JPH04125487A - Detecting method for position of object - Google Patents

Detecting method for position of object

Info

Publication number
JPH04125487A
JPH04125487A JP2243967A JP24396790A JPH04125487A JP H04125487 A JPH04125487 A JP H04125487A JP 2243967 A JP2243967 A JP 2243967A JP 24396790 A JP24396790 A JP 24396790A JP H04125487 A JPH04125487 A JP H04125487A
Authority
JP
Japan
Prior art keywords
array
received
wave
signal
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2243967A
Other languages
Japanese (ja)
Inventor
Osamu Sekiguchi
治 関口
Kageyoshi Katakura
景義 片倉
Hajime Fujita
肇 藤田
Kiyoshi Koyano
清 小谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2243967A priority Critical patent/JPH04125487A/en
Publication of JPH04125487A publication Critical patent/JPH04125487A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high azimuth resolution by performing synthesis by overlapping while shifting an array position when obtaining an azimuth where an object exists by receiving a reflected wave. CONSTITUTION:An array 2 of a specified length where a transmitter/receiver 3 is arranged is mounted to a moving body 1 and the reflection wave is received, thus enabling azimuth and distance of the object to be detected. At this time, transmission of signal which is obtained by combining verses of a certain frequency and frequencies which are different from it is repeated for a plurality of times. Then, one part of the array 2 which received the reflection wave previously is shifted by overlapping it with one part of the next array 2, the received data is compensated for as if it is received on an extension of the previous array 2, and then the amount of shift is detected by a virtual array length which nearly corresponds to the length obtained by adding the amount of shift to the specified length of the array 2 at least once. Therefore, a high azimuth resolution can be obtained even if the shifting body 1 where the array 2 is mounted swings more or less.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、音波や電磁波などの到来方向を求める方法に
係り、特に、受波時に高い方位分解能を得るのに好適な
物体の位置探知方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for determining the direction of arrival of sound waves, electromagnetic waves, etc., and in particular, a method for detecting the position of an object suitable for obtaining high azimuth resolution when receiving waves. Regarding.

〔従来の技術〕[Conventional technology]

周波数の異なる二つのパルス信号を用いた従来の装置は
、特開昭57−34507号公報に記載のように、水中
に置かれた物体に関しての水深情報を得るものとなって
おり、ビームフォーミングに関するものはなかった。
A conventional device using two pulse signals with different frequencies, as described in Japanese Patent Application Laid-Open No. 57-34507, obtains water depth information regarding an object placed underwater, and is used for beamforming. There was nothing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術開口法による物体の位置探知方法は、受波器
が並んでいるアレイを正確に直線上を移動させる技術が
必要であった。実際に水中ソーナの場合は、波などの影
響により搭載した船舶が揺れるため、アレイを正確に直
線上を移動させることができなかった。
The conventional method for detecting the position of an object using the aperture method requires a technique for accurately moving an array of wave receivers in a straight line. In reality, in the case of underwater sonar, the array cannot be moved accurately in a straight line because the ship on which it is mounted shakes due to the effects of waves and other factors.

一方、合成開口レーダを大気中で用いる場合にも、飛行
機の動揺、大気の揺らぎなどに極めて敏感なためアンテ
ナが並んだアレイを正確に直線上を移動させることが困
難であった。このため、正確な受信信号が得られず、方
位を求める上で雑音になり、高い方位分解能を実現でき
なかった。
On the other hand, even when synthetic aperture radar is used in the atmosphere, it is extremely sensitive to vibrations of the airplane and fluctuations in the atmosphere, making it difficult to accurately move an array of antennas in a straight line. For this reason, accurate received signals could not be obtained, resulting in noise when determining direction, and high azimuth resolution could not be achieved.

本発明の目的は、受波器が並んでいるアレイが直線上か
ら離れて移動した場合でも、アレイが移動した距離にほ
ぼ相当する長さを加算した仮想的な長いアレイ長で受波
した結果と同様な方位分解能を実現する物体の位置探知
方法および装置を提供することにある。仮想的な長いア
レイを形成する場合に、本発明では二つの受波器の距離
の情報が必要になる。この距離を計測するときに、受波
信号を用いるわけであるが、受波信号が正弦波の場合に
は、次のような問題がある。受波信号の相関関数を計算
してその最大値から距離を計算する場合に、正弦波を利
用すると相関関数の最大値が複数出現するときがある。
The purpose of the present invention is to obtain the result that even if the array in which the receivers are lined up moves away from the straight line, the wave is received with a virtual long array length that is added with a length approximately equivalent to the distance the array has moved. An object of the present invention is to provide a method and apparatus for detecting the position of an object that achieves azimuth resolution similar to that of the present invention. When forming a virtual long array, the present invention requires information on the distance between two receivers. When measuring this distance, a received signal is used, but when the received signal is a sine wave, the following problem occurs. When calculating the correlation function of the received signal and calculating the distance from its maximum value, if a sine wave is used, multiple maximum values of the correlation function may appear.

このようなときは、最大値を一意に決定できない。従っ
て、正確な距離かわらかない。この問題を解決するため
に、本発明では、周波数の異なる二つのパルス信号を用
いる。このような信号を利用すれば相関関数の最大値を
一意的に決定できる。また、二つの対応するパルスの位
相差を計互して、二点間の距離を求めることができ、相
関係数を利用する場合と比較して、計算量を大幅に軽減
することができるという特徴もある。
In such cases, the maximum value cannot be uniquely determined. Therefore, the exact distance is uncertain. In order to solve this problem, the present invention uses two pulse signals with different frequencies. By using such a signal, the maximum value of the correlation function can be uniquely determined. In addition, the distance between two points can be calculated by calculating the phase difference between two corresponding pulses, which can significantly reduce the amount of calculation compared to using correlation coefficients. It also has some characteristics.

本発明の他の目的は、方位分解能を著しく向上させると
ともに、アレイ利得の増大、サイドローブ(副極)の抑
圧、目標検出感度の向上、受波信号対雑音の向上などを
目指すことにある。
Other objects of the present invention are to significantly improve azimuth resolution, increase array gain, suppress side lobes (subpoles), improve target detection sensitivity, and improve received signal-to-noise.

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を達成するため、本発明に係る物体の位置探
知方法及び装置は、送受波器を配列した所定長さのアレ
イを移動体に搭載し、その反射波を受波して方位および
距離を探知する物体の位置探知方法において、ある周波
数のバースト正弦波と、それと異なる周波数のバースト
正弦波を組合せた信号の送波を複数回繰り返して行い、
最初に反射波を受波したアレイの受信信号と二回目以降
の受波するアレイの一部が前回のアレイの一部とオーバ
ラップさせて反射波を受波し、各アレイのオーバラップ
させた対応する受波器からの信号により二つのアレイの
位置関係を求め、最初に受波したアレイの延長上に仮想
的な長いアレイで受波信号を受だように二回目以降の受
信信号を補正し、前記アレイの所定長さにその移動量を
少なくとも一回加算した長さにほぼ相当する仮想的なア
レイ長で探知することを特徴とするように構成されてい
る。
In order to achieve the above object, the method and device for detecting the position of an object according to the present invention includes mounting an array of a predetermined length in which transducers are arranged on a moving body, and receiving the reflected waves to determine the direction and distance. In a method for detecting the position of an object, a signal combining a burst sine wave of a certain frequency and a burst sine wave of a different frequency is transmitted multiple times,
The reception signal of the array that received the reflected wave first and the part of the array that receives the wave from the second time onward overlaps a part of the previous array, and receives the reflected wave, making each array overlap. The positional relationship between the two arrays is determined based on the signals from the corresponding receivers, and the second and subsequent received signals are corrected so that the received signal is received by a virtual long array that is an extension of the first received array. However, the present invention is characterized in that the detection is performed with a virtual array length approximately corresponding to the length obtained by adding the amount of movement at least once to the predetermined length of the array.

〔作用〕[Effect]

本発明の物体の位置探知方法によれば、アレイを移動さ
せながら物体からの反射波を受けて、物体の存在する方
位を求めるときに、アレイの位置ずらしながらオーバラ
ップさせて合成し、周波数が異なる正弦波を続けて放つ
送波を行うため、相関関数の最大値を一意に決定するこ
とができ、その結果、アレイの位置関係が求められ、オ
ーバラップさせたアレイの受波信号を修正することがで
き名。全体として、アレイが移動した距離を加算したア
レイ長で得た受波信号と同様な信号が得られる。そして
、アレイを搭載している移動体、たとえば、船舶や飛行
機が多少ゆれても、高い方位分解能が得られる。
According to the method for detecting the position of an object of the present invention, when the direction in which the object exists is determined by receiving reflected waves from the object while moving the array, the arrays are shifted in position, overlapped, and synthesized. Since different sine waves are transmitted successively, the maximum value of the correlation function can be uniquely determined, and as a result, the positional relationship of the arrays can be determined, and the received signals of the overlapping arrays can be corrected. can name. Overall, a signal similar to the received signal obtained with the array length obtained by adding the distance traveled by the array is obtained. Even if the moving object on which the array is mounted, such as a ship or an airplane, shakes a little, high azimuth resolution can be obtained.

〔実施例〕〔Example〕

本発明の一実施例を第1図から第8図を参照しながら説
明する。
An embodiment of the present invention will be described with reference to FIGS. 1 to 8.

本発明では、第1図に示されるように、受波器3を配列
した所定長さUのアレイ2を船舶のような移動体1に搭
載し、ある周波数のバースト正弦波と、それと異なる周
波数のバースト正弦波を組合せた信号の送波を複数回繰
り返して行い、その反射波を受波して方位及び距離を探
知する物体の位置探知方法において、少なくとも一回、
アレイの一部を前回のアレイの一部とオーバラップさせ
て移動し、受波したデータを前回のアレイの延長上で受
波したように補正し、アレイの所定長さUにその移動量
を少なくとも一回加算した長さにほぼ相当する仮想的な
アレイ長りで探知するように構成されている。
In the present invention, as shown in FIG. 1, an array 2 having a predetermined length U in which receivers 3 are arranged is mounted on a moving body 1 such as a ship, and a burst sine wave of a certain frequency and a burst sine wave of a different frequency are transmitted. In a method for detecting the position of an object in which the direction and distance are detected by repeatedly transmitting a signal that is a combination of burst sine waves multiple times and receiving the reflected wave, at least once,
Move a part of the array so that it overlaps with a part of the previous array, correct the received data as if it were received on an extension of the previous array, and add the amount of movement to a predetermined length U of the array. The array is configured to detect a virtual array length that approximately corresponds to the length added at least once.

そして受波器を配列した所定長さUのアレイ2を移動体
1に搭載し、受波した信号を取り込み信号を記憶する記
憶装置9とその信号を処理する中央演算装置(CPU)
6とを備えた信号処理装置4と、受波した信号と信号処
理装置4との入出力を行う入出力装置5は、信号処理の
結果を表示する表示装置10からなり、信号処理装置4
は、アレイ2で受波した信号を記憶しておき、ついでこ
のアレイの一部がオーバラップするように移動体lを少
なくとも一回移動したのちに受波した信号を記憶装置で
記憶し、オーバラップさせた情報から、二回目以降に受
波した信号の補正を行い、アレイ2の所定長さUにその
移動量を少なくとも一回加算した長さには&キ相当する
アレイ長りで探知する手段を備えた構成とする。
An array 2 of a predetermined length U in which the receivers are arranged is mounted on the moving body 1, and a storage device 9 that captures the received signals and stores the signals, and a central processing unit (CPU) that processes the signals.
The input/output device 5, which inputs and outputs the received signal to and from the signal processing device 4, includes a display device 10 that displays the result of signal processing.
stores the signal received by array 2, moves the moving body l at least once so that a part of this array overlaps, stores the received signal in the storage device, and stores the received signal in the storage device. Based on the wrapped information, the signal received from the second time onwards is corrected, and the length obtained by adding the amount of movement at least once to the predetermined length U of array 2 is detected with an array length equivalent to &K. The structure shall be equipped with means.

第1図は、本発明の方式を実現するための装置全体の例
を表している図である。本発明では、合成開口レーダな
どで実現されている合成開口法を行うときに、単に、ア
レイの延長上にアレイをつなぎ合わせるのではなく、ア
レイの位置をずらすときにオーバラップさせ、二回目以
降の受波データを補正しなからアレイの延長上にアレイ
をつなぎ合わせて、仮想的な長いアレイ長を得るため、
より正確な受波データを使った高い方位分解能を実現す
ることができる。
FIG. 1 is a diagram showing an example of the entire apparatus for realizing the method of the present invention. In the present invention, when performing the synthetic aperture method realized in synthetic aperture radar etc., instead of simply connecting arrays on an extension of the array, the arrays are overlapped when shifting their positions, and the In order to obtain a virtual long array length by connecting the array on the extension of the array without correcting the received wave data,
High azimuth resolution can be achieved using more accurate received wave data.

この実現のために、アレイ上の各受波器出力のデータを
信号処理装置4へ転送する入出力装置5と、その出力デ
ータを記憶する記憶装置9.演算を行う中央演算装置(
CPU)6.船の動揺の情報から受波信号を補正する信
号処理装置4.補正した信号を使って方位を求める高速
フーリエ変換(FFT)7.演算結果を表示する表示装
置10などを構成する必要がある。これらの装置で、中
央演算装置6が高速であれば、高速フーリエ変換どの処
理も中央演算装置6が行える。
In order to realize this, an input/output device 5 is provided which transfers the data of the output of each receiver on the array to the signal processing device 4, and a storage device 9 which stores the output data. A central processing unit that performs calculations (
CPU)6. 4. A signal processing device that corrects the received signal based on information on the movement of the ship. Fast Fourier Transform (FFT) to find the bearing using the corrected signal7. It is necessary to configure the display device 10 and the like that display the calculation results. In these devices, if the central processing unit 6 is high-speed, the central processing unit 6 can perform any fast Fourier transform processing.

まず、方位分解能を向上させる方式の合成開口法につい
て説明する。合成開口法は、有限長のアレイを何回か繰
返し利用して、長い仮想的なアレイを実現するものであ
る。この合成開口法を行う前提として、以下の二点が成
り立つことが必要である。
First, a synthetic aperture method that improves lateral resolution will be described. The synthetic aperture method uses a finite-length array several times to realize a long virtual array. As a premise for performing this synthetic aperture method, it is necessary that the following two points hold true.

(1)移動体が正確に直線上を運動できること(2)合
成開口を行っている間は、目標物が静止していること 第2図で最初に、■の状態で反射波を受波したとする。
(1) The moving object must be able to move accurately in a straight line. (2) The target must remain stationary while the synthetic aperture is being performed. In Figure 2, the reflected wave was first received in the state shown in ■. shall be.

次に移動体が■の延長上■に移動して送波を行い、反射
波を受波する。もう−変移動体が■の位置へ移動し、送
波をして同じように受波したとする。送波と受波を五目
繰り返したが、目標物が静止していれば、どの反射波も
全く同じ波が戻ってくるはずである。従って、この操作
は第2図で示した仮想的な長いアレイのデータを五目に
分けて受波したことと同じである。このため、五目に分
けて受波した各データを接続してビームフォーミングを
行えず、長い仮想的なアレイでビームフォーミングをし
たことと同じになる。この結果、高い方位分解能を得る
ことができる。
Next, the moving object moves to ■ as an extension of ■, transmits waves, and receives reflected waves. Suppose that the variable moving object moves to position (■), transmits waves, and receives waves in the same way. I repeated sending and receiving waves five times, but if the target was stationary, every reflected wave should return exactly the same. Therefore, this operation is the same as receiving the data of the virtual long array shown in FIG. 2 by dividing it into five sections. For this reason, it is not possible to perform beamforming by connecting each piece of data received in five sections, which is the same as performing beamforming on a long virtual array. As a result, high lateral resolution can be obtained.

次に、本発明の原理を第3図から第6図を参照しながら
説明する。第3図のようなバースト正弦波二つからなる
送波を行ったとし、最初の角周波数をω1、次をω2と
する。この送波に対し、ある時刻でアレイで音波を受波
し、ある時間が過ぎて(船が移動して、)送波と受波を
繰り返す。このとき、同じアレイで前回受波したアレイ
と一部をオーバラップさせて音波を受波する。そこでは
、移動体は直線上を進むはずであったが、波などの影響
によりずれが生じたものとする。この状態が第4図であ
る。第4図のずれは、波が高くなければそれほど大きく
ないと考えられる。バースト正弦波が二つ構成される音
波を三回同じアレイで受波したが、最初のものをアレイ
A、次のものをアレイBとする。第4図でアレイBはア
レイAの延長上にはない。このため、合成開口法による
高い方位分解能を得ることは不可能である。
Next, the principle of the present invention will be explained with reference to FIGS. 3 to 6. Assume that a transmission consisting of two burst sine waves as shown in FIG. 3 is performed, and the first angular frequency is ω1 and the second angular frequency is ω2. In response to this transmission, the array receives the sound wave at a certain time, and after a certain period of time (as the ship moves) the wave transmission and reception are repeated. At this time, the same array receives the sound wave by partially overlapping the array that received the wave last time. Here, it is assumed that the moving object was supposed to travel in a straight line, but a deviation occurred due to the influence of waves and the like. This state is shown in FIG. The deviation in Fig. 4 is considered not to be so large unless the waves are high. A sound wave consisting of two burst sine waves was received three times by the same array, the first one being array A, and the second one being array B. In FIG. 4, array B is not an extension of array A. For this reason, it is impossible to obtain high lateral resolution using the synthetic aperture method.

第4図において、アレイA上でオーバラップしている受
波器をai、同様にアレイBでオーバラップしている受
波器をbi、アレイBの残りの受波器をbj、アレイA
の延長上でbjに対応する仮想的な受波器をcjとし、
cjからなるアレイをアレイCとする。aiとbiには
、同じ反射波が入射するがこれらの異なる点は、第5図
のように反射波の到達時間差τである。この反射波の到
達時間差τは、対応する受波器の距離に比例して大きく
なり、この関係はbjとcjにも存在すると考えられる
。従って、bjの受信データを用いて、τたけ補正すれ
ば、cjの受信データを得ることができる。以下、cj
の受信データを得る方法について述べる。
In Figure 4, the overlapping receivers on array A are designated as ai, the overlapping receivers on array B are designated as bi, the remaining receivers on array B are designated as bj, and array A
Let cj be a virtual receiver corresponding to bj on the extension of
Let the array consisting of cj be array C. The same reflected waves are incident on ai and bi, but the difference between them is the arrival time difference τ of the reflected waves, as shown in FIG. The arrival time difference τ of this reflected wave increases in proportion to the distance to the corresponding receiver, and it is thought that this relationship also exists between bj and cj. Therefore, by using the received data of bj and correcting it by τ, the received data of cj can be obtained. Below, cj
This section describes how to obtain the received data.

オーバラップさせた対応する受波器の到達時間差をまず
求める。これは、受波器出力の相互相関関数を計算し、
その最大値を求めれば良い(第6図)。この最大値は送
波にバースト正弦波のみを用いたときには、第7図のよ
うに正弦波の相関関数の最大値が周期的に起きる場合が
、ここでは−点に決定される。従って、送波にバースト
正弦波を用いたときに比べて確実に最大値が求まる。こ
の最大値を求める操作をオーバラップした部分について
すべて行なう。そして、横軸に、オーバラップを開始し
た受波器からの位置をとり、縦軸に各相互相関関数の最
大値をとる第8図のようなグラフを描く。このグラフ上
の直線はアレイBの傾きを示しているため、この直線を
精度良く求めるために、最小二乗法により求める。求め
た直線から、オーバラップしていない部分のアレイBと
アレイAの延長上のアレイCとの音波の到達時間差を求
める。オーバラップしていないアレイBの受波信号を、
この到達時間差の分だけ補正し、アレイCの受波信号と
する。音波の方位を求める処理のビームフォーミングに
は、アレイAとアレイCの受波データを用いれば良い。
First, the arrival time difference of corresponding overlapping receivers is determined. This calculates the cross-correlation function of the receiver output,
All you have to do is find the maximum value (Figure 6). When only a burst sine wave is used for transmission, this maximum value is determined to be a - point when the maximum value of the correlation function of the sine wave occurs periodically as shown in FIG. 7. Therefore, the maximum value can be determined more reliably than when a burst sine wave is used for transmission. This operation for determining the maximum value is performed for all overlapped parts. Then, a graph as shown in FIG. 8 is drawn, with the horizontal axis representing the position from the receiver that started the overlap, and the vertical axis representing the maximum value of each cross-correlation function. Since the straight line on this graph indicates the slope of array B, in order to obtain this straight line with high accuracy, it is determined by the method of least squares. From the obtained straight line, the difference in arrival time of sound waves between array B in the non-overlapping portion and array C on the extension of array A is determined. The non-overlapping received signals of array B are
The received signal of array C is corrected by this arrival time difference. The received wave data of array A and array C may be used for beam forming in the process of determining the direction of the sound wave.

以上のアルゴリズムを第9図に示す。The above algorithm is shown in FIG.

アレイの傾きを求める処理の計算量を少なくするには、
オーバラップさせた部分の受波器のうち対応するいくつ
かの受波器の組の相関関数を求め、これら対して最小二
乗法で直線の方程式を求めれば良い。さらに、最も計算
量を少なくするには、代表的を二つとり、第10図のよ
うに直線補間により直線の方程式を求めれば良い。それ
ぞれの方法でアレイBの傾きを求めた後は、同じように
音波の到達時間差を求め、オーバラップしていない部分
の受波信号をこの到達時間差の分だけ補正し、仮想的な
アレイCの受波信号としてアレイAの信号と結合させて
ビームフォーミングを行なえば良い。
To reduce the amount of calculation required to calculate the slope of the array,
It is sufficient to obtain the correlation functions of several sets of corresponding receivers among the receivers in the overlapped portion, and to obtain a straight line equation for these using the least squares method. Furthermore, in order to minimize the amount of calculation, it is sufficient to select two representative numbers and obtain a linear equation by linear interpolation as shown in FIG. After finding the inclination of array B using each method, find the arrival time difference of the sound waves in the same way, correct the received signals in the non-overlapping part by this arrival time difference, and calculate the arrival time difference of the virtual array C. It is sufficient to perform beamforming by combining the received signal with the signal of array A.

第3図のような送波を用いた場合には、次のような処理
も考えられる。それは、同じ周波数の位相差から時間遅
れを求める方法である。角周波数ω1.ω2の正弦波は
、同じ時間遅れてか生じる。
When using wave transmission as shown in FIG. 3, the following processing can also be considered. This is a method of determining the time delay from the phase difference of the same frequency. Angular frequency ω1. The ω2 sine wave occurs after the same time delay.

ω1の位相を2nπ+01、ω2の位相を2mπ+02
とすれば以下の式が成り立つ。
The phase of ω1 is 2nπ+01, the phase of ω2 is 2mπ+02
If so, the following formula holds true.

2nπ+01=τω1        ・・・(1)2
mπ+02=τω2        ・・・(2)ここ
で、(1)式から(2)式を引けば(3)式が得られて
、τを求めることができる。
2nπ+01=τω1...(1)2
mπ+02=τω2 (2) Here, by subtracting equation (2) from equation (1), equation (3) is obtained, and τ can be determined.

τ=(2nz+01−2nπ+02)/(ωl−ω2)
・・(3) この操作をオーバラップさせた全ての受波器の組に対し
て行い、最小二乗法により、直線を推定すればよい。あ
るいは、いくつかの対応する受波器の組を取りだして最
小二乗他により直線を求めてもよい。または、代表する
二組の受波器で各τを求めて直線補間により直線を求め
ても良い。以上いずれの方法でも、アレイの関係が明確
になる。
τ=(2nz+01-2nπ+02)/(ωl-ω2)
(3) This operation may be performed for all overlapping sets of receivers, and a straight line may be estimated by the least squares method. Alternatively, a straight line may be determined by taking out several sets of corresponding receivers and using least squares or the like. Alternatively, each τ may be determined using two representative sets of receivers, and a straight line may be determined by linear interpolation. In any of the above methods, the relationship between the arrays becomes clear.

アレイ間の関係が明確になれば、bjの信号を補正して
、cjの受信データを得ることができる。
Once the relationship between the arrays is clear, the bj signal can be corrected to obtain cj received data.

従って、仮想的な長いアレイが得られる。Thus, a virtual long array is obtained.

上述の実施例は音波について説明したが電磁波を用いた
場合のアンテナアレイを飛行機に搭載した場合や人工衛
星の場合についてもまったく同一の作用、効果が得られ
る。
Although the above-mentioned embodiments have been described with respect to sound waves, exactly the same functions and effects can be obtained when an antenna array using electromagnetic waves is mounted on an airplane or on an artificial satellite.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アレイを搭載した船舶やアンテナを搭
載した飛行機が多少揺れたとしても仮想的な長いアレイ
長を正確に得られるため、高い方位分解能を実現するこ
とができる。
According to the present invention, even if a ship carrying an array or an airplane carrying an antenna shakes a little, a virtually long array length can be accurately obtained, and high azimuth resolution can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
合成開口法の説明図、第3図は送波に用いる波形図、第
4図は第1図の要部を示すアレイがずれた説明図、第5
図はアレイAの受波器aiとアレイBの受波器biとの
受波信号の到達時間差を示す説明図、第6図はaiとb
iとの相互相関関数を求めた波形図、第7図は正弦波の
相関関数の説明図、第8図はaiとbiとの到達時間差
から最小二乗法により推定した直線から仮想的な受波器
cjの到達時間差を求めた説明図、第9図は本発明の一
実施例のフローチャート、第1o図は直線を推定する説
明図である。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of the synthetic aperture method, Fig. 3 is a waveform diagram used for wave transmission, and Fig. 4 is an array showing the main parts of Fig. 1. Explanatory diagram with misalignment, 5th
The figure is an explanatory diagram showing the arrival time difference of received signals between receiver ai of array A and receiver bi of array B.
Figure 7 is an explanatory diagram of the correlation function of a sine wave, and Figure 8 is a diagram of the waveform obtained by calculating the cross-correlation function with i. FIG. 9 is a flowchart of an embodiment of the present invention, and FIG. 1o is an explanatory diagram for estimating a straight line.

Claims (1)

【特許請求の範囲】[Claims] 1、送受波器を配列した所定長さのアレイを移動体に搭
載し、その反射波を受波して方位および距離を探知する
物体の位置探知方法において、ある周波数のバースト正
弦波と、それと異なる周波数のバースト正弦波を組合せ
た信号の送波を複数回繰り返して行い、最初に前記反射
波を受波した前記アレイの受信信号と二回目以降の受波
する前記アレイの一部が前回の前記アレイの一部とオー
バラツプさせて前記反射波を受波し、前記各アレイのオ
ーバラツプさせた対応する受波器からの信号により二つ
の前記アレイの位置関係を求め、最初に受波した前記ア
レイの延長上に仮想的な長いアレイで受波信号を受たよ
うに二回目以降の受信信号を補正し、前記アレイの所定
長さにその移動量を少なくとも一回加算した長さにほぼ
相当する仮想的なアレイ長で探知することを特徴とする
物体の位置探知方法。
1. In an object position detection method in which an array of transducers of a predetermined length is mounted on a moving body and the reflected waves are received to detect the direction and distance, a burst sine wave of a certain frequency and a burst sine wave of a certain frequency are used. Transmission of a signal combining burst sine waves of different frequencies is repeated multiple times, and the received signal of the array that first received the reflected wave and the part of the array that receives the reflected wave from the second time onwards are different from the previous one. The reflected wave is received by overlapping a part of the array, and the positional relationship between the two arrays is determined based on the signal from the corresponding overlapped receiver of each array, and the array that received the wave first is The second and subsequent received signals are corrected so that the received signal is received by a virtual long array on the extension of A method for detecting the position of an object characterized by detecting the position using a virtual array length.
JP2243967A 1990-09-17 1990-09-17 Detecting method for position of object Pending JPH04125487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243967A JPH04125487A (en) 1990-09-17 1990-09-17 Detecting method for position of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243967A JPH04125487A (en) 1990-09-17 1990-09-17 Detecting method for position of object

Publications (1)

Publication Number Publication Date
JPH04125487A true JPH04125487A (en) 1992-04-24

Family

ID=17111713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243967A Pending JPH04125487A (en) 1990-09-17 1990-09-17 Detecting method for position of object

Country Status (1)

Country Link
JP (1) JPH04125487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738918A1 (en) * 1995-09-19 1997-03-21 Thomson Csf SELF-FOCUSING METHOD FOR SYNTHETIC ANTENNA SONAR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738918A1 (en) * 1995-09-19 1997-03-21 Thomson Csf SELF-FOCUSING METHOD FOR SYNTHETIC ANTENNA SONAR
WO1997011452A1 (en) * 1995-09-19 1997-03-27 Thomson-Csf Self-focusing method for synthetic antenna sonars

Similar Documents

Publication Publication Date Title
US20180188365A1 (en) Systems and methods for 4-dimensional radar tracking
US20050179579A1 (en) Radar receiver motion compensation system and method
JP2017535788A (en) Method and apparatus for increasing angular resolution in an automotive radar system
JP6469357B2 (en) Underwater detection device, underwater detection method, and underwater detection program
JP2013029419A (en) Positioning device
US3991398A (en) Acoustic log
US20140015708A1 (en) Extended angular resolution in sensor arrays using secondary echoes
EP0600242B1 (en) Linear array lateral motion compensation method
EP2317335B1 (en) Improved beamforming method for analysing signals received by a transducer arrray, and relative detection system
US6912176B2 (en) Active element array apparatus for displaced phase center systems
JPH04125487A (en) Detecting method for position of object
JPS60263880A (en) Searching method of underground buried body
US6002645A (en) Self survey of random arrays
JP2609551B2 (en) Method and apparatus for detecting position of object
JPH04262286A (en) Ground mapping radar signal processing method and its device
US20230144558A1 (en) Distributed radar system and method of operation thereof
JP2002071795A (en) Radar device for acquiring and tracking target
US20210223383A1 (en) Method for capture in a radar system
JP2586958B2 (en) Exploration method in medium using pulse wave
JPH04315082A (en) Object locating method
JPH06242228A (en) Radar apparatus
JP2010025739A (en) Composite opening sonar
JPH03218485A (en) Sonar signal processor
RU2205423C2 (en) Method and device to select moving ground targets in three- channel digital radar
JPH028226Y2 (en)