかによつて、該ゴム組成
物に含まれる全ゴム量の20重量%以上のジエン系
ゴムについて、120℃以上の温度で30秒間以上予
備練りをし、ついでこの予備練り物と該ゴム組成
物における残りのものを合わせて更に混練するこ
とを特徴とするタイヤトレツド用ゴム組成物の製
造方法である。 この発明に用いるジエン系ゴムは、天然ゴム
(以下NRという、以下同じ)、ポリイソプレンゴ
ム、シス―1,4―ポリブタジエンゴム(BR)、
その他のポリブタジエンゴム、スチレンブタジエ
ンゴム(SBR)などのごときタイヤトレツド用
ゴムとして用いる、ブタジエン、イソプレンなど
の共役ジエン単量体の単独重合体又は共重合体で
ある。このゴムのガラス転移温度は差動走査熱量
計(DSC)を用いて10℃/分の昇温速度で測定
される。たとえばこの方法で測つたガラス転移温
度はNRが−71℃、BRが−114℃である。ガラス
転移温度が10℃以上異なるジエン系ゴムの好まし
い組み合わせとしては、NR/BR、SBR/NR、
SBR/BRなどがある。これらの組み合わせでは
分数の分子の位置に示すゴムがガラス転移温度の
高い方のジエン系ゴムである。 この発明に用いるカーボンブラツクは通常のハ
ード型フアーネスブラツクであり、代表的なカー
ボンブラツクとしてはISAF、HAFあるいは
N339カーボンブラツクがあげられる。これらの
カーボンブラツクの平均粒子径は電子顕微鏡によ
つて測定される。この測定法による平均粒子径は
標準的なISAFが23mμ、標準的なHAFが29mμで
あり、前者は後者より5mμ以上小さい。 この発明において予備練りは、ガラス転移温度
が低い方のジエン系ゴムと平均粒子径が大きい方
のカーボンブラツクを選んで行なつてもよいし、
ガラス転移温度が高い方のジエン系ゴムと平均粒
子径が小さい方のカーボンブラツクを選んで行な
つてもよいし、両方とも行なつてもよい。 この場合、予備練りの温度および練り時間を前
記のごとく120℃以上の練り時間として限定する
が、これはOOC型バンバリーミキサーを用い
60rpm、充填率70%で1.5分間練りを実施し、バ
ンバリーミキサー内の冷却温水を20℃、60℃、90
℃に変えて練り、その温度チヤートから120℃以
上で練られた時間を秒単位で読みとつて120℃以
上の練り時間とするのである。 予備練りを120℃以上の温度で30秒間以上行な
わないときはこの発明の目的を達することができ
ない。 予備練りは以下例を挙げて説明するように行な
われる。すなわちガラス転移温度が10℃以上異な
る2種のジエン系ゴム、例えばNRとBRと平均
粒子径が5mμ以上異なる2種のカーボンブラツ
ク、例えばISAFとHAFを含む加硫可能なタイヤ
トレツド用ゴム組成物を製造する場合、予備練り
はガラス転移温度の低い方のBRと平均粒子径の
大きい方のHAFについて行なうか、ガラス転移
温度の高い方のNRと平均粒子径の小さい方の
ISAFについて行なうか、その両方とも行なうか
するのである。 予備練りにおけるジエン系ゴムの使用量はBR
でもNRでも前ゴム組成物に含まれる全ゴム量に
対し、20重量%以上用いることが必要である。 予備練りにおけるカーボンブラツクの使用量
は、前記ゴム組成物に含まれる全カーボンブラツ
ク量に対し、平均粒子径の大きい方のHAFでは
15重量%以上、平均粒子径の小さい方のISAFで
は10重量%以上用いる必要がある。 この発明の予備練りを経てつくつたタイヤレツ
ド用ゴム組成物を用いたタイヤトレツドは、この
ような予備練りを行なわない従来のタイヤトレツ
ドに比し耐ウエツト性、耐摩耗性および耐発熱性
を、そのいずれをも少なくとも低下させることな
く均衡して改良することができる。 ガラス転移温度が高い方のジエン系ゴムに平均
粒子径の大きいカーボンブラツクを用いたり、ま
たはこの反対にガラス転移温度の低い方のジエン
系ゴムに平均粒子径の小さい方のカーボンブラツ
クを用いて予備練りをするときは、例えばNR/
BRの組み合わせで、NRとHAFあるいはBRと
ISAFを用いて予備練りをするときは、前記3つ
の特性の一部に改良が見られても他の特性の低下
がおこり均衡した改良は望めない。 予備練りを行なうジエン系ゴムの量が製造しよ
うとするゴム組成物に含まれる全ゴム量の20重量
%より少ないときは予備練りの効果が小さく、20
重量%以上でその効果が十分認められるようにな
り、好ましいのは40重量%以上である。予備練り
に用いるジエン系ゴムの使用量の上限は、そのジ
エン系ゴムの全量を予備練りにまわすときである
が、これはトレツドゴムの配合内容によつて異な
る。多くのトレツドゴム配合では、普通この上限
が該ゴム組成物中の全ゴム量に対し、ガラス転移
温度が低い方のジエン系ゴムで70重量%、ガラス
転移温度が高い方のジエン系ゴムで90重量%とな
ることが多い。 カーボンブラツクの予備練りでの使用量が該ゴ
ム組成物に含まれる全カーボンブラツク量に対し
平均粒子径の大きい方のカーボンブラツクで15重
量%、平均粒子径の小さい方のカーボンブラツク
で10重量%より少ないときはこの発明の目的を達
成できないので、それぞれ15重量%および10重量
%以上を使用することが必要である。この予備練
りに使うカーボン使用量の上限については前記ジ
エン系ゴムの場合と同様に当該カーボンブラツク
の配合予定量の100%まで使用できる。 この発明の予備練りによつて得られる予備練り
物を、通常放置して30℃以下にした後、これに目
ざす組成物の最終配合組成と同一になるように、
不足するジエン系ゴムとカーボンブラツクを補
い、必要な軟化剤、老化防止剤、亜鉛華、加硫促
進剤等を加えて混練すなわち本練りを行なう。か
くして得られる可硫可能なタイヤトレツド用ゴム
組成物は前記諸特性を均衡して顕著に改良できる
ものである。 次に実施例によつてこの発明をさらに詳細に説
明する。 ここで試験方法は次の方法によつた。すなわち
表1〜4で示される耐摩耗性の試験はダンロツプ
ランボーン試験機を用いてBritish Standard 903
Part24 Section24.4に準じて実施した。表1〜4
の耐発熱性はダンロツプトリプソメーター試験機
を用いて室温にてBritish Standard903 Part22
Section22.3に準じて実施した。表1〜4の耐ウ
エツト性は厚さ6.0mmの加硫ゴムシートを調製し、
これをスタンレイ社製ポータブルスキツドレジス
タンステスターを用いて室温で測定した。接触路
面として20℃の水を噴霧したアスフアルト面を選
定した。 表5の試験結果はタイヤによる試験の結果であ
り表1の比較例1、実施例1、実施例4および参
考例5の各ゴム組成物につき次のようにタイヤを
つくり試験した。前記各タイヤトレツド用ゴム組
成物をゴム量約50Kgずつ練り20インチロールでそ
れぞれまとめたのち、1000R20 14Pオールスチー
ルラジアルタイヤのトレツドゴム質に適用した。 耐摩耗性試験:この試験には加硫前の上記タイ
ヤにトレツドゴム質として厚さ1.5mmの前記4種
のタイヤトレツド用ゴム組成物を比較例1、実施
例1、参考例5、実施例4の順にタイヤ円周方向
に1/4周ずつトレツドに張り合わせ加硫したタイ
ヤを使用した。上記加硫タイヤを平ボデー車駆動
軸左右外側につけ1周4Kmのテストコースを平均
時速60Kmで20周走行後、1/4点(シヨルダーから
トレツド中央へトレツド全幅の1/4の距離の点)
に対する溝深さを求め(各ゴム組成物につきn=
4)軸左右平均後、比較例1対比の耐摩耗指数を
算出した。 耐ウエツト性試験:試験タイヤは前記加硫前の
タイヤ1本につきタイヤ円周方向全周にわたり前
記4種のタイヤトレツド用ゴム組成物のいずれか
1種を貼りつける以外は前記耐摩耗性試験タイヤ
と同様に作製する。試験はアスフアルト路面にお
ける制動摩擦係数をトレーラー方式で測定するこ
とにより行なう。時速60Kmで3回測定した値の平
均値を比較例1のゴム組成物をトレツドとするタ
イヤを100として指数化して示す。 耐発熱性試験:試験タイヤは耐ウエツト性試験
の場合と同じものである。試験はドラム径1.7m、
タイヤ内圧7.25Kg/cm2、荷重2425Kg、速度60Km/
Hで1時間走行後の1/4点でのトレツドゴム内部
温度で示す。内部温度の測定はあらかじめ測定箇
所に表面から深さ10mmの所まで径2mmの孔をあけ
ておき、走行終了後直ちに熱電対で測定する。 転動抵抗性試験:試験タイヤは耐ウエツト性試
験の場合と同じものである。試験はドラム径1.7
m、タイヤ内圧7.25Kg/cm2、荷重2425Kgとし
時速100Kmで30分間予備走行後、時速50Kmおよび
時速100Kmで測定し、両者の平均値を比較例1の
ゴム組成物をトレツドとするタイヤを100として
指数化して示した。実施例 1〜4比較例 1参考例 1〜5 タイヤトレツド用ゴム組成物の製造における予
備練りの効果を配合比NR/BR=50/50、
ISAF/HAF=25/25の場合について検討した。 予備練りは、OOC型バンバリーミキサーを用
い60rpm、充填率70%で1.5分間練りを実施した。
このときバンバリーミキサー内の冷却温水を20
℃、60℃、90℃に変えて練り、その温度チヤート
から120℃以上で練られた時間を秒単位で読みと
り120℃以上の練り時間とした。 次いで予備練りしたゴムを約3時間放置し、30
℃以下にした後、これに目ざすゴム組成物の最終
配合組成と同一になるように、不足するジエン系
ゴムとカーボンブラツクは補い、アロマテイツク
オイル6.0(以下単位はいずれも重量部)、ステア
リン酸3.0、老化防止剤(大内新興化学工業株式
会社製、商品名810NA)1.0、亜鉛華3.0、いおう
1.5、加硫促進剤(大内新興化学工業株式会社製、
商品名MSA)1.0を加え、本練りを50℃温水と充
填率80%、60rpmで3分間練りで実施し、これを
150℃、40分間プレス加硫後室内試験を実施した。 結果を表1に示す。
The present invention relates to a method for producing a rubber composition for tire treads, and in particular provides the rubber composition with a micro-composite structure in which a specific carbon black is unevenly distributed in a specific diene rubber, thereby improving the wet resistance of the tire tread. The present invention relates to a method for producing a rubber composition for tire tread, which has improved abrasion resistance and heat resistance in a balanced manner without reducing any of these three properties. When developing formulations for tire treads, it has recently become desirable to balance and improve both safety, such as heat resistance and wet resistance, and economic efficiency, such as abrasion resistance and rolling resistance. Summer. However, with conventional methods, improving abrasion resistance and heat resistance reduces wet resistance, and improving wet resistance and abrasion resistance reduces heat resistance. It has not been possible to improve the balance between gender and economy. In order to achieve a balanced improvement in these properties, the abrasion resistance and wet resistance are improved by using treaded rubber. Although new attempts have been made to address this issue, new problems arise such as disrupting other balances and complicating the manufacturing process, so this is not completely satisfactory. Another method described in JP-A-54-50545 is to blend polymers with different glass transition temperatures, but in this case, a polymer with a glass transition temperature of 50 to 70°C is used, resulting in a decrease in heat resistance. Application to large tires is difficult. Furthermore, according to the invention described in JP-A No. 56-32527, halogenated butyl is used as a tread rubber to improve rolling resistance, and the purpose of this is to improve the dispersion of carbon to counteract the resulting decrease in wear resistance. There is also a two-stage kneading method in which carbon black is added and kneaded in two batches, but tests conducted by the inventors have shown that this method cannot compensate for the decrease in wear resistance of large tires. It is an object of the present invention to be applicable to all tires, from small tires for motorcycles to large tires for construction vehicles, and to provide a tire that can be applied to all types of tires, from small tires such as motorcycles to large tires for construction vehicles, without reducing any of their abrasion resistance, wet resistance, and heat resistance. An object of the present invention is to provide a method for producing a rubber composition for tire tread, which can balance and significantly improve the properties of the tire. Although the object of the present invention has not yet been achieved by conventional methods as described above, the inventors have repeatedly researched the mixing of rubber and the mixing of this with carbon black. Going beyond the conventional concept of rubber composition manufacturing methods of uniformly dispersing carbon black, we have developed a rubber composition for toreading that has a micro-composite structure that maintains the reinforcing relationship between a specific rubber and a specific carbon black as much as possible even after kneading. We arrived at the idea that we should explore new possibilities for improving the performance of rubber by adding Therefore, the present invention was arrived at as a result of various studies on a method of realizing such a special micro-composite structure and how to link this to the achievement of the above-mentioned object of the present invention. This invention consists of at least two diene rubbers with glass transition temperatures different by 10°C or more and an average particle size of 5 mμ.
In the production of a vulcanizable tire tread rubber composition containing at least two different types of carbon blacks, (a) a diene rubber with a lower glass transition temperature and a carbon black with a larger average particle size are selected, and (b) selecting a diene rubber with a higher glass transition temperature and a carbon black with a smaller average particle diameter; and at least one of the following: using at least 10% by weight of the total amount of carbon black contained in the rubber composition; Production of a rubber composition for tire treads, characterized in that a diene rubber is pre-kneaded at a temperature of 120°C or higher for 30 seconds or more, and then the pre-kneaded product and the remainder of the rubber composition are further kneaded. It's a method. The diene rubbers used in this invention include natural rubber (hereinafter referred to as NR, the same hereinafter), polyisoprene rubber, cis-1,4-polybutadiene rubber (BR),
It is a homopolymer or copolymer of conjugated diene monomers such as butadiene and isoprene, which is used as tire tread rubber such as other polybutadiene rubbers and styrene-butadiene rubbers (SBR). The glass transition temperature of this rubber is measured using a differential scanning calorimeter (DSC) at a heating rate of 10° C./min. For example, the glass transition temperature measured using this method is -71°C for NR and -114°C for BR. Preferred combinations of diene rubbers with glass transition temperatures different by 10°C or more include NR/BR, SBR/NR,
There are SBR/BR etc. In these combinations, the rubber shown at the position of the fractional molecule is the diene rubber with a higher glass transition temperature. The carbon black used in this invention is a normal hard furnace black, and representative carbon blacks include ISAF, HAF, and
N339 carbon black is mentioned. The average particle size of these carbon blacks is measured using an electron microscope. The average particle diameter determined by this measurement method is 23 mμ for standard ISAF and 29 mμ for standard HAF, with the former being more than 5 mμ smaller than the latter. In this invention, the pre-kneading may be carried out by selecting diene rubber with a lower glass transition temperature and carbon black with a larger average particle size,
The diene rubber having a higher glass transition temperature and the carbon black having a smaller average particle size may be selected, or both may be used. In this case, the pre-kneading temperature and kneading time are limited to 120℃ or higher as described above, but this is done using an OOC type Banbury mixer.
Kneading was carried out for 1.5 minutes at 60 rpm and a filling rate of 70%, and the cooling hot water in the Banbury mixer was mixed at 20℃, 60℃, and
The kneading temperature is changed to 120°C, and the kneading time at 120°C or higher is determined from the temperature chart in seconds. If preliminary kneading is not carried out at a temperature of 120° C. or higher for 30 seconds or more, the object of this invention cannot be achieved. Pre-kneading is carried out as described below with reference to examples. That is, a vulcanizable tire tread rubber composition containing two types of diene rubbers, such as NR and BR, having glass transition temperatures different by 10° C. or more, and two types of carbon blacks, such as ISAF and HAF, having an average particle size different by 5 mμ or more. When manufacturing, pre-mixing is performed on BR, which has a lower glass transition temperature, and HAF, which has a larger average particle size, or NR, which has a higher glass transition temperature, and HAF, which has a smaller average particle size.
Either follow ISAF or do both. The amount of diene rubber used in preliminary kneading is BR
However, even with NR, it is necessary to use 20% by weight or more of the total amount of rubber contained in the rubber composition. The amount of carbon black used in the preliminary kneading is determined based on the total amount of carbon black contained in the rubber composition, for HAF with a larger average particle size.
It is necessary to use 15% by weight or more, and for ISAF with a smaller average particle size, 10% by weight or more. A tire tread using the rubber composition for tire leads made through preliminary mixing of the present invention has better wet resistance, abrasion resistance, and heat resistance than conventional tire treads that do not undergo such preliminary mixing. can also be improved in a balanced manner, at least without deterioration. Use carbon black with a larger average particle size for the diene rubber with a higher glass transition temperature, or conversely, use carbon black with a smaller average particle size for the diene rubber with a lower glass transition temperature. When kneading, for example, use NR/
With the combination of BR, NR and HAF or BR and
When pre-mixing is performed using ISAF, even if some of the above three properties are improved, other properties are degraded and a balanced improvement cannot be expected. If the amount of diene rubber to be pre-kneaded is less than 20% by weight of the total amount of rubber contained in the rubber composition to be manufactured, the effect of pre-kneading is small;
The effect becomes sufficiently noticeable when the amount is at least 40% by weight, and is preferably at least 40% by weight. The upper limit for the amount of diene rubber used in the pre-kneading is when the entire amount of the diene rubber is used in the pre-kneading, but this varies depending on the content of the tread rubber. In many treaded rubber formulations, this upper limit is usually 70% by weight for diene rubbers with lower glass transition temperatures and 90% by weight for diene rubbers with higher glass transition temperatures, based on the total amount of rubber in the rubber composition. It is often %. The amount of carbon black used in the preliminary kneading is 15% by weight of carbon black with a larger average particle size and 10% by weight of carbon black with a smaller average particle size, based on the total amount of carbon black contained in the rubber composition. It is necessary to use more than 15% by weight and 10% by weight, respectively, since the purpose of this invention cannot be achieved if the amount is less. Regarding the upper limit of the amount of carbon used in this preliminary kneading, as in the case of the diene rubber, up to 100% of the planned amount of carbon black can be used. After the pre-kneaded material obtained by the pre-kneading process of this invention is usually left to cool down to 30°C or below,
The missing diene rubber and carbon black are supplemented, necessary softeners, anti-aging agents, zinc white, vulcanization accelerators, etc. are added, and kneading, ie, main kneading, is performed. The thus obtained vulcanizable rubber composition for tire tread can balance and significantly improve the above-mentioned properties. Next, the present invention will be explained in more detail with reference to Examples. The test method here was as follows. In other words, the abrasion resistance tests shown in Tables 1 to 4 were conducted using a Dunlot Planbone tester according to British Standard 903.
Conducted in accordance with Part 24 Section 24.4. Tables 1-4
Heat resistance was determined using a Dunlop tripsomer tester at room temperature according to British Standard 903 Part 22.
Performed in accordance with Section 22.3. The wet resistance in Tables 1 to 4 was determined by preparing a vulcanized rubber sheet with a thickness of 6.0 mm.
This was measured at room temperature using a portable skid resistance tester manufactured by Stanley. Asphalt surface sprayed with 20°C water was selected as the contact road surface. The test results in Table 5 are the results of tests using tires, and tires were made and tested as follows for each of the rubber compositions of Comparative Example 1, Example 1, Example 4, and Reference Example 5 in Table 1. Approximately 50 kg of each of the above tire tread rubber compositions was kneaded and rolled up using a 20-inch roll, and then applied to the tread rubber of a 1000R20 14P all-steel radial tire. Wear resistance test: In this test, the four types of tire tread rubber compositions of Comparative Example 1, Example 1, Reference Example 5, and Example 4 were applied as tread rubber to the above-mentioned tire before vulcanization. Tires were used that were laminated and vulcanized on a tread for 1/4 turn in the circumferential direction of the tire. After driving the above vulcanized tires on the left and right outer sides of the drive shaft of a flat body vehicle and driving 20 laps at an average speed of 60 km on a test course of 4 km per lap, 1/4 point (point at a distance of 1/4 of the total width of the tread from the shoulder to the center of the tread)
(n= for each rubber composition)
4) After averaging the left and right sides of the shaft, the wear resistance index compared to Comparative Example 1 was calculated. Wet resistance test: The test tires were the same as the wear resistance test tires described above, except that one of the four tire tread rubber compositions was applied over the entire circumferential direction of each tire before vulcanization. Prepare in the same manner. The test is conducted by measuring the braking friction coefficient on an asphalt road surface using a trailer method. The average value of the values measured three times at a speed of 60 km/h is expressed as an index and the tire whose tread is the rubber composition of Comparative Example 1 is set as 100. Heat resistance test: The test tires are the same as in the wet resistance test. The test was conducted using a drum diameter of 1.7m.
Tire internal pressure 7.25Kg/ cm2 , load 2425Kg, speed 60Km/
It is shown as the internal temperature of the tread rubber at the 1/4 point after running for 1 hour at H. To measure the internal temperature, a hole with a diameter of 2 mm is drilled in advance to a depth of 10 mm from the surface at the measuring point, and the temperature is measured with a thermocouple immediately after the vehicle has finished running. Rolling resistance test: The test tires are the same as in the wet resistance test. Tested on drum diameter 1.7
After preliminary running at 100 km/h for 30 minutes with a tire internal pressure of 7.25 Kg/cm 2 and a load of 2425 kg, measurements were taken at 50 km/h and 100 km/h. It is expressed as an index. Examples 1 to 4 , Comparative Example 1 , Reference Examples 1 to 5 The effect of pre-kneading in the production of rubber compositions for tire treads was evaluated using a compounding ratio of NR/BR=50/50,
The case of ISAF/HAF=25/25 was considered. Preliminary kneading was carried out using an OOC type Banbury mixer at 60 rpm and a filling rate of 70% for 1.5 minutes.
At this time, add 20% of the cooled hot water in the Banbury mixer.
℃, 60℃, and 90℃, and from the temperature chart, the kneading time at 120℃ or higher was read in seconds, and the kneading time at 120℃ or higher was determined. Next, leave the pre-kneaded rubber for about 3 hours,
℃ or less, supplement the missing diene rubber and carbon black and add aromatic oil 6.0 (all parts by weight below) and stearin so that the final composition is the same as the desired rubber composition. Acid 3.0, anti-aging agent (manufactured by Ouchi Shinko Chemical Co., Ltd., product name 810NA) 1.0, zinc white 3.0, sulfur
1.5, vulcanization accelerator (manufactured by Ouchi Shinko Chemical Co., Ltd.,
Product name MSA) 1.0 was added, and the main kneading was carried out with warm water at 50°C, filling rate 80%, and 60 rpm for 3 minutes.
After press vulcanization at 150°C for 40 minutes, an indoor test was conducted. The results are shown in Table 1.

【表】【table】

【表】 この発明の実施例1〜4と従来の製造法を示す
比較例1とを比較すれば、BRに比してガラス転
移温度が43℃高いNRに対して、HAFより平均
粒子径が6mμ小さいISAFを用い予備練りをする
ことによつて耐摩耗性、耐発熱性および耐ウエツ
ト性がいずれも改良されることがわかる。実施例
1ではさらにガラス転移温度の低い方のBRも平
均粒子径の大きい方のHAFと予備練りをし両予
備練り物を合わせる方法をとつていてとくに改良
の効果が顕著である。 予備練りを行なつても参考例1のごとくISAF
の使用量が全カーボンブラツク量の10重量%に満
たないときは耐摩耗性と耐発熱性は改良されても
耐ウエツト性が低下する。また予備練りの場合、
参考例2と3のごとく120℃以上の練り時間が30
秒に満たないときは試験した3つの特性のうち1
ないし2は却つて低下する。また参考例4のごと
く予備練りを、実施例1と正反対にNRとHAF、
BRとISAFの組み合わせでそれぞれ実施しても
効果がない。また、参考例5のごとくNR、BR、
ISAFおよびHAFを無差別に一諸に予備練りをし
ても効果がない。実施例 5,6比較例 2参考例 6 予備練りの効果を配合比NR/BR=90/10、
ISAF/HAF=40/10の場合について検討した。
予備練り、最終配合組成に対する不足分の追加、
本練り、成形、加硫および試験は前記実施例1〜
4等と同じである。 結果を表2に示す。
[Table] Comparing Examples 1 to 4 of this invention and Comparative Example 1 showing the conventional manufacturing method, it is found that NR has a glass transition temperature 43°C higher than BR, but the average particle size is higher than that of HAF. It can be seen that abrasion resistance, heat resistance, and wet resistance are all improved by pre-mixing using ISAF that is 6 mμ smaller. In Example 1, BR, which has a lower glass transition temperature, is premixed with HAF, which has a larger average particle size, and the two premixes are combined, and the improvement effect is particularly remarkable. ISAF remains the same as in Reference Example 1 even after preliminary training.
When the amount of carbon black used is less than 10% by weight of the total amount of carbon black, the wet resistance decreases even if the wear resistance and heat resistance are improved. Also, in the case of preliminary training,
As in Reference Examples 2 and 3, the kneading time at 120℃ or higher is 30
If the time is less than 1 second, one of the three properties tested
2 to 2 on the contrary decreases. Also, pre-kneading was carried out as in Reference Example 4, and NR and HAF were mixed in the exact opposite way to Example 1.
Even if BR and ISAF are used in combination, there is no effect. Also, as in Reference Example 5, NR, BR,
Drilling ISAF and HAF indiscriminately all at once is ineffective. Examples 5 and 6 , Comparative Example 2 , Reference Example 6 The effect of pre-kneading was determined by mixing ratio NR/BR=90/10,
The case of ISAF/HAF=40/10 was considered.
Pre-kneading, addition of deficiencies to the final composition,
Main kneading, molding, vulcanization and testing were carried out in Examples 1 to 3.
Same as 4th prize. The results are shown in Table 2.

【表】【table】

【表】 実施例5はBRに比してガラス転移温度が10℃
以上高いNRに対して、HAFより平均粒子径が
5mμ以上小さいISAFを予備練りしたものであり、
実施例6はさらにガラス転移温度の低い方のBR
の方もカーボン量はやや少ないが平均粒子径の大
きい方のHAFと予備練りをしたものであるが、
これらと従来の製造法を示す比較例2とを比較す
れば、耐摩耗性および耐発熱性が改良され耐ウエ
ツト性も若干の改良があるか少なくとも同等程度
に維持されることがわかる。 ガラス転移温度の低い方のBRに対して平均粒
子径の大きい方のHAFを用い予備練りを行なつ
ても参考例6のごとくゴム組成物の最終配合組成
に含まれる全カーボンブラツク量の15重量%より
小さい量(参考例6では10重量%)のHAFを使
用したのでは前記諸特性の均衡した改良という)
この発明の効果が認められない。実施例7〜9比較例 3参考例 7 予備練りの効果を配合比NR/SBR=70/30、
ISAF/HAF=30/20の場合について検討した。
予備練りから本練り加硫、試験にいたる操作は実
施例1〜4と同じである。結果を表3に示す。
[Table] Example 5 has a glass transition temperature of 10°C compared to BR.
For higher NR, the average particle size is smaller than HAF.
It is a pre-kneaded ISAF smaller than 5mμ,
Example 6 is a BR with a lower glass transition temperature.
This is also pre-mixed with HAF, which has a slightly smaller amount of carbon but a larger average particle size.
Comparing these with Comparative Example 2 showing a conventional manufacturing method, it can be seen that the abrasion resistance and heat resistance are improved, and the wet resistance is also slightly improved or at least maintained at the same level. Even if pre-kneading is performed using HAF with a larger average particle size than BR with a lower glass transition temperature, as in Reference Example 6, 15% of the total amount of carbon black contained in the final compounding composition of the rubber composition is % (10% by weight in Reference Example 6) is considered to be a balanced improvement in the above properties)
The effect of this invention is not recognized. Examples 7 to 9 , Comparative Example 3 , Reference Example 7 The effect of pre-kneading was determined by mixing ratio NR/SBR=70/30,
The case of ISAF/HAF=30/20 was considered.
The operations from preliminary kneading to main kneading and vulcanization to testing were the same as in Examples 1 to 4. The results are shown in Table 3.

【表】【table】

【表】 ガラス転移温度は、SBRの方がNRより14℃高
い。実施例7〜9と従来の方法である比較例3を
くらべれば、SBRの方にISAF又はNRの方に
HAFを組み合わせて予備練りするか、両方の予
備練りを組み合わせることによつて、耐摩耗性、
耐発熱性、耐ウエツト性の3特性をいずれかの特
性の低下という犠牲なしに均衡して改良すること
ができることがわかる。参考例7はSBRおよび
NRに対するカーボンブラツクの組み合わせが実
施例9と全く逆の場合であつて耐ウエツト性が著
しく低下する。実施例 10,11比較例 4 予備練りの効果を配合比SBR/BR=80/20、
ISAF/HAF=25/25の場合について検討した。
予備練りから本練り、加硫、試験にいたる操作は
実施例1〜4と同じである。この場合、ガラス転
移温度はSBRの方がBRより57℃高い。結果を表
4に示す。
[Table] The glass transition temperature of SBR is 14°C higher than that of NR. Comparing Examples 7 to 9 and Comparative Example 3, which is a conventional method, there is a difference between SBR and ISAF or NR.
By pre-mixing in combination with HAF or by combining both pre-mixes, wear resistance,
It can be seen that the three properties of heat resistance and wet resistance can be improved in a balanced manner without sacrificing any deterioration of either property. Reference example 7 is SBR and
The combination of NR and carbon black is completely opposite to that of Example 9, and the wet resistance is significantly reduced. Examples 10 and 11 , Comparative Example 4 The effect of pre-kneading was determined by mixing ratio SBR/BR=80/20,
The case of ISAF/HAF=25/25 was considered.
The operations from preliminary kneading to main kneading, vulcanization, and testing were the same as in Examples 1 to 4. In this case, the glass transition temperature of SBR is 57°C higher than that of BR. The results are shown in Table 4.

【表】【table】

【表】 実施例10,11と従来の方法である比較例4とを
くらべると、SBRにISAFを合わせる予備練り又
はこれとBRとHAFを合わせる予備練りの併用を
行なうことにより耐摩耗性、耐発熱性、耐ウエツ
ト性が均衡して顕著に改良されることがわかる。 次に実施例1、実施例4、比較例1、参考例5
によるタイヤトレツド用ゴム組成物によりタイヤ
を製造し前述の1000R20 14Pオールスチールラジ
アルタイヤによる耐摩耗性試験、耐ウエツト性試
験、耐発熱性試験、転動抵抗性試験を行なつた結
果を表5に示す。
[Table] Comparing Examples 10 and 11 with Comparative Example 4, which is a conventional method, it was found that the wear resistance and resistance were improved by pre-mixing SBR with ISAF, or by combining this with pre-mixing with BR and HAF. It can be seen that heat generation properties and wet resistance are balanced and significantly improved. Next, Example 1, Example 4, Comparative Example 1, Reference Example 5
Table 5 shows the results of a wear resistance test, a wet resistance test, a heat resistance test, and a rolling resistance test using the above-mentioned 1000R20 14P all-steel radial tire manufactured using a tire tread rubber composition according to the above-mentioned method. .

【表】 実施例1および4が示すごとくこの発明の予備
練りによつて、従来の方法(比較例1)にくらべ
て前記4特性に均衡した顕著な改良が認められ
る。参考例5のごとくNR,BR,ISAF,HAF
を無差別に一諸に予備練りしたのではこのような
均衡のとれた改良効果は全く認められない。 この発明の予備練りを行なつて製造されるタイ
ヤトレツド用ゴム組成物よりつくられるタイヤは
従来の方法では得られなかつた、耐ウエツト性、
耐摩耗性および耐発熱性の均衡のとれた改良、す
なわち上記3つの特性のいずれかをすくなくとも
低下させるような不利益をともなわない改良を、
ゴム加工技術的にきわめて実施し易い方法で始め
て達成したものであり、しかもかかる予備練りを
行なうジエン系ゴム種やゴム量、カーボンブラツ
クの種類、量の選択等により、これら3つの特性
の改良の程度をある程度コントロールすることが
可能であり、さらに適切な選択により転動抵抗性
をも同時に改良することを可能にしたものであり
工業的意義が深いものである。
[Table] As shown in Examples 1 and 4, the preliminary kneading of the present invention provides a significant improvement in balance in the four properties as compared to the conventional method (Comparative Example 1). NR, BR, ISAF, HAF as in Reference Example 5
Such a balanced improvement effect would not be observed if all were pre-mixed indiscriminately. Tires made from the tire tread rubber composition produced by the pre-kneading process of this invention have excellent wet resistance and properties that could not be obtained by conventional methods.
A balanced improvement in wear resistance and heat generation resistance, that is, an improvement that does not have the disadvantage of reducing at least any of the above three properties,
This was achieved for the first time using a method that is extremely easy to implement in terms of rubber processing technology, and it is possible to improve these three properties by selecting the type and amount of diene rubber used in the preliminary mixing, the type and amount of carbon black, etc. It is possible to control the degree to some extent, and furthermore, it is possible to improve rolling resistance at the same time through appropriate selection, which is of great industrial significance.

Claims (1)

【特許請求の範囲】 1 ガラス転移温度が10℃以上異なる少なくとも
2種のジエン系ゴムと平均粒子径が5mμ以上異な
る少なくとも2種のカーボンブラツクを含む加硫
可能なタイヤトレツド用ゴム組成物の製造におい
て、 (イ) ガラス転移温度が低い方のジエン系ゴムと平
均粒子径が大きい方のカーボンブラツクを選
び、かつこのカーボンブラツクの量を該ゴム組
成物に含まれる全カーボンブラツク量の15重量
%以上用いる、 (ロ) ガラス転移温度が高い方のジエン系ゴムと平
均粒子径が小さい方のカーボンブラツクを選
び、かつこのカーボンブラツクの量を該ゴム組
成物に含まれる全カーボンブラツク量の10重量
%以上用いる、 ことの少なくともいずれかによつて、該ゴム組成
物に含まれる全ゴム量の20重量%以上のジエン系
ゴムについて、120℃以上の温度で30秒間以上予
備練りをし、ついでこの予備練り物と該ゴム組成
物における残りのものを合わせて更に混練するこ
とを特徴とするタイヤトレツド用ゴム組成物の製
造方法。
[Scope of Claims] 1. In the production of a vulcanizable tire tread rubber composition comprising at least two types of diene rubbers having glass transition temperatures different by 10°C or more and at least two types of carbon blacks having average particle diameters different by 5 mμ or more. (a) Select a diene rubber with a lower glass transition temperature and a carbon black with a larger average particle size, and set the amount of this carbon black to 15% by weight or more of the total amount of carbon black contained in the rubber composition. (b) Select a diene rubber with a higher glass transition temperature and a carbon black with a smaller average particle size, and adjust the amount of this carbon black to 10% by weight of the total amount of carbon black contained in the rubber composition. By at least one of the above methods, the diene rubber of 20% by weight or more of the total rubber contained in the rubber composition is pre-kneaded at a temperature of 120°C or more for 30 seconds or more, and then this preliminary kneading is performed. A method for producing a rubber composition for tire treads, which comprises further kneading the kneaded material and the remainder of the rubber composition.
JP13639482A 1982-08-06 1982-08-06 Production of tire-tread rubber composition Granted JPS5927932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13639482A JPS5927932A (en) 1982-08-06 1982-08-06 Production of tire-tread rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13639482A JPS5927932A (en) 1982-08-06 1982-08-06 Production of tire-tread rubber composition

Publications (2)

Publication Number Publication Date
JPS5927932A JPS5927932A (en) 1984-02-14
JPH032185B2 true JPH032185B2 (en) 1991-01-14

Family

ID=15174128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13639482A Granted JPS5927932A (en) 1982-08-06 1982-08-06 Production of tire-tread rubber composition

Country Status (1)

Country Link
JP (1) JPS5927932A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819275B2 (en) * 1987-09-09 1996-02-28 日本合成ゴム株式会社 Method for producing vulcanizable elastomer composition
JP3392246B2 (en) * 1995-01-06 2003-03-31 横浜ゴム株式会社 Rubber composition and method for producing the same
JP3392249B2 (en) * 1994-12-28 2003-03-31 横浜ゴム株式会社 Rubber composition and method for producing the same
JP6153257B2 (en) * 2013-09-10 2017-06-28 東洋ゴム工業株式会社 Manufacturing method of rubber wet masterbatch
JP6195504B2 (en) 2013-11-11 2017-09-13 東洋ゴム工業株式会社 Rubber composition
JP7119639B2 (en) * 2018-06-26 2022-08-17 住友ゴム工業株式会社 Method for producing rubber composition

Also Published As

Publication number Publication date
JPS5927932A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
US4342670A (en) Process for preparing rubber compositions for tire treads
JP3406105B2 (en) Pneumatic tire
US4963615A (en) Pneumatic tires
JPS592694B2 (en) Method for producing rubber composition for tire tread
US4309318A (en) Tread compositions for tires having low rolling resistance
JP3375424B2 (en) Pneumatic tire
JP2999128B2 (en) Pneumatic tire
JPS62112640A (en) Rubber composition for tire tread
US4417005A (en) Rubber compositions for tire treads
US4323485A (en) Rubber compositions for tire treads having low rolling resistance
JPH11349732A (en) Rubber composition for tire
JPH032185B2 (en)
JPH0776634A (en) Rubber composition for tire tread
JPH06287356A (en) Pneumatic tire
JPH0424374B2 (en)
JP3038501B2 (en) Radial tire
JPH1160816A (en) Rubber composition for tire tread
JP3240770B2 (en) Method for producing rubber composition
JPS6215104A (en) Radial tire
JP3410980B2 (en) Rubber composition for tire tread
JP2006291105A (en) Rubber composition for tread, and pneumatic tire
JPS58109545A (en) Rubber composition
JP2002241542A (en) Rubber composition for tire tread and pneumatic tire
JP2004307619A (en) Rubber composition and pneumatic tire using it as tread rubber
JPH07188467A (en) Rubber composition