JPH03218485A - Sonar signal processor - Google Patents

Sonar signal processor

Info

Publication number
JPH03218485A
JPH03218485A JP1257790A JP1257790A JPH03218485A JP H03218485 A JPH03218485 A JP H03218485A JP 1257790 A JP1257790 A JP 1257790A JP 1257790 A JP1257790 A JP 1257790A JP H03218485 A JPH03218485 A JP H03218485A
Authority
JP
Japan
Prior art keywords
array
receiver
overlapped
time delay
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1257790A
Other languages
Japanese (ja)
Inventor
Osamu Sekiguchi
治 関口
Hajime Fujita
肇 藤田
Akihisa Fukami
明久 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1257790A priority Critical patent/JPH03218485A/en
Publication of JPH03218485A publication Critical patent/JPH03218485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain high azimuth resolution by moving a traveling object so that one part of an array composed of parallelly provided photodetectors at equal intervals can be overlapped at the time of reception, and correcting received data by using the information of the overlapped part. CONSTITUTION:At first, the array receives a signal like 2A at certain time and the traveling object receives waves while being turned to a state like 2B by the influence of waves. The reception signals as the outputs from the respec tive receivers at the overlapped part between the two arrays are received with the same sine wave as the transmitted wave as reflected wave at the respective receivers. At the deviated array 2B, the time delay of propagation is generated corresponding to the distance of each receiver. The distance of each receiver is set with the position of the first overlapped receiver as a reference on a lateral axis and the time delay of the receiver on the corresponding array 2A is plotted on a longitudinal axis so as to prepare a linear graph. An equation is calculated from this graph and the time delay of the arbitrary receiver output on the overlapped array 2B to the array 2A is calculated. Then, the already known time delay is corrected to the received signal obtained at each receiver of the overlapped part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、音波動の到来方向を求める装置に係り、特に
,受波時に高い方位分解能を得る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for determining the direction of arrival of sound waves, and particularly to a device that obtains high azimuth resolution during wave reception.

〔従来の技術〕[Conventional technology]

従来,高い方位分解能を実現する方式は合成開口を開い
た合成開ロレーダが実用化されている。
Conventionally, a synthetic aperture radar has been put into practical use to achieve high azimuth resolution.

またソーナの分野では同様に合成開口法を用いたものが
、ジエイ・エス・二一に54巻3号(1973年)第7
99頁から第802頁(The Jounal ofA
coustical Society of Amer
ica VoQ. 5 4NQ3 (1973)pp7
99−802)において論しられている。これは、合成
開ロレーダと同じ原理であり、アレイを正確に直線上を
移動させなければならない。
In addition, in the field of sonar, a method using the synthetic aperture method was published in G.S.21, Vol. 54, No. 3 (1973), No. 7.
Pages 99 to 802 (The Journal of A
Coustical Society of Amer
ica VoQ. 5 4NQ3 (1973) pp7
99-802). This is the same principle as synthetic open radar, and the array must be moved accurately in a straight line.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では,受波器が並んでぃるアレイを正確に
直線上を移動させる技術が必要であった。
The above-mentioned conventional technology requires a technique for accurately moving an array of receivers in a straight line.

実際には水中ソーナの場合は,波などの影響により搭載
した船舶が揺れるため、アレイを正確に直線上を移動さ
せることができなかった。
In reality, in the case of underwater sonar, the array cannot be moved accurately in a straight line because the ship on which it is mounted shakes due to the effects of waves and other factors.

本発明の目的は、受波器が並んでぃるアレイが、多少、
直線上を離れたとしても,アレイが移動した距離にほぼ
相当する仮想的なアレイ長で受波した結果と同様な方位
分解能を実現することである.本発明の他の目的は,サ
イドロープ(副極)を抑圧することにある。
The purpose of the present invention is to provide an array in which receivers are lined up to some extent.
The aim is to achieve azimuth resolution similar to the result obtained by receiving waves with a virtual array length approximately equivalent to the distance traveled by the array, even if the array moves away from the straight line. Another object of the present invention is to suppress side ropes.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明のソーナ信号処理装
置は等間隔に並んだ受波器からなるアレイを移動体に取
り付け、バースト正弦波か線形FM波か符合化パルスか
の音波を放射し、その反射波を受けることにより物体の
位置や方向を探知する装置において、受波時に前記アレ
イの一部がオーバラソプするように移動体を移動させ、
オーバラップしている部分の情報を利用して、オーバラ
ップしていない部分の受波データを補正することにより
、全体としてアレイの移動距離にほほ相当するアレイ長
でビームフオーミングを行うことを特徴とする。
In order to achieve the above object, the sonar signal processing device of the present invention attaches to a moving body an array consisting of receivers lined up at equal intervals, and emits sound waves in the form of burst sine waves, linear FM waves, or encoded pulses. , in a device for detecting the position and direction of an object by receiving the reflected waves, a moving object is moved so that a part of the array overlaps when receiving the waves,
The feature is that beamforming is performed with an array length that roughly corresponds to the distance traveled by the array as a whole by correcting the received wave data of the non-overlapping part using the information of the overlapping part. shall be.

〔作用〕[Effect]

アレイを移動させながら物体からの反射波を受けて、物
体の存在する方位を求めるときに,アレイの一部をオー
バラップさせ,このオーバラップさせた部分で、オーバ
ラップしていない部分の受波信号を補正するため、全体
として、アレイが移動した距離で得た受波信号と同様な
信号を得ることが可能であるため、船舶が多少揺れても
、高い方位分解能が得られる。
When moving the array and receiving reflected waves from an object to determine the direction of the object, a part of the array is overlapped, and this overlapped part receives waves from the non-overlapping part. Since the signal is corrected, it is possible to obtain a signal similar to the received signal obtained over the distance traveled by the array as a whole, so even if the ship sways to some extent, high azimuth resolution can be obtained.

〔実施例〕〔Example〕

以下,発明の実施例を図面を用いて説明する。 Embodiments of the invention will be described below with reference to the drawings.

第1図は5本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

本発明では、アレイの一部をオーバラップさせなから受
波信号を取り込み、オーバラップさせた部分の情報でオ
ーバラップしていない部分の受波信号を補正することに
より、前回のアレイの延長上で受波したことと同様な効
果を持たせることができる。この効果を実現するために
は,アレイ上の各受波器出力のデータを信号処理装置へ
転送する入出力インターフェースと、その出力データを
記憶する記憶装置.演算を行う中央演算装置,オーバラ
ップさせた部分で得たデータの相関を求める信号処理装
置,オーバラップしていない部分のデータを補正して方
位を求めるために行う高速フ−リエ変換装置,演算結果
を表示する表示装置などから構成する必要がある。これ
らの装置で、中央演算装置が高速であれば、相関や高速
フーリエ変換等の処理も中央演算装置が行える。
In the present invention, the received signals are acquired without overlapping a part of the array, and the received signals of the non-overlapping part are corrected with the information of the overlapped part. It is possible to have the same effect as receiving waves with. In order to achieve this effect, an input/output interface is required to transfer the data output from each receiver on the array to the signal processing device, and a storage device is required to store the output data. A central processing unit that performs calculations, a signal processing device that calculates the correlation between data obtained in overlapping areas, a fast Fourier transform device that corrects data in non-overlapping areas to determine direction, and calculations. It needs to consist of a display device to display the results. In these devices, if the central processing unit is high-speed, the central processing unit can also perform processing such as correlation and fast Fourier transform.

本発明の物理的な原理を第2図から第4図までを用いて
説明する。以下、送波としてバースト正弦波を仮定する
。まず.アレイがある時刻において第2図の2Aのよう
な状態で信号を受けたとする6次に、移動体が直線上を
進むはずであったが、波などの影響により第2図の2B
のような状態になって信号を受波したとする。ここで,
二つのアレイがオーバラップした部分の各受波器出力の
受波波形をi測すれば第3図のようになる。すなわち,
各受波器には送信波と同じ正弦波が反射波として受信さ
れ、ずれた方のアレイ2Bには各受波器の距離に応じた
伝播の時間遅延が生じる。このオーバラップしているア
レイ2B上の各受渡器の時間遅延は規則的なものであり
、横軸に最初にオーバラツブした受波器の位置を基準に
して各受波器の距離をとり、縦軸に対応するアレイ2A
上の受波器との時間遅延をプロットすれば第4図のよう
な直線のグラフが求まる。なぜならば、受波器はアレイ
上に等間隔に並べたためであり、オーバラップした部分
で対応する受波器間の距離に対応して時間遅延が発生し
ているからである。
The physical principle of the present invention will be explained using FIGS. 2 to 4. In the following, it is assumed that a burst sine wave is used as the transmitted wave. first. Suppose that the array receives a signal at a certain time in a state like 2A in Figure 2. 6 Next, the moving object was supposed to move in a straight line, but due to the influence of waves etc.
Suppose that a signal is received in a state like this. here,
If the received waveforms of the outputs of each receiver are measured in the area where the two arrays overlap, the result will be as shown in FIG. 3. That is,
Each receiver receives the same sine wave as the transmitted wave as a reflected wave, and the shifted array 2B has a propagation time delay depending on the distance between each receiver. The time delay of each receiver on this overlapping array 2B is regular, and the horizontal axis represents the distance of each receiver based on the position of the first overlapping receiver, and the vertical axis Array 2A corresponding to the axis
If the time delay with the receiver above is plotted, a straight line graph as shown in Figure 4 will be obtained. This is because the receivers are arranged at equal intervals on the array, and a time delay occurs in the overlapping portion corresponding to the distance between corresponding receivers.

第4図の直線のグラフで、この直線の方程式を求めれば
、オーバラップさせたアレイ2B上の任意の受波器出力
のアレイ2Aに対する時間遅延を求めることが可能にな
る。したがって、時間遅延が既知となれば、既知となっ
た時間遅延をオーバラツブしていない部分の各受波器で
得た受信信号に対して補正を行えば、第2図の7レイ2
Aの延長上で,すなわち、点線で書かれた位置で、受波
を行ったことと同じとなる。
If the equation of this straight line is determined using the straight line graph in FIG. 4, it becomes possible to determine the time delay of any receiver output on the overlapping array 2B with respect to the array 2A. Therefore, once the time delay is known, if the known time delay is corrected for the received signal obtained by each receiver in the non-overlapping portion, the 7-ray 2
This is the same as receiving the wave on the extension of A, that is, at the position indicated by the dotted line.

ここで、オーバラップさせた部分の情報を利用して、第
4図の直線の方程式を求める精度が,オーバラソプして
いない部分の各受波器の時間遅延を求める精度に、直接
、影響をおよぼす。その結果、オーバラップしていない
部分の時間遅延補正を行う精度に影響する。従って、第
4図の直線の方程式を精度良く求める必要がある。オー
バラップした部分で対応する各受波器には、同じ反射波
を受信するため、対応する受波器が受波した時間信号波
形の相互相関関数を求めれば第5図のようになる。求め
た相互相関関数の最大値が、対応する受波器間の時間遅
延となる。
Here, the accuracy of calculating the equation of the straight line in Figure 4 using the information of the overlapped part directly affects the accuracy of calculating the time delay of each receiver in the non-overlapping part. . As a result, the accuracy of time delay correction for non-overlapping portions is affected. Therefore, it is necessary to obtain the equation of the straight line shown in FIG. 4 with high accuracy. Since each corresponding receiver in the overlapped area receives the same reflected wave, the cross-correlation function of the time signal waveforms received by the corresponding receivers is as shown in FIG. The maximum value of the obtained cross-correlation function becomes the time delay between corresponding receivers.

第4図の直線の方程式を求めるときに,計算量を減らす
ために、オーバラップさせた部分の対応する受波器の組
で一組以上おきに当間隔に受波器出力を利用する。すな
わち,当間隔にサンプリングした受波器出力信号の相互
相関関数を求める。
When calculating the equation of the straight line in FIG. 4, in order to reduce the amount of calculation, the receiver outputs are used at regular intervals for every set or more of corresponding sets of receivers in the overlapped part. That is, find the cross-correlation function of the receiver output signals sampled at regular intervals.

この相互相関関数の最大値から時間遅延が求められる。The time delay is determined from the maximum value of this cross-correlation function.

求めた各時間遅延から最小二乗法により第4図の直線の
方程式を推定する。最小二乗法は、二乗誤差を最小にす
るため,直線のあてはめ精度が良い。
The equation of the straight line shown in FIG. 4 is estimated using the least squares method from each time delay obtained. Since the least squares method minimizes the square error, it has good accuracy in fitting a straight line.

以上、送波としてバースト正弦波について説明したが、
線形FM波や符号化系列の送波についても同様である。
Above, we explained the burst sine wave as a transmission wave, but
The same applies to the transmission of linear FM waves and coded sequences.

線形FM波は、送信パルス幅内で直線的に周波数変調し
た波をいう。周波数を徐々に高くした波の例を第5図に
示す.第5図のような波を送波し、第6図に示すような
直線上の周波数対遅延時間特性を持つマツチドフィルタ
を通すことにより、パルス圧縮作用が行われる.従って
、第7図のような包絡線波形を持つ出力が得られる.第
7図の最大値を示す位置が、対応する受波器間の時間遅
延を表している.このようにして、オーバラップさせた
部分の対応する受波器間の時間遅延を求め、最小二乗法
により第4図の直線の方程式を求めれば、オーバラップ
していない各受波器の時間遅延を知ることができる。符
合化系列の波の例は、M系列からなる波を送波に用いた
場合は次のようになる。M系列の自己相関関数は、第8
図のようになるため,一周期以内を使って送波を行えば
良い。
A linear FM wave is a wave whose frequency is linearly modulated within the transmission pulse width. Figure 5 shows an example of a wave whose frequency is gradually increased. A pulse compression effect is performed by transmitting a wave as shown in Fig. 5 and passing it through a matched filter having a linear frequency vs. delay time characteristic as shown in Fig. 6. Therefore, an output having an envelope waveform as shown in Fig. 7 is obtained. The position showing the maximum value in Figure 7 represents the time delay between the corresponding receivers. In this way, if we find the time delay between corresponding receivers in the overlapped part and find the equation of the straight line in Figure 4 using the least squares method, we can find the time delay of each non-overlapping receiver. can be known. An example of a coded sequence wave is as follows when a wave consisting of an M sequence is used for transmission. The autocorrelation function of the M series is the 8th
As shown in the figure, it is sufficient to transmit waves within one cycle.

以上の各種法の中で、送波に正弦波を用いたときに、オ
ーバラップさせた部分の各受波器の組で一組おきの受波
器出力のデータを用いたときのアルゴリズムの一例を第
9図に示す。
Among the various methods described above, an example of an algorithm when a sine wave is used for transmission and the data of every other set of receivers is used in each set of receivers in the overlapped part. is shown in Figure 9.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アレイを搭載した船舶が、ヂ少揺れだ
としても正確に仮想的な長いアレイ長壱得られるため、
高い方位分解能を実現できる効タがある。また,仮想的
な長いアレイ長のデータ壱利用してビームフオーミング
を行えるため、サづドローブも下げることができる。
According to the present invention, the ship equipped with the array can accurately obtain a virtual long array length even if the ship is only slightly shaken.
It has the effect of achieving high lateral resolution. In addition, since beamforming can be performed using the data of a virtual long array length, it is possible to reduce the sagittal droop.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図の要部を示すアレイをオーバラウプさせた説明図
、第3図及び第4図はアレイ上σ受波器の位置と時間遅
延との関係を示すグラフ、第5図は線形FM波の一例の
グラフ、第6図は1ツチドフィルタ特性を示すグラフ,
第7図はパガス圧縮を示すグラフ、第8図はM系列の自
己相I関数を示すグラフ,第9図は本発明の一実施例σ
フローチャートである。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the essential parts of Fig. 1 with an overlapping array, and Figs. A graph showing the relationship between position and time delay, Fig. 5 is a graph of an example of a linear FM wave, Fig. 6 is a graph showing the characteristics of a linear FM wave,
Fig. 7 is a graph showing the Pagas compression, Fig. 8 is a graph showing the self-phase I function of the M series, and Fig. 9 is an embodiment of the present invention σ.
It is a flowchart.

Claims (1)

【特許請求の範囲】 1、等間隔に並んだ受波器からなるアレイを移動体に取
り付け、バースト正弦波の音波を放射し、その反射波を
受けることにより物体の位置や方向を探知する装置にお
いて、 受波時に前記アレイの一部がオーバラップするように前
記移動体を移動させ、オーバラップしている部分の情報
を利用して、オーバラップしていない部分の受波データ
を補正することにより、全体として前記アレイの移動距
離にほぼ相当するアレイ長でビームフォーミングを行う
ことを特徴とするソーナ信号処理装置。
[Claims] 1. A device that detects the position and direction of an object by attaching an array consisting of equally spaced receivers to a moving object, emitting burst sine wave sound waves, and receiving the reflected waves. In this step, the moving object is moved so that a part of the array overlaps when receiving waves, and the received wave data of the non-overlapping part is corrected by using the information of the overlapped part. A sonar signal processing device characterized in that beamforming is performed with an array length approximately corresponding to the moving distance of the array as a whole.
JP1257790A 1990-01-24 1990-01-24 Sonar signal processor Pending JPH03218485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1257790A JPH03218485A (en) 1990-01-24 1990-01-24 Sonar signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1257790A JPH03218485A (en) 1990-01-24 1990-01-24 Sonar signal processor

Publications (1)

Publication Number Publication Date
JPH03218485A true JPH03218485A (en) 1991-09-26

Family

ID=11809212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1257790A Pending JPH03218485A (en) 1990-01-24 1990-01-24 Sonar signal processor

Country Status (1)

Country Link
JP (1) JPH03218485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594200B2 (en) 2001-01-17 2003-07-15 Nec Corporation Synthetic aperture sonar and synthetic aperture processing method
JP2004117129A (en) * 2002-09-26 2004-04-15 Nec Corp Synthetic aperture sonar, method of correcting oscillation used therefor, and program thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594200B2 (en) 2001-01-17 2003-07-15 Nec Corporation Synthetic aperture sonar and synthetic aperture processing method
JP2004117129A (en) * 2002-09-26 2004-04-15 Nec Corp Synthetic aperture sonar, method of correcting oscillation used therefor, and program thereof

Similar Documents

Publication Publication Date Title
US10386462B1 (en) Systems and methods for stereo radar tracking
GB1604182A (en) Velocity determination and range and velocity determination
JP6469357B2 (en) Underwater detection device, underwater detection method, and underwater detection program
US5802012A (en) Synthetic-aperture sonar system
CN103837856A (en) Extended angular resolution in sensor arrays using secondary echoe
JP4120334B2 (en) Synthetic aperture sonar, shake correction method and program therefor
JPH03218485A (en) Sonar signal processor
US6912176B2 (en) Active element array apparatus for displaced phase center systems
US6002645A (en) Self survey of random arrays
JP3046876B2 (en) Active sonar pseudo signal generator
US20190346564A1 (en) Spiral sonar
US5412617A (en) High resolution measuring method and apparatus
JP2609551B2 (en) Method and apparatus for detecting position of object
JPH08114672A (en) Active sonar
US6122224A (en) Variable integration detection apparatus and method for multipath environments
JP2668066B2 (en) Transmitter / receiver array for ultrasonic imaging equipment
JP2987263B2 (en) Acoustic positioning device
JPH02223878A (en) Method and device for detecting position of object
GB2314628A (en) Acoustic and radar direction finding
JPH04125487A (en) Detecting method for position of object
JPH03282391A (en) Guiding device for underwater sailing body
JP2930678B2 (en) Side-looking sonar
JPH0395477A (en) Ultrasonic detector
SU1255913A1 (en) Method of determining coordinates of acoustical emission signal source
JPS58111773A (en) Homing apparatus