JPH0321845A - Curvature calculation device - Google Patents

Curvature calculation device

Info

Publication number
JPH0321845A
JPH0321845A JP15568189A JP15568189A JPH0321845A JP H0321845 A JPH0321845 A JP H0321845A JP 15568189 A JP15568189 A JP 15568189A JP 15568189 A JP15568189 A JP 15568189A JP H0321845 A JPH0321845 A JP H0321845A
Authority
JP
Japan
Prior art keywords
measured
displacement
curvature
amount
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15568189A
Other languages
Japanese (ja)
Inventor
Mitsuru Shiraishi
白石 満
Hideo Kato
秀雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15568189A priority Critical patent/JPH0321845A/en
Priority to PCT/JP1990/000800 priority patent/WO1990015982A1/en
Priority to DE69028076T priority patent/DE69028076T2/en
Priority to US07/656,060 priority patent/US5156053A/en
Priority to EP90909380A priority patent/EP0429677B1/en
Publication of JPH0321845A publication Critical patent/JPH0321845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove an unfavorable effect to a curvature calculation according to a measuring error and to perform the accurate measurement by introducing an evaluation function to evaluate the approximation degree of polynominal expression showing the displacement measured at each measuring point and calculating the curvature thereby. CONSTITUTION:The displacement is given to an object to be measured in an operation part 4 and the displacing amount is measured at the plural measuring points of the object to be measured in a measuring part 3, then the curvature is calculated in a curvature calculating part 5 based on the above measurements. At this time, a measuring area of the object to be measured is divided into the plural areas by an area division setting part 6 in accordance with a specified evaluation value. Outputs of the division polynominal expression including undecided coefficients showing the displacing amount of the object to be measured and the evaluation function evaluating the approximation degree are made for every area by an outputting part 2 for polynominal expression and function. Then, the undecided coefficients in the polynominal equation are decided by a coefficient deciding part 1 in accordance with the evaluation function, measured displacement amount and boundary condition between the areas. Thus, a suitability of the area division is discriminated by an evaluation amount discriminating part 7 based on the amount evaluated from the evaluation function, and a re-division of the setting part 6 is commanded when the area division is unsuitable.

Description

【発明の詳細な説明】 〔目次〕 概要 産業上の利用分野 従来の技術 (第3図、第6図、第12図、第13図) 発明が解決しようとする課題 (第8図、第11図) 課題を解決するための手段 (第1図)作用   (第
1図) 実施例  (第2図、第4図、第5図、第6図、第7図
、第9図、第10図) 発明の効果 〔概要〕 被測定物に変位を加える作用部と、被測定物の複数の測
定点での変位量を測定する測定郁と、当該変位量に基づ
いて曲率の算出を行う曲率算出部とを有する曲率算出装
置に関し、 簡単な構戊で、測定点において得られた変位量の測定誤
差の悪影響を除去して、被測定物の曲率を精度良く算出
することができる曲率算出装置を提供することを目的と
し、 被測定物の測定領域を所定の評価量に基づき複数の領域
に区分する領域区分設定部と、各領域毎に被測定物の変
位量を表わす未定係数を含む区分多項式、及び当該多項
式による近似の程度を評価する評価関数の出力を行う多
項式・関数出力部と、少なくとも評価関数、測定された
変位量及び領域間の境界条件に基づき未定係数を決定す
る係数決定゛部と、評価関数から導出される評価量に基
づいて、領域の区分が適当か否かを判別し、適当でない
場合に前記設定部に対し、測定領域の再区分を指令する
評価量判別部とを宥する構戊である。
[Detailed description of the invention] [Table of contents] Overview Industrial field of application Conventional technology (Figs. 3, 6, 12, 13) Problems to be solved by the invention (Figs. 8, 11) Figure) Means for solving the problem (Figure 1) Effect (Figure 1) Examples (Figure 2, Figure 4, Figure 5, Figure 6, Figure 7, Figure 9, Figure 10) ) Effects of the invention [Summary] An action part that applies displacement to the object to be measured, a measurement unit that measures the amount of displacement at a plurality of measurement points of the object to be measured, and a curvature calculation that calculates the curvature based on the amount of displacement. The present invention relates to a curvature calculation device having a simple structure, which can eliminate the adverse effects of measurement errors in the amount of displacement obtained at a measurement point, and calculate the curvature of an object to be measured with high accuracy. A region division setting unit that divides the measurement region of the object to be measured into a plurality of regions based on a predetermined evaluation quantity, and a piecewise polynomial that includes an undetermined coefficient representing the amount of displacement of the object to be measured for each region. , a polynomial/function output unit that outputs an evaluation function that evaluates the degree of approximation by the polynomial, and a coefficient determination unit that determines undetermined coefficients based on at least the evaluation function, the measured displacement amount, and the boundary conditions between regions. and an evaluation amount determination unit that determines whether or not the area classification is appropriate based on the evaluation amount derived from the evaluation function, and instructs the setting unit to reclassify the measurement area if it is not appropriate. It is a placating structure.

(産業上の利用分野) 本発明はプラスチック等の柔軟構造体等の材料特性の測
定のために用いる曲率算出装置に係り、特に被測定物に
変位を与える作用部と、被測定物の複数の測定点での変
位量を測定する測定都と、被測定物の変位に基づいて曲
率の算出を行う曲率算出部とを有する曲率算出装置に関
する。
(Industrial Application Field) The present invention relates to a curvature calculation device used for measuring material properties of flexible structures such as plastics, and in particular includes an action part that displaces an object to be measured, and a plurality of The present invention relates to a curvature calculation device that includes a measurement point that measures the amount of displacement at a measurement point, and a curvature calculation section that calculates curvature based on the displacement of an object to be measured.

近年製品の高機能化と軽量化の要請のもとで、構造設計
の分野ではプラスチックのモールド技術を用いて材料の
薄肉化を図り、必要にして最小限の強度を付与する極限
的な設計が試みられている。
In recent years, in response to demands for higher functionality and lighter weight products, the field of structural design has sought to reduce the thickness of materials using plastic molding technology, creating the ultimate design that provides the minimum necessary strength. is being attempted.

一般に柔構造体が曲げ変形を受ける場合には、材料特性
(ヤング率及びボアッソン比)が与えられると、曲率半
径を知れば応力等を求めることができる。
Generally, when a flexible structure undergoes bending deformation, if the material properties (Young's modulus and Boisson's ratio) are given, stress etc. can be determined by knowing the radius of curvature.

(従来の技術) 従来、プラスチックの薄肉材料等の柔構造体の機械的な
特性を測定するため、本出願人は「計測ロボット」 (
特願昭63−228354号)等を提案している。
(Prior Art) Conventionally, in order to measure the mechanical properties of flexible structures such as thin plastic materials, the applicant has developed a "measuring robot" (
(Japanese Patent Application No. 63-228354).

当該計測ロボットの概要は第3図に示すように、xyz
の3軸方向の移動機構を有する直交型ロボット31.3
2と、当該ロボット31に設けられた回転機構34と、
プラスチックの薄肉材料等の被測定物33と、当該ロボ
ット32にカセンサ35を介して取り付けられた荷重押
圧用のロッド38と、ロボット31の先端にカセンサ3
5を介して取り付けられた変位量検出用のプローブ37
とを有するものである。
The outline of the measuring robot is as shown in Figure 3.
Cartesian robot 31.3 with a three-axis movement mechanism
2, a rotation mechanism 34 provided on the robot 31,
An object to be measured 33 such as a thin plastic material, a load pressing rod 38 attached to the robot 32 via a capacitor 35, and a capacitor 3 at the tip of the robot 31.
Probe 37 for displacement detection attached via 5
It has the following.

当該計測ロボットを用いて被測定物の曲率を測定する際
に、従来、本出願人はスプライン関数の補開式を用いた
ものを提案している(特願平1一67836号)。
When measuring the curvature of an object to be measured using the measuring robot, the present applicant has conventionally proposed a method using a supplementary formula for a spline function (Japanese Patent Application No. 1-67836).

第13図に従来例に係る当該曲率算出装置を示す。FIG. 13 shows a conventional curvature calculation device.

当該装置は同図に示すように、被測定物に加えた荷重に
対して当該被測定物の変位量を複数の測定点で測定する
変位量測定部133と、当該被測定物に変位を加える作
用部134と、前記測定点を節点とする各領域(一次元
)毎に変位を表わす多項式としてのスプライン補間式の
設定を行う補開式設定部132と、測定された前記変位
量及び設定された当該スプライン補間式に基づいて当該
補開式の各係数を決定する係数決定部131と、決定さ
れた当該スプライン補間式に基づいて・曲率の算出を行
う曲率算出部135とを有するものである。
As shown in the figure, the device includes a displacement measuring section 133 that measures the amount of displacement of the object to be measured at a plurality of measurement points in response to a load applied to the object, and a displacement measuring section 133 that applies displacement to the object to be measured. an action section 134; a compensation equation setting section 132 that sets a spline interpolation equation as a polynomial expressing displacement for each region (one dimension) with the measurement point as a node; It has a coefficient determining unit 131 that determines each coefficient of the supplementary formula based on the spline interpolation formula that has been determined, and a curvature calculation unit 135 that calculates the curvature based on the determined spline interpolation formula. .

ここで、前記変位量測定部133は第3図に示した計測
ロボットのロボット31に設けられた力センサ35を介
して取り付けられた前記プローブ37に相当するもので
あり、作用部134は前記ロボット32に取り付けられ
た前記カセンサ36及びロッド38に相当するものであ
る。
Here, the displacement measuring section 133 corresponds to the probe 37 attached via the force sensor 35 provided to the robot 31 of the measuring robot shown in FIG. This corresponds to the above-mentioned force sensor 36 and rod 38 attached to 32.

前記被測定物を測定するための具体的な設定例を第6図
に示す。試験板61の一辺を固定板64a,bで固定し
、他辺近傍の一点63に対し前記ロッド38を作用させ
て荷重を加え、各測定点62において変位量を測定する
A specific example of settings for measuring the object to be measured is shown in FIG. One side of the test plate 61 is fixed with fixing plates 64a and 64b, and the rod 38 is applied to a point 63 near the other side to apply a load, and the amount of displacement at each measurement point 62 is measured.

従来例に係る当該装置により,曲率の算出を行う場合に
は、第12図の流れ図に示すように、ステップSA1で
前記変位量測定部133が測定すべき複数の測定点を節
点とする領域(区間)を予め設定し、ステップSA2で
当該各領域毎に所定の次数(前記測定点の数に比べ低い
例えばm=3次)のスプライン補間式を、(m−1)回
連続微分可能であるように設定する。
When calculating the curvature using the conventional device, as shown in the flowchart of FIG. In step SA2, a spline interpolation formula of a predetermined degree (lower than the number of measurement points, e.g., m = 3rd degree) can be continuously differentiated (m-1) times for each region in step SA2. Set it as follows.

ステップSA3で前記変位量測定部133により測定し
た測定点(節点)を前記スプライン補間式が通るととも
に、当該節点で当該スプライン補間式の導関数が連続で
あることを用い、各係数を決定することができる。
Determining each coefficient by using the fact that the spline interpolation formula passes through the measurement points (nodes) measured by the displacement measurement unit 133 in step SA3 and that the derivative of the spline interpolation formula is continuous at the nodes. I can do it.

ステップSA4で得られたスプライン補間式に基づい゛
て前記曲率算出部135により当該補開式の二階微分等
の演算を行うことにより曲率が算出されることになる。
Based on the spline interpolation formula obtained in step SA4, the curvature calculation unit 135 calculates the curvature by performing calculations such as second-order differential of the compensation formula.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、以上説明したように従来例に係る曲率算出装
置にあっては、前記補間式を3次で近似すれば二階微分
可能でかつ連続な関数を得ることができるので、曲率を
容易に求めることができる。
By the way, as explained above, in the conventional curvature calculation device, a second-order differentiable and continuous function can be obtained by approximating the interpolation formula in cubic terms, so the curvature can be easily calculated. I can do it.

しかし、当該スプライン補間式は第11図に示すように
、必ず各測定点を通るようにしているとともに、一般に
測定データは誤差を含んでいる。
However, as shown in FIG. 11, the spline interpolation formula always passes through each measurement point, and the measurement data generally includes errors.

そのため、変位量に比較し、測定誤差が小さいときは、
スプライン補間式を用いてもある程度精度良く、曲率半
径を求めることができるが、相対的に変位量が小さい場
合には、測定誤差の影響が大きくなり、スプライン補間
式では精度良く曲率を算出することが困難となる。第8
図に従来例に係る装置により曲率を算出した結果を示す
Therefore, when the measurement error is small compared to the amount of displacement,
The radius of curvature can be calculated with some degree of accuracy using the spline interpolation formula, but if the amount of displacement is relatively small, the influence of measurement errors becomes large, and the spline interpolation formula cannot calculate the curvature with high accuracy. becomes difficult. 8th
The figure shows the results of calculating curvature using a conventional device.

当該図において、符号80は曲率0の基準面であり、符
号81はX方向の曲率、符号82はY方向の曲率、符号
83は捩り率を示すものであり、現実と適合せず、応力
を計測することができる範囲が限定されるという問題点
を有していた。
In the figure, 80 is a reference plane with 0 curvature, 81 is the curvature in the X direction, 82 is the curvature in the Y direction, and 83 is the torsion rate. The problem was that the measurable range was limited.

そこで、本発明は簡単な構或で、測定点において得られ
た離散的な変位量の測定誤差による曲率算出への悪影響
をできるだけ除去して、被測定物の曲率を精度良く算出
することができる曲率算出装置を提供することを目的と
してなされたものである。
Therefore, the present invention has a simple structure, eliminates as much as possible the negative influence on curvature calculation due to measurement errors of discrete displacement amounts obtained at measurement points, and can accurately calculate the curvature of the object to be measured. This was made for the purpose of providing a curvature calculation device.

(課題を解決するための手段) 以上の技術的課題を解決するため本発明は第1図に示す
ように、被測定物に変位を与える作用部4と、被測定物
の複数の測定点での変位量を測定する測定郁3と、被測
定物の変位に基づいて曲率の算出を行う曲率算出部5と
を宥する曲率算出装置において、被測定物の測定領域を
所定の評価量に基づき複数の領域に区分する領域区分設
定部6と、各領域毎に被測定物の変位量を表わす未定係
数を含む区分多項式、及び当該多項式による近似の程度
を評価する評価関数の出力を行う多項式・関数出力部2
と、少なくとも評価関数、測定された変位量及び領域間
での境界条件に基づいて前記多項式の未定係数を決定す
る係数決定部1と、前記評価関数から導出される評価量
に基づいて、領域の区分が適当か否かを判別し、適当で
ない場合に前記設定部6に対し,測定領域の再区分を指
令する評価量判別部7とを宥する構戊である。
(Means for Solving the Problems) In order to solve the above-mentioned technical problems, the present invention, as shown in FIG. In a curvature calculation device that includes a measurement unit 3 that measures the amount of displacement of the object to be measured and a curvature calculation section 5 that calculates the curvature based on the displacement of the object to be measured, the measurement area of the object to be measured is calculated based on a predetermined evaluation amount. A region segmentation setting unit 6 that segments a plurality of regions, a segmentation polynomial that includes an undetermined coefficient that represents the amount of displacement of the object to be measured for each region, and a polynomial that outputs an evaluation function that evaluates the degree of approximation by the polynomial. Function output section 2
a coefficient determining unit 1 that determines an undetermined coefficient of the polynomial based on at least an evaluation function, a measured displacement amount, and a boundary condition between regions; The configuration includes an evaluation amount determining section 7 that determines whether or not the classification is appropriate, and instructs the setting section 6 to reclassify the measurement area if it is not appropriate.

ここで、「曲率」とは曲線rを点Pが弧の長さΔSだけ
進んでP′へきたとき、Pにおける接線とP゜における
接線のなす角度がΔωであった場合のΔS→0の極限を
いう。
Here, "curvature" refers to ΔS → 0 when point P moves along curve r by arc length ΔS and reaches P', and the angle between the tangent at P and the tangent at P° is Δω. It means the limit.

第6図に示したように被測定物に曲げ変形を与えた場合
の変位曲面のX軸に沿った曲率は、変位曲面をXで2階
偏微分することにより求めることができる。y軸に沿っ
た曲率も同様に求めることができる。捩じり率は変位曲
面なXとyでそれぞれ1階偏微分することにより求める
ことができる。
As shown in FIG. 6, the curvature of the displacement surface along the X axis when bending deformation is applied to the object to be measured can be determined by second-order partial differentiation of the displacement surface with respect to X. The curvature along the y-axis can be similarly determined. The torsion rate can be determined by first-order partial differentiation on the displacement surfaces X and y, respectively.

(作用) 本発明により曲率の算出を行う場合には、第1図に示す
ように、前記作用部4により、前記被測定物に対して変
位を加え、前記測定部3によりn+1個の各測定点にお
いて変位量を測定する。
(Function) When calculating the curvature according to the present invention, as shown in FIG. Measure the displacement at the point.

前記多項式・関数出力部2は前記領域区分設定部6によ
り区分された領域毎に当該被測定物の変位を近似的に表
現するための未定係数を含む区分多項式を出力する。
The polynomial/function output section 2 outputs a piecewise polynomial including undetermined coefficients for approximately expressing the displacement of the object to be measured for each region divided by the region section setting section 6.

当該区分多項式の最高次数を例えばm次とした場合には
、各領域の境界においてm−1回連続微分可能とする。
If the highest degree of the piecewise polynomial is, for example, m-th degree, continuous differentiation is possible m-1 times at the boundary of each area.

このような区分多項式として各領域(1;1・1,2,
・・・,k)毎に、例えば、次のようなスプライン関数
(mは奇数)を用いれば良い。
As such a piecewise polynomial, each region (1; 1・1, 2,
, k), for example, the following spline function (m is an odd number) may be used.

f (X) ”at, .xlvI+at, +11−
I X’″″″”4 easeat, ,X +aj,
f (X) ”at, .xlvI+at, +11-
I X'″″″”4 easeat, ,X +aj,
.

?未定係数at+mmat.m−■,・・・, at,
。は以下に述べる条件゛により決定される。
? Undetermined coefficient at+mmat. m-■,..., at,
. is determined by the conditions described below.

また、「領域」とは前記被測定物上に設定された領域で
あって、1次元または2次元、3次元の場合があり、以
下、説明の簡単の為、区分された領域として前記被測定
物上のある1次元の線分[a , bl上をk個の領域
(区間)に区分した場合に[xo +xtl I [X
1 +X2] e”” t [Xk−1 tXkl  
■a”Xo.  b−xk のように記述される。
Furthermore, the term "area" refers to an area set on the object to be measured, which may be one-dimensional, two-dimensional, or three-dimensional. When a certain one-dimensional line segment [a, bl on an object is divided into k regions (intervals), [xo + xtl I [X
1 +X2] e"" t [Xk-1 tXkl
■It is written like this: a"Xo. b-xk.

尚、本発明に係る領域の区分により生じた各境界の節点
X。,x1,・・・,Xkは従来のスプライン補間式の
場合と異なり、前記測定部3により測定されたn +1
個の測定点とは何ら関係を有せず、測定点をどこにとっ
たかによって節点の位置が定まるのではなく、前記評価
量または外部からの指示に基づいて定められるものであ
り、一般に測定点の数n十1と節点の数kとは一致しな
い。
Note that the node X of each boundary generated by dividing the area according to the present invention. , x1, ..., Xk are n +1 measured by the measuring section 3, unlike the conventional spline interpolation
The position of the node is not determined by where the measurement point is taken, but is determined based on the above-mentioned evaluation quantity or an external instruction, and generally the position of the node is determined based on the evaluation amount or external instructions. The number n11 does not match the number k of nodes.

一方、評価関数は当該区分多項式による近似の程度を評
価するための関数である。
On the other hand, the evaluation function is a function for evaluating the degree of approximation by the piecewise polynomial.

従来のようにスプライン補間式が前記測定点を必ず通る
という条件を課せば、評価関数は特に必要ではないが,
以下の理由から従来のように、測定点を必ず通るという
制約を課さず、評価関数を導入することとした。
If we impose the condition that the spline interpolation formula always passes through the measurement points as in the past, an evaluation function is not particularly necessary.
For the following reasons, we decided to introduce an evaluation function without imposing the constraint that the measurement point must always be passed as in the past.

すなわち、一般に前記測定部3による変位の測定には測
定誤差を伴うものであり、各測定点での測定された離散
的な変位量から測定誤差を排除することは不可能であり
前記多項式が当該測定点を、必ず通らなければならない
とする制約を課すと、2階微分等を必要とする曲率の算
出にあたって却って現実から離れる可能性があるからで
ある。
That is, the measurement of displacement by the measurement unit 3 generally involves measurement errors, and it is impossible to eliminate measurement errors from the discrete displacement amounts measured at each measurement point, and the polynomial is This is because if a restriction is imposed that the measurement point must be passed through, the calculation of curvature, which requires second-order differentiation, may actually deviate from reality.

そこで、本発明では各測定点での、前記区分多項式によ
り表わされる変位と測定された変位との完全な一致を要
求するのではなく、当該多項式の近似の程度を評価する
ことができる評価関数を導入して、前記多項式が現実の
変位をより良く近似することができるようにした。
Therefore, in the present invention, instead of requiring complete agreement between the displacement expressed by the piecewise polynomial and the measured displacement at each measurement point, an evaluation function that can evaluate the degree of approximation of the polynomial is provided. was introduced so that the polynomial can better approximate the real displacement.

このような評価関数の例としては、例えば前記多項式1
こより表わされた変位量と前記測定点の変位量との差を
自乗したものの全測定点についてとった和や、当該差の
絶対値の全測定点の和等や実施例で挙げるような評価関
数; σ一  Σ WI  I  (s(xi)−y五)  
l  2    ■但し、Wi:重み関数、S(Xz)
 ;スプライン関数、Vi+測定データ、i;測定点の
位置を示すパラメータがある。
As an example of such an evaluation function, for example, the polynomial 1
The sum obtained by squaring the difference between the amount of displacement expressed from this and the amount of displacement at the measurement point for all measurement points, the sum of the absolute value of the difference over all measurement points, and evaluations as mentioned in the examples. Function; σ1 Σ WI I (s(xi)−y5)
l 2 ■However, Wi: weight function, S(Xz)
; Spline function, Vi + measurement data, i; There are parameters indicating the position of the measurement point.

こうして、前記多項式・関数設定部2により設定された
区分多項式の各係数は、評価関数と、前記変位量測定部
3により各測定点において測定された変位量及び前記領
域区分設定部6により設定された領域の境界において当
該区分多項式が満たすべきm−1回連続微分可能条件に
より決定されることになる。
In this way, each coefficient of the piecewise polynomial set by the polynomial/function setting section 2 is determined by the evaluation function, the displacement measured at each measurement point by the displacement measuring section 3, and the area section setting section 6. It is determined by the m-1 times continuous differentiability condition that the piecewise polynomial should satisfy at the boundary of the area.

その際、前記評価量判別部7は前記領域区分設定部6に
より設定された領域区分に基づいて定まる前記評価関数
により導出される評価値に基づいて、設定された領域区
分が適当であるか否かを判断する。
At this time, the evaluation amount determining unit 7 determines whether the set area classification is appropriate based on the evaluation value derived by the evaluation function determined based on the area classification set by the area classification setting unit 6. to judge.

すなわち、当該評価関数が前述したように前記多項式に
より表わされた変位量と測定された変位量との差の自乗
の全測定点に関する和を取った関数である場合には、測
定誤差が無い場合には当該評価値は小さければ小さい程
、近似が良いことになる。しかし、測定誤差がある場合
には、必要以上に当該評価値を小さくしても必ずしも近
似がよいとはいえない。このことは、測定誤差がある場
合には真の関数を用いた場合においても当該評価値は零
とならないことを考えてみれば明らかである。したがっ
て、測定誤差がある場合は、測定系の誤差から予定され
る、ある閾値を設定して当該閾値よりも前記評価値が大
きいかまたは小さいかにより前記区分が適当であるか否
かを判別し、評価値が大きい場合には、前記領域区分設
定部6に指令を行い再区分(より細かい区分)を指令す
ることになる。
In other words, if the evaluation function is the sum of the squares of the differences between the displacement amount expressed by the polynomial and the measured displacement amount over all measurement points as described above, there is no measurement error. In this case, the smaller the evaluation value, the better the approximation. However, if there is a measurement error, it cannot be said that the approximation is necessarily good even if the evaluation value is made smaller than necessary. This becomes clear if we consider that if there is a measurement error, the evaluation value will not be zero even if a true function is used. Therefore, if there is a measurement error, a certain threshold is set based on the error of the measurement system, and it is determined whether the classification is appropriate based on whether the evaluation value is larger or smaller than the threshold. If the evaluation value is large, a command is issued to the area classification setting section 6 to reclassify (more detailed classification).

(実施例) 次に、本発明の実施例に係る曲率算出装置について説明
する。
(Example) Next, a curvature calculation device according to an example of the present invention will be described.

本実施例に係る曲率算出装置は、第2図に示すように、
被測定物に変位を加える作用部14と、被測定物の複数
の測定点での変位量を測定する測定部13と、マイクロ
・コンピュータ(MPU)20と、曲率や応力等の算出
に必要なデータ等の格納を行うデータ格納部21と、デ
ータの出力を行う表示部またはプリンタ装置等の出力部
23と、データの入力を行うキーボードにより構戊され
る設定部18とを右する。
As shown in FIG. 2, the curvature calculation device according to this embodiment has the following features:
An action unit 14 that applies displacement to the object to be measured, a measurement unit 13 that measures the amount of displacement at a plurality of measurement points of the object to be measured, a microcomputer (MPU) 20, and other components necessary for calculating curvature, stress, etc. A data storage section 21 stores data, an output section 23 such as a display section or a printer device outputs data, and a setting section 18 includes a keyboard for inputting data.

前記作用部14は同図に示すように、前述したロボット
14a (32)と、力測定部14b (36)と、当
該力測定部14bからの信号等に基づいてロボットの駆
動の制御を行うロボットの制御部14cとを有する。
As shown in the figure, the acting section 14 includes the aforementioned robot 14a (32), a force measuring section 14b (36), and a robot that controls the drive of the robot based on signals etc. from the force measuring section 14b. It has a control section 14c.

測定部13はロボット13a (31)と、変位量測定
部13bと、当該ロボット13aの駆動制御を行う制御
部13cとを有する。
The measurement unit 13 includes a robot 13a (31), a displacement measurement unit 13b, and a control unit 13c that controls the drive of the robot 13a.

さらに前記MPU20の機能としては、大きくは曲率の
算出のための演算を行う演算部22と、前記測定部13
及び作用部14に対する指令を行う指令部24と、得ら
れた曲率から応力等の算出を行う応力算出部25とを有
する。
Furthermore, the functions of the MPU 20 include a calculation section 22 that performs calculations for calculating curvature, and a measurement section 13.
and a command section 24 that issues commands to the action section 14, and a stress calculation section 25 that calculates stress and the like from the obtained curvature.

さらに、当該演算部22は同図に示すように、被測定物
の変位を位置の関数として表示した区分多項式としての
スプライン関数に基づいて曲率の算出を行う曲率算出部
l5と、被測定物の測定領域を所定の評価量に基づいて
複数の領域に区分する領域区分設定部16と、各領域毎
に被測定物の変位を近似する未定係数を含む区分多項式
としての前述したスプライン関数、及び当該スプライン
関数の近似の程度を評価する評価関数の出力を行う多項
式・関数出力部12と、少なくとも評価関数、測定され
た変位量及び領域間での境界条件に基づいて前記スプラ
イン関数の未定係数を決定する係数決定部11と、前記
評価関数から導出される評価量に基づいて、領域の区分
が適当か否かを判別し、適当でない場合に前記設定部1
6に対し、領域の再区分を指令する評価量判別部17と
を有する。
Further, as shown in the figure, the calculation section 22 includes a curvature calculation section 15 that calculates the curvature based on a spline function as a piecewise polynomial expressing the displacement of the object to be measured as a function of position, and A region division setting unit 16 that divides the measurement region into a plurality of regions based on a predetermined evaluation quantity, the above-mentioned spline function as a piecewise polynomial including an undetermined coefficient that approximates the displacement of the object to be measured for each region, and the a polynomial/function output unit 12 that outputs an evaluation function for evaluating the degree of approximation of the spline function; and determining undetermined coefficients of the spline function based on at least the evaluation function, the measured displacement amount, and the boundary conditions between regions. a coefficient determining unit 11 that determines whether or not the area classification is appropriate based on the evaluation amount derived from the evaluation function, and if it is not appropriate, the setting unit 1
6, it has an evaluation amount determination unit 17 that instructs reclassification of the area.

また゜、前記多項式・関数出力部12は同図に示すよう
に、前記領域区分設定部16により設定された領域区分
に基づいて各領域に対応させたスプライン関数(区分多
項式〉の形を決定するスプライン関数形決定部12bと
、当該領域区分に基づき、前記評価関数形を決定する評
価関数形決定部12cと、当該スプライン関数形決定部
12b及び当該評価関数形決定部12cにより決定され
たスプライン関数及び評価関数形に基づいて前記未定係
数を決定するための係数決定式を導出する係数決定式導
出部12aとを宥する。
Further, as shown in the figure, the polynomial/function output section 12 is configured to generate a spline function that determines the form of a spline function (piecewise polynomial) corresponding to each region based on the region section set by the region section setting section 16. A function form determining unit 12b, an evaluation function form determining unit 12c that determines the evaluation function form based on the area division, and a spline function determined by the spline function form determining unit 12b and the evaluation function form determining unit 12c. and a coefficient determining formula deriving unit 12a that derives a coefficient determining formula for determining the undetermined coefficient based on the evaluation function form.

本実施例に係る曲率算出装置の動作を説明する。The operation of the curvature calculation device according to this embodiment will be explained.

第5図の流れ図に示すように、ステッフSJIで予め前
記設定部18により、前記領域区分設定部16に対して
領域区分の数k及び測定領域[a,blの設定を行う。
As shown in the flowchart of FIG. 5, in step SJI, the setting unit 18 sets the number k of area divisions and the measurement area [a, bl] to the area division setting unit 16 in advance.

例えば、測定点の数をnとした場合にはk≠n  (k
mnの場合には従来用いたスプライン補間式と同じにな
ってしまい平滑化を行う必要はない)の適当な数k (
例えばk−2)を出力する。
For example, when the number of measurement points is n, k≠n (k
In the case of mn, it is the same as the conventional spline interpolation formula and there is no need to perform smoothing).
For example, k-2) is output.

当該領域区分設定部16による領域区分の設定があると
、ステップSJ2で前記演算部22のスプライン関数形
決定部12bは当該区分及び前記設定部18の設定に基
づいて、各領域に対して未定係数を含むm(奇数、例え
ば3)次の多項式を?応させる。
When the region division setting section 16 sets the region division, the spline function form determination section 12b of the calculation section 22 sets an undetermined coefficient for each region based on the division and the setting of the setting section 18 in step SJ2. A polynomial of degree m (odd number, e.g. 3) containing ? make them respond.

また、前記評価関数形決定部12cは前記設定部18に
より測定点の個数等の設定により評価関数の形を決定す
る。
Further, the evaluation function form determining unit 12c determines the form of the evaluation function by setting the number of measurement points and the like by the setting unit 18.

ここでは、σ一ΣWr I (S(Xt)−3’z) 
I ”  ■i 但し、町;重み関数、s(xt)  #スプライン関数
、i ;測定点の位置を示すパラメータを用いることに
する。
Here, σ1ΣWr I (S(Xt)-3'z)
I ” ■i However, town: Weight function, s(xt) #Spline function, i: A parameter indicating the position of the measurement point will be used.

ステップSJ3で前記係数決定式導出部12aは各領域
毎に設定された前記スプライン関数及び前記評価関数及
び各区分領域間で戒立すべき連続条件に基づいて各多項
式の未定係数が満たすべき決定式を導出することになる
In step SJ3, the coefficient determining formula deriving unit 12a generates a determining formula that should be satisfied by the undetermined coefficients of each polynomial based on the spline function and the evaluation function set for each region and the continuity condition that should be satisfied between each segmented region. will be derived.

すな”わち、設定したm(=3)次の多項式を各k個の
区分領域jに対応させたものを SJ(X)−aJ, 3X3+aJ, 2X2+aJ,
 IX+aJ, Oとし、前記領域区分設定部により設
定した各領域[xo l X 1] * [xt sX
2] *”” * [Xk− 1 *Xk]の境界(節
点) XO(−a)#X1+X2+・・・,Xk−■+
Xk(=b)で当該スプライン関数及び当該スプライン
関数の導関数s(0)(x) (c=1.2,・・・,
 m−1)が連続であるべきだという境界条件及び前記
評価関数が極小値を取るべきだという条件から変分原理
により導き出される式に基づいて前記未定係数が満たす
べき決定式が導出される。
That is, the correspondence of the set m (= 3) degree polynomial to each k segmented area j is SJ(X)-aJ, 3X3+aJ, 2X2+aJ,
IX+aJ, O, and each area [xo l X 1] * [xt sX
2] *”” * Boundary (node) of [Xk- 1 *Xk] XO (-a) #X1+X2+..., Xk-■+
At Xk (=b), the spline function and the derivative of the spline function s(0)(x) (c=1.2,...,
A determining formula to be satisfied by the undetermined coefficient is derived based on a formula derived from the variational principle from the boundary condition that m-1) should be continuous and the condition that the evaluation function should take a minimum value.

ステップSJ4で当該決定式及び前記作用部14により
加えられた変位に対して、前記測定部13により定めら
れた各測定点で測定された変位量を前記決定式に代入し
、ステップSJ5で各未定係数を決定する。
In step SJ4, the displacement amount measured at each measurement point determined by the measuring unit 13 is substituted into the determining formula and the displacement applied by the acting unit 14, and in step SJ5, each undetermined displacement amount is substituted into the determining formula. Determine the coefficients.

ステップSJ6で前記評価量判別部17は前記係数決定
部11で求められた当該係数を前記評価関数に代入し、
評価量σを導出する。
In step SJ6, the evaluation amount determining unit 17 substitutes the coefficient determined by the coefficient determining unit 11 into the evaluation function,
Derive the evaluation quantity σ.

ステップSJ7で導出された評価量σを予め定めた閾値
σ。と比較し、当該評価量σが当該閾値σ0よりも大き
い場合には、前記領域区分設定部16による領域の区分
が適当ではないとして、ステップSJ8で前記領域区分
設定部16に対して領域区分をより細かくした再区分を
指令し、再び当該区分により以上の手順を繰り返すこと
になる。
A predetermined threshold value σ for the evaluation amount σ derived in step SJ7. If the evaluation amount σ is larger than the threshold σ0, it is determined that the area classification by the area classification setting unit 16 is not appropriate, and the area classification setting unit 16 is instructed to change the area classification in step SJ8. A more detailed reclassification is commanded, and the above procedure is repeated again using the relevant classification.

一方、ステップSJ7で評価量σが前記閾値σ。よりも
小さくなった場合には、前記領域区分設定部16による
区分は十分であるとして、ステップSJ9で前記係数決
定部11により決定された係数を有する区分多項式を前
記被測定物の変位を表わすものとして前記曲率算出部1
5に出力することになる。
On the other hand, in step SJ7, the evaluation amount σ is the threshold value σ. If it becomes smaller than , the classification by the area division setting unit 16 is deemed to be sufficient, and in step SJ9, a division polynomial having the coefficients determined by the coefficient determining unit 11 is used to represent the displacement of the object to be measured. As the curvature calculation unit 1
It will be output to 5.

第4図に本実施例によりスプライン平滑化を行った場合
を示すように、従来の場合(第11図)に比べて測定誤
差に基づくと思われる変動が小さくなっている。
As shown in FIG. 4 when spline smoothing is performed according to this embodiment, fluctuations that are thought to be based on measurement errors are smaller than in the conventional case (FIG. 11).

第6図には前記被測定物の概要を示すものであり、後で
理論値との比較が容易にできる構戊となっでいる。被測
定物として線型性の高い金属を用いた場合に、前記測定
部13により測定された変位量を第7図に示す。
FIG. 6 shows an outline of the object to be measured, and has a structure that allows easy comparison with theoretical values later. FIG. 7 shows the amount of displacement measured by the measuring section 13 when a highly linear metal is used as the object to be measured.

第7図において、符号70の輪郭は変位が0の基準面で
あり、符号71が本実施例により測定した変位量を示す
ものである。符号72は参考のために宥限要素法により
構造解析した結果を点線で示したものである。
In FIG. 7, the outline 70 is a reference plane with zero displacement, and 71 indicates the amount of displacement measured in this example. For reference, the reference numeral 72 indicates the result of structural analysis using the limit element method, indicated by a dotted line.

第9図には本実施例に係る曲率算出装置により算出した
曲率を示す。
FIG. 9 shows the curvature calculated by the curvature calculation device according to this embodiment.

同図において、符号90は曲率0の基準面、符号91は
X方尚の曲率、符号92はY方向の曲率、符号93は捩
り率を示すものである。
In the figure, reference numeral 90 indicates a reference plane with a curvature of 0, 91 indicates a curvature in the X direction, 92 indicates a curvature in the Y direction, and 93 indicates a torsion rate.

第10図には本実施例により求めたX方尚の曲率101
,を宥限要素法により求めた理論解102との比較を示
すものであり、同図に示すようにほぼ一致していること
がわかる。
FIG. 10 shows the curvature 101 in the X direction determined by this example.
, is compared with the theoretical solution 102 obtained by the toleration element method, and as shown in the figure, it can be seen that they almost match.

尚、固定部両端で両者の値が若干異なるのは理論では板
を一端で固定させているのに対し、実験ではボルトを用
いて固定しているという境界条件の差によるものである
The reason why the values are slightly different at both ends of the fixed part is due to the difference in boundary conditions: in theory, the plate is fixed at one end, but in the experiment, it is fixed using bolts.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では従来のように各測定点
で測定した変位を表わす多項式が前記測定点を必ず通る
という条件を課すのではなく、当該多項式の近似の程度
を評価する評価関数を導入することにより曲率の算出を
行うようにしている、 したがって、各測定点において測定した変位量に伴う測
定誤差による悪影響をできるだけ除去して、被測定物の
曲率を精度良く算出することができる。
As explained above, in the present invention, instead of imposing the condition that the polynomial expressing the displacement measured at each measurement point always passes through the measurement point as in the conventional case, an evaluation function is used to evaluate the degree of approximation of the polynomial. By introducing this method, the curvature is calculated. Therefore, the curvature of the object to be measured can be calculated with high accuracy by eliminating as much as possible the negative effects of measurement errors associated with the amount of displacement measured at each measurement point.

また、本発明によれば各測定点において測定した変位量
に基づいて精度良く曲率を求めることができるので、よ
り固い被測定物の歪や応力の計測が可能となり、精度の
高い測定を安価に実現することができることになる。
In addition, according to the present invention, the curvature can be determined with high accuracy based on the amount of displacement measured at each measurement point, so it is possible to measure strain and stress of a harder object to be measured, and it is possible to perform highly accurate measurements at low cost. This means that it can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1箇は本発明の原理ブロック図、第2図は実施例に係
るブロック図、第3図は実施例に係る計測ロボットを示
す図、第4図は実施例に係るスプライン平滑化を示す図
、第5図は実施例に係るスプライン平滑化を示す流れ図
、第6図は実施例(従来例)に係る被測定物を示す図、
第7図は実施例により測定した変位量を示す図、第8図
は従来例に係る曲率算出装置により求めた曲率を示す図
、第9図は実施例に係る曲率算出装置により求めた曲率
な示す図、第10図は実施例に係る曲率算出装置により
求めた曲率と理論解との比較を示す図、第11図は従来
例に係るスプライン補間を示す図、第12図は従来例に
係る流れ図、及び第13図は従来例に係る流れ図である
。 1,11・・・係数決定部 2・・・多項式・関数出力部 3・・・測定部 4・・・作用部 5・・・曲率算出部 6・・・領域区分設定部 7・・・評価量判別部 (a) (1)) 実方セ例レこ枡、S言↑5!リロボットTL爪T図第 
 3  図 笛 5 内 ×/6\Y 実施例(従来例)にイthう被測定?!!l乞ホ1図第
 6 図 支位 実7i?!例←二よ98削定しIミ史0L1【とプヘT
図第7図 応力 丈2I!!例により束杓た曲亭とl桟番解乙の毘軟t示
す図第10 E X 従4ξ例h=*ろスフ゜ライン精藺Σ示す図第11  
図 従東側に伶る汽れ図 第12 [
The first is a block diagram of the principle of the present invention, FIG. 2 is a block diagram of an embodiment, FIG. 3 is a diagram showing a measuring robot according to an embodiment, and FIG. 4 is a diagram illustrating spline smoothing according to an embodiment. , FIG. 5 is a flowchart showing spline smoothing according to the embodiment, and FIG. 6 is a diagram showing the object to be measured according to the embodiment (conventional example).
FIG. 7 is a diagram showing the amount of displacement measured by the example, FIG. 8 is a diagram showing the curvature determined by the curvature calculation device according to the conventional example, and FIG. 9 is a diagram showing the curvature determined by the curvature calculation device according to the example. FIG. 10 is a diagram showing a comparison between the curvature obtained by the curvature calculation device according to the embodiment and a theoretical solution, FIG. 11 is a diagram showing spline interpolation according to the conventional example, and FIG. 12 is a diagram according to the conventional example. The flowchart and FIG. 13 are flowcharts according to a conventional example. 1, 11...Coefficient determination unit 2...Polynomial/function output unit 3...Measurement unit 4...Action unit 5...Curvature calculation unit 6...Area division setting unit 7...Evaluation Quantity discrimination part (a) (1)) Actual example, S word ↑5! Rerobot TL Claw T Diagram
3 Diagram whistle 5 Inside ×/6\Y Is there any measurement target in the embodiment (conventional example)? ! ! Figure 1 Figure 6 Figure 7i? ! Example ← 2yo 98 deletion I mi history 0L1 [and PuheT
Figure 7 Stress length 2I! ! Diagram 10 shows the curved pavilion and the structure of the pier number 2.Example 11
Figure No. 12 [

Claims (1)

【特許請求の範囲】 被測定物に変位を加える作用部(4)と、被測定物の複
数の測定点での変位量を測定する測定部(3)と、被測
定物の変位量に基づいて曲率の算出を行う曲率算出部(
5)とを有する曲率算出装置において、 被測定物の測定領域を所定の評価量に基づき複数の領域
に区分する領域区分設定部(6)と、各領域毎に被測定
物の変位量を表わす未定係数を含む区分多項式、及び当
該多項式による近似の程度を評価する評価関数の出力を
行う多項式・関数出力部(2)と、 少なくとも評価関数、測定された変位量及び領域間での
境界条件に基づいて前記多項式の未定係数を決定する係
数決定部(1)と、 前記評価関数から導出される評価量に基づいて、領域の
区分が適当か否かを判別し、適当でない場合に前記設定
部(6)に対し、測定領域の再区分を指令する評価量判
別部(7)とを有することを特徴とする曲率算出装置。
[Claims] An action section (4) that applies displacement to the object to be measured, a measuring section (3) that measures the amount of displacement at a plurality of measurement points of the object to be measured, and an action section (3) that applies displacement to the object to be measured based on the amount of displacement of the object to be measured. The curvature calculation unit (
5) A curvature calculation device comprising: a region division setting unit (6) that divides the measurement region of the object to be measured into a plurality of regions based on a predetermined evaluation amount; a polynomial/function output unit (2) that outputs a piecewise polynomial including undetermined coefficients and an evaluation function for evaluating the degree of approximation by the polynomial; a coefficient determination unit (1) that determines an undetermined coefficient of the polynomial based on the evaluation function; and a coefficient determination unit (1) that determines whether or not the region division is appropriate based on the evaluation amount derived from the evaluation function, and if it is not appropriate, the setting unit A curvature calculation device characterized in that, in contrast to (6), the curvature calculation device further comprises an evaluation amount determination unit (7) that instructs reclassification of the measurement area.
JP15568189A 1989-06-20 1989-06-20 Curvature calculation device Pending JPH0321845A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15568189A JPH0321845A (en) 1989-06-20 1989-06-20 Curvature calculation device
PCT/JP1990/000800 WO1990015982A1 (en) 1989-06-20 1990-06-19 Measuring robot system
DE69028076T DE69028076T2 (en) 1989-06-20 1990-06-19 MEASURING ROBOT SYSTEM
US07/656,060 US5156053A (en) 1989-06-20 1990-06-19 Measuring system using a robot
EP90909380A EP0429677B1 (en) 1989-06-20 1990-06-19 Measuring robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15568189A JPH0321845A (en) 1989-06-20 1989-06-20 Curvature calculation device

Publications (1)

Publication Number Publication Date
JPH0321845A true JPH0321845A (en) 1991-01-30

Family

ID=15611244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15568189A Pending JPH0321845A (en) 1989-06-20 1989-06-20 Curvature calculation device

Country Status (1)

Country Link
JP (1) JPH0321845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513222A (en) * 2005-10-27 2009-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Using tissue acceleration to create better DTI (tissue Doppler imaging) waveforms for CRT (cardiac resynchronization therapy)
JP2014191487A (en) * 2013-03-26 2014-10-06 Yokohama National Univ Curvature computing device, curvature line writing device, and curvature computing method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009513222A (en) * 2005-10-27 2009-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Using tissue acceleration to create better DTI (tissue Doppler imaging) waveforms for CRT (cardiac resynchronization therapy)
JP2014191487A (en) * 2013-03-26 2014-10-06 Yokohama National Univ Curvature computing device, curvature line writing device, and curvature computing method, and program

Similar Documents

Publication Publication Date Title
Glaser et al. Shape monitoring of a beam structure from measured strain or curvature
US9298178B2 (en) Shape measuring apparatus
EP0429677B1 (en) Measuring robot system
Merlet Some properties of the Irvine cable model and their use for the kinematic analysis of cable-driven parallel robots
KR101613815B1 (en) System and method for image-based structural health monitoring suitable for structures having uncertain load conditions and support conditions
CN109918614B (en) Global dynamic strain measurement method based on modal learning
JP2524546B2 (en) Hysteresis compensation weighing device and method
Roy et al. A shape sensing methodology for beams with generic cross-sections: Application to airfoil beams
Demoucron et al. Measuring bow force in bowed string performance: Theory and implementation of a bow force sensor
Wozniak et al. A new method for examining the dynamic performance of coordinate measuring machines
US7614273B2 (en) Method for detecting corrosion, erosion or product buildup on vibrating element densitometers and Coriolis flowmeters and calibration validation
CN111912589A (en) Method for identifying beam structure damage degree based on deflection influence line change quantity
JPH0321845A (en) Curvature calculation device
Giniotis et al. Uncertainty and indeterminacy of measurement data
JP4033119B2 (en) Material testing method, material testing machine
Bergers et al. Enhanced global digital image correlation for accurate measurement of microbeam bending
JP6363436B2 (en) Shape measuring apparatus and shape measuring method
JPH10154169A (en) Method for evaluating deformation of molded product
US5307291A (en) Instrument for analysis of levitation of rapidly moving structure such as a magnetic tape across an air gap
JP4444531B2 (en) Simple inspection vehicle and calibration method thereof
JP2671096B2 (en) Micro indentation tester
JPH0277635A (en) Measuring robot
CN117571506B (en) Shear modulus measuring device and method based on Michelson equal-thickness interference
JPS582605A (en) Measuring method and apparatus
RU2047157C1 (en) Method and device for determination of hardness of article