JPS58111773A - Homing apparatus - Google Patents

Homing apparatus

Info

Publication number
JPS58111773A
JPS58111773A JP56215286A JP21528681A JPS58111773A JP S58111773 A JPS58111773 A JP S58111773A JP 56215286 A JP56215286 A JP 56215286A JP 21528681 A JP21528681 A JP 21528681A JP S58111773 A JPS58111773 A JP S58111773A
Authority
JP
Japan
Prior art keywords
waves
receiver
receivers
wave
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56215286A
Other languages
Japanese (ja)
Other versions
JPS6360866B2 (en
Inventor
Haimi Takasaki
高崎 沛美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56215286A priority Critical patent/JPS58111773A/en
Publication of JPS58111773A publication Critical patent/JPS58111773A/en
Publication of JPS6360866B2 publication Critical patent/JPS6360866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/66Sonar tracking systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the homing of a target accurately and efficiently by steering a travelling body counting the number of waves which are received in continuous wave transmitting and receiving operations during the travelling. CONSTITUTION:A wave transmitter S arranged on the axis or in the perimeter thereof of a travelling body 1 and transmits waves continuously. Groups of receivers 2-1-1 and 2-1-2-2-4-1 and 2-4-2 are arranged on the axis of the body to receive reflected waves. The groups of the receivers are arranged at an interval D equivalent to an odd integral factor of 1/2 wavelength of respective transmitted signals and connected in sum together. The number of waves of output signals from the groups of receivers is measured and compared with a circuit 3 for measuring and comparing the number of waves and vertical and horizontal rudders 4-1-4-4 are operated in such a direction that the difference between measured values becomes zero. This is equivalent to installation of a very sharp receiver with a large radiant surface thereby enabling the homing of a target accurately and efficiently.

Description

【発明の詳細な説明】 本発明は主として水中を航走し標的を追跡するアクティ
ブソーナーによるホーミング装置番こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates primarily to an active sonar homing device that navigates underwater and tracks targets.

従来、アクティブソーナー装置は水中航走体に送波器と
受波器(音響信号の受信センサー)あるいは送波、受波
兼用の送受波器を装備し、送波器からパルス音を送波し
た後、標的から反射されてくるエコーを、挟角のビーム
を有する受波器を送波した角度範囲を走査して受波する
か、挟角ビームを各方向に多数個予め備えておく方法で
標的の方位を検出して、操舵する方向を決める。あるい
は2個の受波器を一定間隔をおいて装着し、それぞれの
振動子の出力波形を比較し“C位相差を求めて操舵する
方向を決めるものであった。
Conventionally, active sonar devices have equipped an underwater vehicle with a transmitter and a receiver (acoustic signal receiving sensor) or a transducer for both transmitting and receiving, and the transmitter transmits pulsed sound. After that, the echoes reflected from the target can be received by scanning the angular range of the transmitted wave using a receiver with narrow-angle beams, or by preparing a large number of narrow-angle beams in each direction in advance. Detects the direction of the target and determines the direction to steer. Alternatively, two receivers were installed at a fixed interval, and the output waveforms of the respective oscillators were compared to determine the "C phase difference" to determine the steering direction.

従って、方位検出の精度を高めるには、挟角ビーム走査
法ではビームをより尖鋭にする必要があり、波長に対し
充分大きな放射面が必要であった。
Therefore, in order to improve the accuracy of direction detection, the narrow beam scanning method requires a sharper beam, and a sufficiently large radiation surface relative to the wavelength.

しかし、ホーミング装置には寸法的な制限があり、波長
の長い低周波ではビームが広角となって極端に方位検出
精度が低下するのを避けられなかった。
However, the homing device has dimensional limitations, and when using low-frequency waves with long wavelengths, the beam becomes wide-angle, which inevitably reduces the accuracy of azimuth detection.

一方、位相差検出法では2個の受波器間の距離を1 波長に対し大きくとる必要がある。しかし■波長以上の
間隔をとると、前方180度の範囲内に2方向以上で同
位相となる現象が生じ真の方向を判断することが困難と
なる問題があり、精度の向上は原理的に限度があった。
On the other hand, in the phase difference detection method, it is necessary to increase the distance between the two receivers relative to one wavelength. However, if the distance is longer than the wavelength, there is a problem in which the same phase occurs in two or more directions within a range of 180 degrees forward, making it difficult to judge the true direction. There was a limit.

装置の形状、寸法の制限から1波長より狭い間隔しかと
れない場合は尚然ながら精度の向上は望めない問題があ
った。また、従来のアクティブソーナ一方式ではパルス
変調した音波を送波し、受波は送波の休止時間を利用し
て行われた。このため送波している時間は標的からの情
報を得ることができず無駄であった。
If the spacing is narrower than one wavelength due to limitations in the shape and dimensions of the device, there is the problem that no improvement in accuracy can be expected. Furthermore, in the conventional active sonar type, pulse-modulated sound waves are transmitted and reception is performed using the pause time of the wave transmission. For this reason, the time spent transmitting waves was wasted as it was not possible to obtain information from the target.

このことに加え1回目の送波でエコーが得られなかった
ときは、これの受波時間までが操舵すべきか否かの情報
を得られなかったことになり2回目の送波を待つだけ無
駄になってしまう大きな欠点があった。
In addition to this, if no echo is obtained with the first wave transmission, it means that until the reception time of this wave, information on whether or not to steer is not obtained, so waiting for the second wave transmission is a waste. There was a big drawback that it became.

本発明は、航走中に連続的に送波しながら受波し、受波
の波数を計測するとと1によって、輻射面が大きく非常
に尖鋭な受波器を装備していることと等価で低周波にお
いても精度が高く、時間効率の高いホーミング装置を提
供するものである。
The present invention continuously transmits and receives waves while cruising, and when the wave number of the received waves is measured, the result is 1, which is equivalent to having a very sharp receiver with a large radiation surface. The present invention provides a homing device that is highly accurate and time efficient even at low frequencies.

即ち、本発明は軸上又は軸の周辺に配列した送波器から
連続的ζこ送波し、軸に平行に送波信号の1波長の奇数
整数倍の間隔で配置して和接続した受波器群を航走体の
進行方向以外の方向成分をもつような方向に間隔を置い
て複数群配置し、航走中連続的にエコーを受波する。こ
の各受波器群の出力信号の波数を計測し、波数の差を零
となる方向へ操舵することにより目標を追跡するホーミ
ング装置である。
That is, the present invention continuously transmits ζ waves from transmitters arranged on or around the axis, and connects the receivers parallel to the axis at intervals of an odd integer multiple of one wavelength of the transmitted signal. A plurality of wave transmitter groups are arranged at intervals in a direction that has a directional component other than the traveling direction of the vehicle, and echoes are continuously received while the vehicle is traveling. This homing device measures the wave number of the output signal of each receiver group and tracks the target by steering the wave number difference in the direction of zero.

次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

本発明を実施した航走体の第1の実施例の平面図、A−
A’矢祝図、及び受波指向性を示す第1図(a)、(b
)、(C)、(d)を参照すると、航走体1と、この胴
体の軸方向に間隔dで取付けた第1の受波器群2−1−
1,2−1−2と第2の受波器群2−2−1.2−21
、と以下同様な第3、第4の受波器群2−3−1.2−
3−2.2−4−1.2−4−2と各受波器からの出カ
イーバー号の波数を計測、比較し垂直水平舵4−1.4
−2.4−3.4−4に操舵信号を送信する波数計測比
較回路3と胴体の軸上の先端部に取付けた送波器Sとを
含む。2−1.2−3  は第1と第2の受波器群の中
心位置を示す。
A plan view of the first embodiment of the vehicle implementing the present invention, A-
Figures 1 (a) and (b) show the A' arrow diagram and the received wave directivity.
), (C), and (d), a mobile vehicle 1 and a first receiver group 2-1- installed at intervals d in the axial direction of this fuselage.
1, 2-1-2 and second receiver group 2-2-1.2-21
, and similar third and fourth receiver groups 2-3-1.2-
3-2.2-4-1.2-4-2 and the wave numbers of the output kaiber from each receiver were measured and compared, and the vertical and horizontal rudder 4-1.4
-2.4-3.4-4 includes a wave number measurement and comparison circuit 3 that transmits a steering signal and a wave transmitter S attached to the tip on the axis of the fuselage. 2-1.2-3 indicates the center position of the first and second receiver groups.

次に本発明の詳細な説明すると、第1図(a)に示す2
個の受波器間隔りを、送波器Sから送波されま た音波の7波長とする。第1の受波器群2−1−1と2
−1−2は電気的に和接続となっているから、この受波
器群から得られる出力電圧をE(θ)とすると、第1図
(C)のように2−1と2−3を通るY′軸上でE(9
0度)は゛最大値を示し、それと直角なx’−x“軸(
航走体軸)上でのE(Q度)は零となる指向性を呈する
。その他の受波器群についても同様である。但しθはx
’−x“軸のX′力方向基準とした方位角である。即ち
、送波器Sから送波された音波は全空間に拡散するが、
2個の受波器へ直接到達した音波は出力として現れない
。しかし、0度方位以外から到達するエコーは出力電圧
として現われることになる。
Next, the present invention will be explained in detail.
The spacing between the receivers corresponds to seven wavelengths of the sound wave transmitted from the transmitter S. First receiver group 2-1-1 and 2
-1-2 are electrically sum-connected, so if the output voltage obtained from this receiver group is E(θ), then 2-1 and 2-3 are connected as shown in Figure 1(C). On the Y' axis passing through E(9
0 degree) indicates the maximum value, and the x'-x" axis perpendicular to it (
E (Q degrees) on the vehicle axis) exhibits directivity of zero. The same applies to other receiver groups. However, θ is x
It is the azimuth angle based on the X' force direction of the '-x' axis.In other words, the sound waves transmitted from the transmitter S are diffused throughout the space, but
Sound waves that reach the two receivers directly do not appear as output. However, echoes arriving from a direction other than 0 degrees will appear as an output voltage.

次にこの出力によって操舵する方法の原理を第5− 2図で説明する。第2図の0は標的を示し、X軸Y軸の
原点にあるものとするZl pはある周波数の標的Oか
ら発する音波又は標的から反射した音波■′は最小値の
分布を示す。
Next, the principle of the method of steering using this output will be explained with reference to Fig. 5-2. 0 in FIG. 2 indicates the target, which is assumed to be at the origin of the X and Y axes. Zl p indicates the distribution of the minimum value of the sound wave emitted from the target O or the sound wave ■' reflected from the target at a certain frequency.

いま、時刻t1における航走体1の位置をPl(tl)
とし、矢印5の方向に進行する場合を考える。時刻t2
において航走体がPg (t2)に達したとする。音波
は12−11の時間である距離を伝搬するからbの分布
も変化するが、原理の説明を簡単化するために暫くt工
における分布で固定して考えると、この図面上で受波器
2−1(P□)はこの間に0′、o、o、o、o、oを
横切ったことが分る。一方、受波器2−3 (Pl)は
@、■、[相]、[相]、0を横切ったことが分る。従
って、音圧の最大値と最小値に対する受波出力を波数計
測比較回路3によって読みとると、受波器2−1の6一 出力は6個となり、受波器2−3の出力は5個となる。
Now, the position of the vehicle 1 at time t1 is Pl(tl)
Let us consider the case where the vehicle moves in the direction of arrow 5. Time t2
Suppose that the vehicle reaches Pg (t2) at . Since the sound wave propagates over a certain distance in a time of 12-11, the distribution of b also changes, but to simplify the explanation of the principle, if we fix the distribution at t for a while, we can see that the receiver It can be seen that 2-1 (P□) crossed 0', o, o, o, o, o during this time. On the other hand, it can be seen that the receiver 2-3 (Pl) crossed @, ■, [phase], [phase], and 0. Therefore, when the received wave output for the maximum and minimum sound pressure values is read by the wave number measurement and comparison circuit 3, the 61 output of the receiver 2-1 is 6, and the output of the receiver 2-3 is 5. becomes.

そこで両受波器間の波数に1個の差が生じたことを検出
して舵4−2.4−4 に操舵信号を送って航走体1を
右側(Oの方向)へ回転させる。
Then, it is detected that a difference of one wave number has occurred between the two wave receivers, and a steering signal is sent to the rudder 4-2, 4-4 to rotate the vehicle 1 to the right (direction O).

次に時刻t3にPs(ta)の位置にあったとしてt3
からt4までの間を同様に考えると、2−1の出力は6
個で、2−3の出力は5個であるからP4(t4)にお
いては航走体をまだ右側へ回転させることが分る。この
ようにして、時計方向に回りながら標的0に漸近する。
Next, assuming that the position is Ps(ta) at time t3, t3
Considering the period from to t4 in the same way, the output of 2-1 is 6
Since the output of 2-3 is 5, it can be seen that the vehicle is still rotated to the right at P4 (t4). In this way, it asymptotically approaches target 0 while rotating clockwise.

以上は音波の伝搬がないものとしくつまり時刻t□で固
定)、かつ標的も固定して考えたが、音・波の伝搬と標
的の移動があった場合も、ドプラー効果で受波する音波
の周波数が変るだけで上記の作動原理に影響しないこと
が分る。また、目標が航走体の右側にある場合であった
が、左側にある場合は出力の数値の大小も右と左か逆転
するから操舵も逆となり反時計回り÷漸近する。従って
無駄の少ない追跡を行うことが分る。
The above is based on the assumption that there is no sound wave propagation (that is, fixed at time t It can be seen that simply changing the frequency does not affect the above operating principle. In addition, although the target is on the right side of the vehicle, if it is on the left side, the magnitude of the output value is also reversed between right and left, so the steering is also reversed and becomes counterclockwise ÷ asymptotic. Therefore, it can be seen that tracking is performed with less waste.

第2図はXY平面で説明したが、これに直角なZ軸を考
えて受波器を3個以上設置して、比較する受波器の組合
せを適当に選べばXZ平面等でも同様の原理で成ル立つ
。即ち受波器2−2と2−4を用いて同様の作動を並行
して行わせることにより、空間的に無駄の々い追跡を行
うことができる。
Although Fig. 2 was explained using the XY plane, the same principle can be applied to the XZ plane, etc., if three or more receivers are installed considering the Z axis perpendicular to this, and the combination of receivers to be compared is selected appropriately. It will be established. That is, by performing similar operations in parallel using the receivers 2-2 and 2-4, spatially efficient tracking can be achieved.

なお、波数に差を生ずるまでの航走時間が長くかかる場
合、航走体の運動は長い折線のつ々がシと力って追跡時
間に無駄がでる恐れかある。このようなときは複数個の
波数計測比較回路を用い、計測のスタート時点を少しづ
つ遅らせて並列に作動させ、それぞれの出力に同期して
操舵信号回路を切換え接紗、することによって短い折線
のつながりで運動させることができる。
In addition, if it takes a long time to travel before a difference in wave number occurs, the movement of the vehicle may be forced by each long broken line, resulting in wasted tracking time. In such cases, multiple wave number measurement and comparison circuits are used, the start points of the measurements are delayed little by little, they are operated in parallel, and the steering signal circuits are switched and connected in synchronization with the respective outputs, thereby making it possible to measure short broken lines. You can exercise by connecting.

波数の読取シは1/2波長ごとに行う場合で説明し九が
、1波長ごとでもよい。但し、この場合は差を検出する
時間がやや長くなる。
Although the wave number reading is performed for every 1/2 wavelength in the explanation, it may be read for every 1 wavelength. However, in this case, it takes a little longer to detect the difference.

このように、本発明によれは航走体の方向が音波の伝搬
方向と一致し、その向きが柳的の方向に向いたときは波
数に差を生じにくいから標的に向って直進する。なお、
受波器群の指向性から完全に出力がOとなるときも波数
計測比較回路は作動しないから操舵せず直進する。但し
、もし完全に逆向きから前走を始めたとしたら方向転換
することなしに違さかる方に直進することになって不都
合である。このようなチャンスは極く稀れであシ実用上
の問題はほとんどないが、できるだけ操舵信号を早く得
るためにも航走体の切動作は僅か回転させるように舵を
セットしておけばよい。受波器間隔りは1/2波長の場
合の他、1/2波長の奇数整数倍であってもE(0度)
は零となるから連続的に送波と受波を行うことができる
。第1図(d)は3.5波長の場合の指向性を示す。第
1図(c)に比べθが0度付近の感度の悪い範囲が狭く
、航走体の方向が標的の方向に近くなったときも敏感に
操舵することができ有利である。しかしO度方位以外の
ところでもE(θ)が零となるところが生じ不利な点も
生ずるが高速で前走する場合は惰性で短時間にこの不感
帯を脱するから、この方が有利である。前走速度等に応
じてDの値を選択すれはよ 9− い。また、受波器群の受波器の数は2個である必要は必
ずしもない。例えは偶数個使用し、Dが1/2波長のベ
アーを複数個に分けて軸方向に配列してもE(o度)は
零となるから同一の効果が得られる。
As described above, according to the present invention, when the direction of the vehicle matches the propagation direction of the sound wave and the direction is in the direction of the willow, it is difficult to cause a difference in wave number, so the vehicle moves straight toward the target. In addition,
Even when the output becomes completely O due to the directivity of the receiver group, the wave number measurement and comparison circuit does not operate, so the vehicle moves straight without steering. However, if you start your front run completely in the opposite direction, you will end up running straight in the opposite direction without changing direction, which is inconvenient. Such opportunities are extremely rare and pose little practical problem, but in order to obtain the steering signal as quickly as possible, it is best to set the rudder so that the turning action of the vehicle is a slight rotation. . The receiver spacing is E (0 degree) even when the receiver spacing is 1/2 wavelength or an odd integer multiple of 1/2 wavelength.
is zero, so it is possible to transmit and receive waves continuously. FIG. 1(d) shows the directivity in the case of 3.5 wavelengths. Compared to FIG. 1(c), the range of poor sensitivity when θ is around 0 degrees is narrower, which is advantageous because sensitive steering can be performed even when the direction of the vehicle approaches the target direction. However, there are places where E(θ) becomes zero even in locations other than the 0 degree azimuth, which brings about a disadvantage, but when the vehicle is running forward at high speed, it is more advantageous because it escapes from this dead zone in a short time due to inertia. It is better to select the value of D according to the forward running speed, etc. Furthermore, the number of receivers in the receiver group does not necessarily have to be two. For example, even if an even number of beams are used and D is divided into a plurality of 1/2-wavelength beams and they are arranged in the axial direction, E (o degrees) becomes zero, so the same effect can be obtained.

直接缶受波器群へ到達する送波音は同相となる。The transmitted sound directly reaching the can receiver group is in phase.

従って受波器の感度は2−1−2の値を1としたとき2
−1−1と2−1−3の値を1/2となるようにして和
接続すれはE(Q度)は零となる。
Therefore, the sensitivity of the receiver is 2 when the value of 2-1-2 is 1.
When the values of -1-1 and 2-1-3 are made 1/2 and the sum is connected, E (Q degree) becomes zero.

本発明は以上説明したように、波数を計測して標的の方
向を判断して操舵する方式において、連続的に送波と受
波することによって低周波数の音波に対しても精度よく
時間効率のよい高性能のホーミング装置が得られる効果
がある。
As explained above, the present invention utilizes a system that measures wave numbers to determine the direction of a target and steers the target, and by continuously transmitting and receiving waves, it is possible to accurately and time-efficiently respond to low-frequency sound waves. This has the effect of providing a high performance homing device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b) 、 (c) 、 (d)は本
発明の第1の実施例の平面図とA−A’矢視図と指向性
を示す図、第 10− 2図は本発明原理説明図、第3図fa) 、 (b) 
、 (c)は本発明の第2の実施例を示す平面図、B−
B’矢視図とc−c’側面図である。 1・・・・・・航走体、2−1−1 、・2−1−2.
2−1−3.2−2−1.2−2−2.2−2−3・・
・・・・受波器、3・・・・・・波数計測比較回路、4
−1.4−2 、4−3 、4−4・・・・・・舵。 11− 峯1毘
FIGS. 1(a), (b), (c), and (d) are a plan view of the first embodiment of the present invention, a view along arrow A-A', and a diagram showing directivity, and FIG. 10-2. are explanatory diagrams of the principles of the present invention, Figure 3 fa), (b)
, (c) is a plan view showing the second embodiment of the present invention, B-
They are a B' arrow view and a c-c' side view. 1...... Navigation vehicle, 2-1-1, 2-1-2.
2-1-3.2-2-1.2-2-2.2-2-3...
...Receiver, 3...Wave number measurement comparison circuit, 4
-1.4-2, 4-3, 4-4... Rudder. 11- Mine 1 Bibi

Claims (1)

【特許請求の範囲】[Claims] 航走体の軸上、又は軸の周辺に送波器が配列されるとと
もに前記軸に平行に送波信号の百波長の奇数整数倍の間
隔で配置され和接続された受波器群が複数群前記軸方向
以外の方向成分をもつような方向に間隔を置いて配置さ
れ、前記受波器群の各出力信号の波数を計測する波数計
測手段と、予め定めた2つの前記受波器群に対応する波
数計測手段で得られた波数を比較する比較手段と、この
比較手段の出力によりその比較差が零となる方向へ舵を
操作する操舵手段とを備えて成ることを特徴とするホー
ミング装置。
Transmitters are arranged on or around the axis of the vehicle, and a plurality of receiver groups are arranged parallel to the axis at intervals of an odd integer multiple of 100 wavelengths of the transmitted signal and are connected together. wave number measuring means arranged at intervals in a direction having a direction component other than the axial direction, and measuring the wave number of each output signal of the receiver group; and two predetermined wave receiver groups. Homing characterized by comprising a comparison means for comparing wave numbers obtained by wave number measurement means corresponding to the above, and a steering means for operating a rudder in a direction in which the comparison difference becomes zero based on the output of the comparison means. Device.
JP56215286A 1981-12-25 1981-12-25 Homing apparatus Granted JPS58111773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56215286A JPS58111773A (en) 1981-12-25 1981-12-25 Homing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56215286A JPS58111773A (en) 1981-12-25 1981-12-25 Homing apparatus

Publications (2)

Publication Number Publication Date
JPS58111773A true JPS58111773A (en) 1983-07-02
JPS6360866B2 JPS6360866B2 (en) 1988-11-25

Family

ID=16669796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56215286A Granted JPS58111773A (en) 1981-12-25 1981-12-25 Homing apparatus

Country Status (1)

Country Link
JP (1) JPS58111773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008537A (en) * 2016-07-11 2018-01-18 株式会社Ihi Sailing guide device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411374U (en) * 1990-05-15 1992-01-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008537A (en) * 2016-07-11 2018-01-18 株式会社Ihi Sailing guide device and method

Also Published As

Publication number Publication date
JPS6360866B2 (en) 1988-11-25

Similar Documents

Publication Publication Date Title
AU760693B2 (en) Method for producing a 3D image
US20050036404A1 (en) High resolution bathymetric sonar system and measuring method for measuring the physiognomy of the seabed
US6285628B1 (en) Swept transit beam bathymetric sonar
US3585578A (en) Side looking sonar apparatus
US4052693A (en) Depth sounder
US3381264A (en) Submarine topography
US9285468B2 (en) Extended angular resolution in sensor arrays using secondary echoes
US5550789A (en) Water turbulence detector
JP5496338B2 (en) Method and apparatus for measuring seabed contours
JPS58111773A (en) Homing apparatus
JPH0425507B2 (en)
GB1346106A (en) Method of and apparatus for measuring distances in water in accordance with the reflected sound beam method
US5022015A (en) Sonar system of the type using hollow conical beams
US3827022A (en) Induced doppler sonar
JPS58111769A (en) Homing apparatus
US5414675A (en) Sonar system for detection of near bottom targets
JPH02102481A (en) Ultrasonic guidance device
JP2987263B2 (en) Acoustic positioning device
JPH11304921A (en) Obstacle detecting equipment
JPH06118169A (en) Acoustic position measuring device
JPH0524067Y2 (en)
US3293594A (en) Radiating energy detection system
JPH1164515A (en) Target measuring device
SU1255913A1 (en) Method of determining coordinates of acoustical emission signal source
JPH06118170A (en) Acoustic position measuring device