JP2014191487A - Curvature computing device, curvature line writing device, and curvature computing method, and program - Google Patents

Curvature computing device, curvature line writing device, and curvature computing method, and program Download PDF

Info

Publication number
JP2014191487A
JP2014191487A JP2013064986A JP2013064986A JP2014191487A JP 2014191487 A JP2014191487 A JP 2014191487A JP 2013064986 A JP2013064986 A JP 2013064986A JP 2013064986 A JP2013064986 A JP 2013064986A JP 2014191487 A JP2014191487 A JP 2014191487A
Authority
JP
Japan
Prior art keywords
curvature
line
equation
arc length
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013064986A
Other languages
Japanese (ja)
Other versions
JP6090849B2 (en
Inventor
Suguru Maekawa
卓 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2013064986A priority Critical patent/JP6090849B2/en
Publication of JP2014191487A publication Critical patent/JP2014191487A/en
Application granted granted Critical
Publication of JP6090849B2 publication Critical patent/JP6090849B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately determine the curvature of a curvature line.SOLUTION: The curvature computing device includes a curvature computing unit for calculating the curvature of a curvature line by solving a simultaneous equation, on the basis of an equation in which a second-order differential equation related to the arc length when the curvature line is assumed to be a space curve is equal to a second-order differential equation related to the arc length when the curvature line is assumed to be a curve on a curve surface, and an equation obtained by using the arc length as a parameter and differentiating the equation showing the curvature line on the curve surface with respect to the arc length.

Description

本発明は、曲率演算装置、曲率線書込装置、曲率演算方法およびプログラムに関する。   The present invention relates to a curvature calculation device, a curvature line writing device, a curvature calculation method, and a program.

造船において船首部分や船尾部分の複雑な曲面形状を得るために、鋼板から切り出した平面部材に対してプレス機等で冷間曲げ加工を行い、更に、ガストーチ等で線状加熱してから水をかけて急冷して他方向に曲げるという工法が一般的に用いられている。このようにして鋼板を曲げる作業はぎょう鉄と呼ばれ、熟練を要する職人技となっている。   In shipbuilding, in order to obtain complex curved shapes of the bow and stern parts, a flat member cut out from a steel plate is subjected to cold bending with a press machine, etc., and further heated linearly with a gas torch etc. The method of quenching and bending in the other direction is generally used. The work of bending the steel sheet in this way is called goyo iron, and is a craftsmanship that requires skill.

これに対し、非特許文献1では、曲面上の最大曲率と最小曲率の方向(主方向)をそれぞれ連続して追っていった2組の曲面上曲線である曲率線を、展開基線及びぎょう鉄作業における施工線とする曲率線展開法を提案している。曲率線は、測地的展開(測地的曲率を保ったまま、法曲率成分を除去して実長展開すること)すると平面に展開することができることから、曲率線展開法では、曲率線によって展開過程に仮定を設けず厳密な展開ができる、とされている。   On the other hand, in Non-Patent Document 1, the curvature lines, which are two sets of curves on the curved surface that continuously follow the direction of the maximum curvature and the minimum curvature on the curved surface (main direction), are developed base line and goyo iron. We have proposed a method of expanding the curvature line as the construction line in the work. Since the curvature line can be expanded on a plane by geodesic expansion (removing the normal curvature component while maintaining the geodetic curvature and expanding the actual length), in the curvature line expansion method, the expansion process is performed by the curvature line. It is said that strict development can be made without making assumptions.

松尾 宏平、外1名、「船舶の曲り外板製造を支援する新しい外板展開システムの開発」、日本機械学会論文集(C編)、2010年11月、76巻、771号、p.2797−2802Kohei Matsuo, 1 other person, “Development of a New Outboard Deployment System that Supports the Manufacture of Curved Outboards for Ships”, Transactions of the Japan Society of Mechanical Engineers (C), November 2010, Vol. 76, No. 771, p. 2797-2802

非特許文献1に記載の曲率線展開法において、曲率線を平面に展開する際に曲率線の曲率を求める必要があるが、非特許文献1には曲率線の曲率を求める具体的方法は示されていない。曲率線を平面に精度よく展開するために、曲率線の曲率を精度よく求めることが求められる。   In the curvature line expansion method described in Non-Patent Document 1, it is necessary to obtain the curvature of the curvature line when the curvature line is developed on a plane, but Non-Patent Document 1 shows a specific method for obtaining the curvature of the curvature line. It has not been. In order to develop a curvature line on a plane with high accuracy, it is required to accurately obtain the curvature of the curvature line.

本発明は、このような事情に鑑みてなされたもので、その目的は、曲率線の曲率を精度よく求めることのできる曲率演算装置、曲率線書込装置、曲率演算方法およびプログラムを提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a curvature calculation device, a curvature line writing device, a curvature calculation method, and a program capable of accurately obtaining the curvature of the curvature line. It is in.

この発明は上述した課題を解決するためになされたもので、本発明の一態様による曲率演算装置は、曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式と前記曲率線を曲面上の曲線として弧長に関して2階微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率を算出する曲率演算部を具備することを特徴とする。   The present invention has been made to solve the above-described problems, and a curvature calculation apparatus according to an aspect of the present invention includes a second-order differential equation related to an arc length when a curvature line is regarded as a space curve, and the curvature line. On the basis of the formula obtained by equalizing the second-order differential formula with respect to the arc length as a curve on the curved surface, and the formula obtained by differentiating the formula indicating the curvature line of the curved surface by the arc length with the arc length as a parameter, A curvature calculating unit that solves simultaneous equations and calculates the curvature of the curvature line is provided.

また、本発明の一態様による曲率演算装置は、上述の曲率演算装置であって、曲率線を空間曲線としてみなしたときの弧長に関する微分の式と前記曲率線を曲面上の曲線として弧長に関して微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率の微分、捩率または捩率の微分の少なくともいずれかを算出する微分演算部を具備することを特徴とする。   The curvature calculation apparatus according to an aspect of the present invention is the above-described curvature calculation apparatus, wherein an arc length is calculated by using a differential equation related to an arc length when the curvature line is regarded as a space curve and the curvature line as a curved line. Based on the equation set to be equal to the equation differentiated with respect to and the equation obtained by differentiating the equation of the curved surface of the curved surface by the arc length with the arc length as a parameter, the simultaneous equations are solved and the curvature of the curvature line is solved. A differential operation unit that calculates at least one of the differential, the torsion, and the torsional derivative.

また、本発明の一態様による曲率線書込装置は、曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式と前記曲率線を曲面上の曲線として弧長に関して2階微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率を算出する曲率演算部と、前記曲率演算部が算出した曲率に基づいて平面部材に曲率線を書き込む曲率線書込部と、を具備することを特徴とする。   Further, the curvature line writing apparatus according to one aspect of the present invention performs a second-order differentiation with respect to the arc length using the equation of the second-order differentiation with respect to the arc length when the curvature line is regarded as a space curve and the curvature line as a curve on the curved surface. Calculate the curvature of the curvature line by solving the simultaneous equations based on the expression that is equal to the expression and the expression obtained by differentiating the expression of the curved surface of the curved surface by the arc length with the arc length as a parameter. A curvature calculating unit; and a curvature line writing unit that writes a curvature line on the planar member based on the curvature calculated by the curvature calculating unit.

また、本発明の一態様による曲率演算方法は、曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式と前記曲率線を曲面上の曲線として弧長に関して2階微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率を算出する曲率演算ステップを具備することを特徴とする。   Further, the curvature calculation method according to one aspect of the present invention includes a second-order differential equation regarding the arc length when the curvature line is regarded as a space curve, and a second-order differential equation regarding the arc length using the curvature line as a curve on the curved surface. Is calculated based on an equation that is equal to each other and an equation obtained by differentiating the equation representing the curvature line of the curved surface by the arc length using the arc length as a parameter and calculating the curvature of the curvature line by solving simultaneous equations It comprises a step.

また、本発明の一態様によるプログラムは、曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式と前記曲率線を曲面上の曲線として弧長に関して2階微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率を算出する曲率演算ステップを実行させるためのプログラムである。   In the program according to one aspect of the present invention, the second-order differential expression regarding the arc length when the curvature line is regarded as a space curve is equal to the second-order differential expression regarding the arc length using the curvature line as a curved line. And a curvature calculation step for calculating the curvature of the curvature line by solving simultaneous equations based on the expression obtained by differentiating the expression representing the curvature line of the curved surface by the arc length with the arc length as a parameter. This is a program to be executed.

本発明によれば、曲率線の曲率を精度よく求めることができる。   According to the present invention, the curvature of the curvature line can be obtained with high accuracy.

本発明の第1の実施形態における曲率演算装置の機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the curvature calculating apparatus in the 1st Embodiment of this invention. 同実施形態において、曲率演算装置が曲率を算出して出力する処理手順を示すフローチャートである。In the same embodiment, it is a flowchart which shows the process sequence which a curvature calculating device calculates and outputs a curvature. 本発明の第2の実施形態における曲率演算装置の機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the curvature calculating apparatus in the 2nd Embodiment of this invention. 同実施形態において、曲率演算装置が曲率を算出して出力する処理手順を示すフローチャートである。In the same embodiment, it is a flowchart which shows the process sequence which a curvature calculating device calculates and outputs a curvature.

<第1の実施形態>
以下、図面を参照して、本発明の実施の形態について説明する。
なお、明細書の記載において、ベクトルないし行列を示す太字表記を省略する。また、「曲線」は、直線ないし線分を含む上位概念を示すものとする。
図1は、本発明の第1の実施形態における曲率演算装置の機能構成を示す概略ブロック図である。同図において、曲率演算装置100は、曲面データ取得部110と、曲率線取得部120と、曲率演算部130と、演算結果出力部190とを具備する。
<First Embodiment>
Embodiments of the present invention will be described below with reference to the drawings.
In the description of the specification, bold notation indicating vectors or matrices is omitted. Further, the “curve” indicates a superordinate concept including a straight line or a line segment.
FIG. 1 is a schematic block diagram showing a functional configuration of a curvature calculation apparatus according to the first embodiment of the present invention. In the figure, the curvature calculation device 100 includes a curved surface data acquisition unit 110, a curvature line acquisition unit 120, a curvature calculation unit 130, and a calculation result output unit 190.

曲率演算装置100は、曲面の曲率線(Line Of CurvatureまたはCurvature Line)を取得し、曲率線における曲率を算出する。ここで、曲率線は、曲面に固有の線であり、最大曲率線と最小曲率線とから成る。最大曲率線は、曲面において、断面の曲率(法曲率、Normal Curvature)が最大となる方向を連続して辿って得られる曲線である。最小曲率線は、曲面において、断面の曲率が最小となる方向を連続して辿って得られる曲線である。   The curvature calculating apparatus 100 acquires a curved line of curvature (Line Of Curvature or Curvature Line) and calculates the curvature of the curved line. Here, the curvature line is a line unique to the curved surface, and includes a maximum curvature line and a minimum curvature line. The maximum curvature line is a curve obtained by continuously following the direction in which the curvature of a cross section (normal curvature) is maximum on a curved surface. The minimum curvature line is a curve obtained by continuously following the direction in which the curvature of the cross section is minimum on the curved surface.

例えば、鋼板のぎょう鉄に際して曲率演算装置100が所望の曲面の曲率線と当該曲率線における曲率とを算出して表示することで、曲率演算装置100のユーザは、曲率線を鋼板に展開してぎょう鉄の参考とすることができる。
但し、曲率演算装置100の適用範囲はぎょう鉄に限らない。例えば曲面形状の評価など、曲率を参照する様々な用途に曲率演算装置100を用いることができる。
For example, when the curvature calculation device 100 calculates and displays a desired curved surface curvature line and the curvature at the curvature line when the steel plate is loaded, the user of the curvature calculation device 100 develops the curvature line on the steel plate. It can be used as a reference for Tekyo iron.
However, the application range of the curvature calculation apparatus 100 is not limited to go iron. For example, the curvature calculation device 100 can be used for various purposes that refer to curvature, such as evaluation of a curved surface shape.

曲面データ取得部110は、例えばCAD(Computer Aided Design)データなど、曲面を示すデータ(以下、「曲面データ」と称する)を取得する。
曲率線取得部120は、曲面データ取得部110が取得した曲面データの示す曲面の曲率線を取得する。例えば、曲率線取得部120は、曲面データ取得部110が取得した曲面データから、曲率線を構成する点の座標を算出する。但し、曲率線取得部120が曲率線を取得する方法はこれに限らず、他の装置が算出した曲率線を示すデータを取得するようにしてもよい。
曲率演算部130は、曲率線取得部120が取得した曲率線における曲率を算出する。
The curved surface data acquisition unit 110 acquires data indicating a curved surface (hereinafter referred to as “curved surface data”) such as CAD (Computer Aided Design) data.
The curvature line acquisition unit 120 acquires the curvature line of the curved surface indicated by the curved surface data acquired by the curved surface data acquisition unit 110. For example, the curvature line acquisition unit 120 calculates the coordinates of points constituting the curvature line from the curved surface data acquired by the curved surface data acquisition unit 110. However, the method by which the curvature line acquisition unit 120 acquires the curvature line is not limited to this, and data indicating the curvature line calculated by another device may be acquired.
The curvature calculation unit 130 calculates the curvature of the curvature line acquired by the curvature line acquisition unit 120.

演算結果出力部190は、曲率演算部130が算出した曲率を出力する。例えば、演算結果出力部190は、液晶パネル等の表示画面を有し、所望の曲面を示す図に、曲率線取得部120が取得した曲率線を表示し、さらに、曲率演算部130が算出した曲率を数値データまたは矢印の長さ等で表示する。
但し、演算結果出力部190が演算結果を出力する方法は、演算結果を画面表示する方法に限らない。例えば、演算結果出力部190が他の装置に演算結果を送信するなど、画面表示以外の方法で演算結果を出力するようにしてもよい。
The calculation result output unit 190 outputs the curvature calculated by the curvature calculation unit 130. For example, the calculation result output unit 190 has a display screen such as a liquid crystal panel, displays the curvature line acquired by the curvature line acquisition unit 120 on a diagram showing a desired curved surface, and further calculated by the curvature calculation unit 130. The curvature is displayed as numerical data or the length of an arrow.
However, the method by which the calculation result output unit 190 outputs the calculation result is not limited to the method of displaying the calculation result on the screen. For example, the calculation result may be output by a method other than the screen display, such as the calculation result output unit 190 transmitting the calculation result to another device.

次に、曲率線取得部120が行う曲率線の計算や、曲率演算部130が行う曲率の計算について説明する。
まず、曲率線を空間曲線として把握することができる。ここでいう空間曲線とは、3次元空間に含まれる曲線である。空間曲線について、以下の性質が得られる。
弧長(曲線上の道のり)sをパラメータとして曲線(空間曲線)をc(s)=(x(s),y(s),z(s))と表す。
Next, the calculation of the curvature line performed by the curvature line acquisition unit 120 and the calculation of the curvature performed by the curvature calculation unit 130 will be described.
First, a curvature line can be grasped as a space curve. The space curve here is a curve included in a three-dimensional space. The following properties are obtained for the spatial curve.
The curve (spatial curve) is expressed as c (s) = (x (s), y (s), z (s)) with the arc length (path on the curve) s as a parameter.

また、曲線c(s)の単位接ベクトル(Unit Tangent Vector)をt、主法線ベクトル(Principal Normal Vector)をn、従法線ベクトル(Binormal Vector)をbとする。t、n、bは、この順で、フレネフレーム(Frenet Frame)と呼ばれる右手系の正規直交基底をなす。
また、曲率(curvature)をκとして、式(1)の関係が成り立つ。
Further, the unit tangent vector (Unit Tangent Vector) of the curve c (s) is t, the main normal vector (Principal Normal Vector) is n, and the subnormal vector (Binormal Vector) is b. t, n, and b form a right-handed orthonormal basis called a Frenet frame in this order.
Further, the relationship of equation (1) is established, where κ is the curvature.

Figure 2014191487
Figure 2014191487

但し、プライム(’)は、弧長sでの微分を示す。
また、捩率(torsion)をτとして、式(2)の関係が成り立つ。
However, prime (') shows the differentiation with respect to the arc length s.
Further, the relationship of the formula (2) is established, where τ is the torsion.

Figure 2014191487
Figure 2014191487

さらに、式(3)の関係が成り立つ。   Furthermore, the relationship of Formula (3) is established.

Figure 2014191487
Figure 2014191487

式(1)〜式(3)は、フレネセレの公式(Frenet-Serret Formulas)を表している。
また、曲線c(s)の1階微分c’(s)について式(4)に示す関係が成り立つ。
Formulas (1) to (3) represent the Frenetele formula (Frenet-Serret Formulas).
Further, the relationship shown in the equation (4) holds for the first-order differential c ′ (s) of the curve c (s).

Figure 2014191487
Figure 2014191487

また、曲線c(s)の2階微分c’’(s)について式(5)に示す関係が成り立つ。   Further, the relationship shown in the equation (5) holds for the second-order differential c ″ (s) of the curve c (s).

Figure 2014191487
Figure 2014191487

但し、kは曲率ベクトル(Curvature Vector)を示す。
式(5)を弧長sで微分して式(6)を得られる。
Here, k represents a curvature vector.
Equation (5) is differentiated by arc length s to obtain equation (6).

Figure 2014191487
Figure 2014191487

また、式(5)より式(7)を得られる。   Moreover, Formula (7) can be obtained from Formula (5).

Figure 2014191487
Figure 2014191487

但し、「・」は内積(Inner Product)を示す。また、c’’について「(s)」の表記を省略している。
また、式(6)のn’を、上記のフレネセレの公式の第2式(式(2))を用いて置き換えると式(8)を得られる。
However, “·” indicates an inner product. In addition, “(s)” is omitted from c ″.
Further, when n ′ in the formula (6) is replaced by using the above-mentioned Fresnelee formula second formula (formula (2)), formula (8) is obtained.

Figure 2014191487
Figure 2014191487

式(8)を微分して、t’、n’およびb’をフレネセレの公式を用いて置き換えると、c(s)の4階微分c(4)(s)は式(9)のように示される。 Differentiating equation (8) and substituting t ', n' and b 'using the Fresnel's formula, the fourth-order derivative c (4) (s) of c (s) becomes as shown in equation (9) Indicated.

Figure 2014191487
Figure 2014191487

ここで、C 、C 、C は、それぞれ式(10)のように示される。 Here, C 4 t , C 4 n , and C 4 b are each represented by the formula (10).

Figure 2014191487
Figure 2014191487

一般に、c(s)のm階微分は、式(11)のように示される。   In general, the m-th order derivative of c (s) is expressed as in Expression (11).

Figure 2014191487
Figure 2014191487

ここで、C 、C 、C は、それぞれκやτやそれらの微分を含む項から構成されている。
一方、曲率線は、曲面において断面の曲率が最大または最小となる方向を連続して辿って得られる曲線なので、曲率線を曲面の上の曲線(Curve On Surface)として把握することも可能である。
まず、uおよびv(0≦u≦1、0≦v≦1)をパラメータとして、点(x,y,z)がuv平面上の矩形領域を動くとき、式(12)のように示される。
Here, C m t , C m n , and C m b are each composed of terms including κ, τ, and derivatives thereof.
On the other hand, the curvature line is a curve obtained by continuously following the direction in which the curvature of the cross section is maximum or minimum on the curved surface, so it is also possible to grasp the curvature line as a curve on the curved surface (Curve On Surface) .
First, using u and v (0 ≦ u ≦ 1, 0 ≦ v ≦ 1) as parameters, when the point (x, y, z) moves in a rectangular region on the uv plane, it is expressed as in equation (12). .

Figure 2014191487
Figure 2014191487

この曲面の単位法線ベクトル(Unit Surface Normal Vector)Nは、式(13)のように示される。   A unit surface normal vector N of the curved surface is expressed as in Expression (13).

Figure 2014191487
Figure 2014191487

但し、Rはuに関する偏微分を示し、Rはvに関する偏微分を示す。また、「×」は外積を示し、「||」はベクトルのノルム(Norm)を示す。
また、曲面R(u,v)に含まれる曲線c(s)の単位接ベクトルtと曲線の単位法線ベクトル(Unit Normal Vector)nとの関係は、式(14)のように示される。
Here, R u represents a partial differential with respect to u, and R v represents a partial differential with respect to v. “×” indicates an outer product, and “||” indicates a norm of the vector.
Further, the relationship between the unit tangent vector t of the curve c (s) included in the curved surface R (u, v) and the unit normal vector n of the curve is expressed as shown in Expression (14).

Figure 2014191487
Figure 2014191487

ここで、上記と同様、sを弧長としてkは曲線c(s)の曲率ベクトル(Curvature Vector)を示す。また、kは法曲率ベクトル(Normal Curvature Vector)を示し、kは測地線曲率ベクトル(Geodesic Curvature Vector)を示す。法曲率ベクトルkは、曲率ベクトルkの、曲面に対して直交方向の成分である。また、測地線曲率ベクトルkは、曲率ベクトルkのU方向の成分である。但し、U=N×t(「×」は外積を示す)と定義される。
また、κは法曲率(Normal Curvature)を示し、κは測地線曲率(Geodesic Curvature)を示す。
点Pにおける法曲率κは式(15)のように示される。
Here, as described above, s is an arc length, and k is a curvature vector of the curve c (s). Also, k n is Hokyokuritsu shows vectors (Normal Curvature Vector), k g denotes geodesic curvature vectors (Geodesic Curvature Vector). Normal curvature vector k n is the curvature vector k, which is a component of a direction perpendicular to the curved surface. The geodesic curvature vector k g is the U direction component of the curvature vector k. However, it is defined as U = N × t (“×” indicates an outer product).
Further, κ n represents a normal curvature, and κ g represents a geodesic curvature.
The normal curvature κ n at the point P is expressed as shown in Equation (15).

Figure 2014191487
Figure 2014191487

ここで、λ=dv/duは、点Pにおける曲線c(s)の接線方向を示す。また、E、FおよびGは、第1基本形式(First Fundamental Form)における係数を示し、L、MおよびNは第2基本形式(Second Fundamental Form)における係数を示す。
法曲率κの極値(Extreme Value)は、式(15)においてdκ/dλ=0とすることで得られ、式(16)のように示される。
Here, λ = dv / du indicates the tangential direction of the curve c (s) at the point P. E, F, and G indicate coefficients in the first basic form (First Fundamental Form), and L, M, and N indicate coefficients in the second basic form (Second Fundamental Form).
The extreme value (Extreme Value) of the normal curvature κ n is obtained by setting dκ n / dλ = 0 in Equation (15), and is expressed as Equation (16).

Figure 2014191487
Figure 2014191487

式(15)および式(16)より、式(17)を得られる。   Expression (17) is obtained from Expression (15) and Expression (16).

Figure 2014191487
Figure 2014191487

従って、法曲率κの極値は、式(18)に示す連立方程式を満たす。 Therefore, the extreme value of the normal curvature κ n satisfies the simultaneous equations shown in the equation (18).

Figure 2014191487
Figure 2014191487

式(18)の連立方程式は、duおよびdvに関する同次(Homogeneous)の線形連立方程式となっており、この連立方程式が自明でない解(Nontrivial Solution)を持つ必要十分条件は、式(19)のように示される。   The simultaneous equations of equation (18) are homogeneous (Homogeneous) linear equations with respect to du and dv, and the necessary and sufficient condition that the simultaneous equations have a non-trivial solution (Nontrivial Solution) is As shown.

Figure 2014191487
Figure 2014191487

ここで、det||は行列式(Determinant)を示す。あるいは、式(19)より式(20)を得られる。   Here, det || represents a determinant. Alternatively, Expression (20) can be obtained from Expression (19).

Figure 2014191487
Figure 2014191487

ガウス曲率(Gaussian Curvature)をKで示し、平均曲率(Mean Curvature)をHで示すと、法曲率κの2次方程式である式(20)は、式(21)のように表記される。 When the Gaussian curvature is represented by K and the mean curvature is represented by H, Equation (20), which is a quadratic equation of the normal curvature κ n , is expressed as Equation (21).

Figure 2014191487
Figure 2014191487

式(21)を解いて、式(22)に示す解を得られる。   Solving equation (21) yields the solution shown in equation (22).

Figure 2014191487
Figure 2014191487

ここで、κは最大主曲率(Maximum Principal Curvature)を示し、κは最小主曲率(Minimum Principal Curvature)を示す。接平面において法曲率κが最大値や最小値を取る方向は主方向(Principal Direction)と呼ばれる。 Here, κ 1 indicates a maximum principal curvature (Maximum Principal Curvature), and κ 2 indicates a minimum principal curvature (Minimum Principal Curvature). The direction in which the normal curvature κ n takes the maximum value or the minimum value on the tangential plane is called a principal direction.

曲面上の曲線をc(s)=R(u(s),v(s))と表記し、連鎖律(Chain Rule)を用いて、曲線c(s)の1階微分c’(s)は式(23)のように示される。   A curve on the curved surface is expressed as c (s) = R (u (s), v (s)), and a first order derivative c ′ (s) of the curve c (s) is used by using a chain rule. Is shown as in equation (23).

Figure 2014191487
Figure 2014191487

また、曲線c(s)の2階微分c’’(s)は式(24)のように示される。   Further, the second-order differential c ″ (s) of the curve c (s) is expressed as shown in Expression (24).

Figure 2014191487
Figure 2014191487

但し、RuuやRuvなど、Rに下付きのuはuに関する偏微分を示し、Rに下付きのvはvに関する偏微分を示す。
また、曲線c(s)の3階微分c’’’(s)は式(25)のように示される。
However, subscript u of R, such as R uu and R uv , indicates a partial differential with respect to u, and subscript v of R indicates a partial differential with respect to v.
Further, the third-order differential c ′ ″ (s) of the curve c (s) is expressed as shown in the equation (25).

Figure 2014191487
Figure 2014191487

また、曲線c(s)の4階微分c(4)(s)は式(26)のように示される。 Further, the fourth-order derivative c (4) (s) of the curve c (s) is expressed as in Expression (26).

Figure 2014191487
Figure 2014191487

一般に、曲線c(s)のm階微分c(m)(s)は式(27)のように示される。 In general, the m-th order derivative c (m) (s) of the curve c (s) is expressed as in Expression (27).

Figure 2014191487
Figure 2014191487

ここで、αは、u’、u’’、・・・、u(m−1)およびv’、v’’、・・・、v(m−1)を含む項の和の合計を示す。 Here, alpha m is, u ', u'', ···, u (m-1) and v', v '', ··· , v the total sum of terms containing (m-1) Show.

いずれの主曲率方向ベクトル(Principal Curvature Direction Vector)も上述した式(18)を満たす。従って、式(18)の1つ目の等式より、法曲率κが主曲率κまたはκのいずれかのとき、式(28)を得られる。 Any principal curvature direction vector satisfies the above-described equation (18). Therefore, from the first equation of equation (18), equation (28) is obtained when the normal curvature κ n is either the main curvature κ 1 or κ 2 .

Figure 2014191487
Figure 2014191487

ここで、ηは零でない定数であり、式(29)に示される第1基本形式の正規化にて定められる。   Here, η is a non-zero constant and is determined by normalization of the first basic form shown in Equation (29).

Figure 2014191487
Figure 2014191487

式(29)は、弧長を1にする正規化を示している。
式(29)および式(28)より式(30)を得られる。
Equation (29) shows normalization with an arc length of 1.
Expression (30) is obtained from Expression (29) and Expression (28).

Figure 2014191487
Figure 2014191487

主曲率方向ベクトルは式(18)の2つ目の等式も満たすので、式(31)を得られる。   Since the main curvature direction vector also satisfies the second equation of equation (18), equation (31) is obtained.

Figure 2014191487
Figure 2014191487

ここで、μは零でない定数であり、ηの場合と同様に式(32)のように示される。   Here, μ is a non-zero constant, and is expressed as in Expression (32) as in the case of η.

Figure 2014191487
Figure 2014191487

曲率線は、曲面に含まれる曲線として把握することも、空間曲線として把握することもできる。従って、式(5)および式(24)より、式(33)を得られる。   The curvature line can be grasped as a curve included in the curved surface or as a space curve. Therefore, Expression (33) can be obtained from Expression (5) and Expression (24).

Figure 2014191487
Figure 2014191487

但し、αは式(34)のように示される。 However, (alpha) 2 is shown like Formula (34).

Figure 2014191487
Figure 2014191487

u’やv’の値は、式(28)または式(31)より得られる。
式(33)の両辺にRの内積を作用させて式(35)を得られる。
The values of u ′ and v ′ are obtained from Expression (28) or Expression (31).
Equation (35) is obtained by applying the inner product of Ru to both sides of equation (33).

Figure 2014191487
Figure 2014191487

また、式(33)の両辺にRの内積を作用させて式(36)を得られる。 Further, the resulting equation (36) is reacted with the inner product of both sides to R v of formula (33).

Figure 2014191487
Figure 2014191487

式(35)および式(36)には、u’’、v’’およびκの3つの未知数が含まれている。従って、連立方程式を解くには第3の等式が必要である。この等式は、式(18)を微分して式(37)のように得られる。 The expression (35) and formula (36), u '', v 'contains three unknowns' and kappa g. Therefore, the third equation is required to solve the simultaneous equations. This equation is obtained by differentiating equation (18) as equation (37).

Figure 2014191487
Figure 2014191487

ここで、βおよびβ(バー)は、式(38)のように示される。 Here, β 1 and β (bar) 1 are expressed as in Equation (38).

Figure 2014191487
Figure 2014191487

式(35)、式(36)、および、式(37)の第1式より、式(39)に示す連立方程式を得られる。   The simultaneous equations shown in the equation (39) can be obtained from the first equation of the equations (35), (36), and (37).

Figure 2014191487
Figure 2014191487

また、式(35)、式(36)、および、式(37)の第2式より、式(40)に示す連立方程式を得られる。   Further, simultaneous equations shown in the equation (40) can be obtained from the second equation of the equations (35), (36), and (37).

Figure 2014191487
Figure 2014191487

|L+κE|≧|N+κG|の場合、式(39)を解くことで、測地線曲率κを得られる。それ以外の場合は式(40)を解くことで、測地線曲率κを得られる。
なお、上記のように、式(39)や式(40)は、式(33)および式(37)に基づいて得られている。そして、式(33)は、曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式(式(5))と、曲率線を曲面上の曲線として弧長に関して2階微分した式(式(24))とが等しいと置いて得られる。また、式(37)は、弧長をパラメータとして曲面の曲率線を示す式を弧長で微分して得られる式の一例に該当する。
| L + κE | ≧ | N + κG | case, by solving equation (39), resulting geodesic curvature kappa g. Otherwise By solving equation (40), resulting geodesic curvature kappa g.
As described above, Expression (39) and Expression (40) are obtained based on Expression (33) and Expression (37). Expression (33) is a second-order differential expression (expression (5)) regarding the arc length when the curvature line is regarded as a space curve, and an expression obtained by second-order differentiation with respect to the arc length using the curvature line as a curve on the curved surface. It is obtained when (Equation (24)) is equal. The expression (37) corresponds to an example of an expression obtained by differentiating an expression indicating a curved surface curve with the arc length using the arc length as a parameter.

曲率線取得部120は、式(28)または式(31)に示されるu’を積分してuを算出し、v’を積分してvを算出する。
例えば、曲率線取得部120は、曲面の境界に等間隔で初期位置を設定し、各初期位置からルンゲクッタ法などの積分法を用いて、当該初期位置を通る曲率線に含まれる点を示すパラメータuおよびvを順に求めていく。パラメータu、vを特定することで、曲率線取得部120は、曲率線に含まれる点R(u,v)を特定し、得られた点を結んで曲率線を取得する。
曲率線取得部120は、κ、κの各々について曲率線を取得する。κにより最大曲率線が得られ、κにより最小曲率線が得られる。
The curvature line acquisition unit 120 calculates u by integrating u ′ shown in Expression (28) or Expression (31), and calculates v by integrating v ′.
For example, the curvature line acquisition unit 120 sets initial positions at equal intervals on the boundary of the curved surface, and uses parameters such as the Runge-Kutta method from each initial position to indicate the points included in the curvature line passing through the initial position. u and v are obtained in order. By specifying the parameters u and v, the curvature line acquisition unit 120 specifies the point R (u, v) included in the curvature line, and acquires the curvature line by connecting the obtained points.
The curvature line acquisition unit 120 acquires a curvature line for each of κ 1 and κ 2 . maximum curvature line is obtained by kappa 1, the minimum curvature ray by kappa 2 is obtained.

曲率演算部130は、曲率線取得部120が特定した曲率線の点(曲率線に含まれる点)毎に、式(39)または式(40)に示される連立方程式を解いて、各点における測地線曲率κを算出する。 The curvature calculation unit 130 solves the simultaneous equations shown in the equation (39) or the equation (40) for each point of the curvature line specified by the curvature line acquisition unit 120 (a point included in the curvature line), and at each point, to calculate the geodesic curvature κ g.

次に、図2を参照して曲率演算装置100の動作について説明する。
図2は、曲率演算装置100が曲率を算出して出力する処理手順を示すフローチャートである。曲率演算装置100は、曲率の演算を指示するユーザ操作を受けると同図の処理を行う。
図2の処理において、まず、曲面データ取得部110が、曲面データを取得する(ステップS101)。次に、曲率線取得部120は、曲面データ取得部110が取得した曲面データの示す曲面の曲率線を取得する(ステップS102)。また、曲率演算部130は、曲率線取得部120が取得した曲率線における曲率を算出する(ステップS103)。そして、演算結果出力部190は、曲率演算部130が算出した曲率を出力する(ステップS104)。
Next, the operation of the curvature calculation apparatus 100 will be described with reference to FIG.
FIG. 2 is a flowchart showing a processing procedure in which the curvature calculation device 100 calculates and outputs the curvature. When the curvature calculation device 100 receives a user operation for instructing calculation of the curvature, the curvature calculation device 100 performs the processing shown in FIG.
In the process of FIG. 2, first, the curved surface data acquisition unit 110 acquires curved surface data (step S101). Next, the curvature line acquisition unit 120 acquires the curvature line of the curved surface indicated by the curved surface data acquired by the curved surface data acquisition unit 110 (step S102). Moreover, the curvature calculating part 130 calculates the curvature in the curvature line which the curvature line acquisition part 120 acquired (step S103). Then, the calculation result output unit 190 outputs the curvature calculated by the curvature calculation unit 130 (step S104).

ここで、可展曲面(Developed Surface、伸び縮み無しに曲げだけで平面に展開可能な曲面)に含まれる曲線の測値線曲率κと、接平面(Tangent Plane)に投射した曲線の曲率κとが等しいことが知られている。そこで、曲率演算装置100のユーザ(以下、曲率演算装置のユーザを、単に「ユーザ」と表記する)は、曲面における曲率線の測地線曲率κを、当該曲率線を平面展開して得られる曲線の曲率として用いることで、曲率線を平面に展開することができる。 Here, the Hakachi line curvature kappa g of curves included in a developable curved (Developed Surface, curved deployable just a plane bending without expansion and contraction), the curvature of the curve projecting in the tangent plane (Tangent Plane) kappa Are known to be equal. Therefore, the user of the curvature calculation device 100 (hereinafter, the user of the curvature calculation device is simply referred to as “user”) can obtain the geodesic curvature κ g of the curvature line on the curved surface by developing the curvature line in a plane. By using it as the curvature of the curve, the curvature line can be developed on a plane.

具体的には、ユーザは、まず、鋼板から切り出した平面部材の端部の、曲率線取得部120が設定した曲率線の初期位置に対応する位置に、初期位置を設定する。そして、ユーザは、演算結果出力部190が表示する曲率の示す方向に平面部材を辿ることで、曲率線を得ることができる。
そして、ぎょう鉄を行う加工者は、最小曲率線に沿って冷間曲げ加工を行い、最大曲率線に沿って線状加熱による曲げ加工を行うことができる。特異点(Singular Point)以外では最小曲率線と最大曲率線とは直交するので、加工者は、最小曲率線に沿って冷間曲げ加工を行うことで、最小曲率線に直交する最大曲率線方向の大きな曲げを冷間曲げ加工にて行うことができる。そして、加工者は、最大曲率線に沿って行う線状加熱による曲げ加工にて、最大曲率線に直交する最小曲率線方向の小さな曲げを行えばよい。
また、加工者は、曲げ加工を行う際、曲率演算装置100が算出した曲率を参照して、曲率に応じた曲げを発生させればよい。
Specifically, the user first sets an initial position at a position corresponding to the initial position of the curvature line set by the curvature line acquisition unit 120 at the end of the flat member cut out from the steel plate. The user can obtain a curvature line by following the planar member in the direction indicated by the curvature displayed by the calculation result output unit 190.
And the processor who performs go iron can perform cold bending along the minimum curvature line, and can perform bending by linear heating along the maximum curvature line. Since the minimum curvature line and the maximum curvature line are perpendicular to each other except for a singular point (Singular Point), the operator performs a cold bending process along the minimum curvature line, so that the maximum curvature line direction orthogonal to the minimum curvature line is obtained. Large bending can be performed by cold bending. And a processor should just perform the small bending of the minimum curvature line direction orthogonal to a maximum curvature line by the bending process by the linear heating performed along a maximum curvature line.
In addition, when the bending process is performed, the processor may generate a bend corresponding to the curvature with reference to the curvature calculated by the curvature calculation device 100.

あるいは、曲率演算装置100(例えば曲率演算部130)が、曲率線を平面に展開するようにしてもよい。例えば、演算結果出力部190が、平面部材を示す図に、平面展開された曲率線と、曲率演算部130が算出した曲率とを重ねて表示するようにしてもよい。この場合、ユーザは、演算結果出力部190が示す曲率線を、そのまま平面部材に書き写せばよい。ユーザが曲率線を平面に展開する必要が無い点において、ユーザの負担を軽減することができる。
さらには、曲率演算装置100を、曲率演算部130が算出した曲率に基づいて平面部材に曲率線を書き込む曲率線書込部を具備する曲率線書込装置として構成してもよい。この場合、ユーザは、平面部材に曲率線を書き込む必要が無く、この点においてユーザの負担をさらに軽減することができる。
ステップS104の後、図2の処理を終了する。
Alternatively, the curvature calculation device 100 (for example, the curvature calculation unit 130) may develop the curvature line on a plane. For example, the calculation result output unit 190 may superimpose and display the flattened curvature line and the curvature calculated by the curvature calculation unit 130 on the diagram showing the planar member. In this case, the user should just copy the curvature line which the calculation result output part 190 shows on a plane member as it is. The burden on the user can be reduced in that the user does not have to develop the curvature line on a plane.
Furthermore, the curvature calculation device 100 may be configured as a curvature line writing device including a curvature line writing unit that writes a curvature line on a planar member based on the curvature calculated by the curvature calculation unit 130. In this case, the user does not need to write a curvature line on the planar member, and the burden on the user can be further reduced in this respect.
After step S104, the process of FIG.

以上のように、曲率演算部130は、曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式と前記曲率線を曲面上の曲線として弧長に関して2階微分した式とが等しいと置いた式と、弧長をパラメータとして曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率を算出する。
これにより、曲率演算部130は、曲率線を空間曲線として見た場合の曲率を算出することができる。演算結果出力部190が曲率演算部130の算出した曲率を表示することで、ユーザは、上記のように曲率線を平面に展開することができる。そして、ぎょう鉄を行う加工者は、最小曲率線に沿って冷間曲げ加工を行い、最大曲率線に沿って線状加熱による曲げ加工を行うことができる。
As described above, in the curvature calculation unit 130, the expression of the second-order differentiation with respect to the arc length when the curvature line is regarded as a space curve is equal to the expression of second-order differentiation with respect to the arc length using the curvature line as a curve on the curved surface. And the equation obtained by differentiating the expression of the curved surface of the curved line with the arc length as a parameter, the simultaneous equation is solved to calculate the curvature of the curvature line.
Thereby, the curvature calculating part 130 can calculate a curvature at the time of seeing a curvature line as a space curve. The calculation result output unit 190 displays the curvature calculated by the curvature calculation unit 130, so that the user can develop the curvature line on a plane as described above. And the processor who performs go iron can perform cold bending along the minimum curvature line, and can perform bending by linear heating along the maximum curvature line.

<第2の実施形態>
図3は、本発明の第2の実施形態における曲率演算装置の機能構成を示す概略ブロック図である。同図において、曲率演算装置200は、曲面データ取得部110と、曲率線取得部120と、曲率演算部130と、微分演算部240と、演算結果出力部290とを具備する。
同図において、図1の各部に対応して同様の機能を有する部分には同一の符号(110、120、130)を付して説明を省略する。
<Second Embodiment>
FIG. 3 is a schematic block diagram showing a functional configuration of the curvature calculation apparatus according to the second embodiment of the present invention. In the figure, a curvature calculation device 200 includes a curved surface data acquisition unit 110, a curvature line acquisition unit 120, a curvature calculation unit 130, a differential calculation unit 240, and a calculation result output unit 290.
In the same figure, portions having the same functions corresponding to the respective portions in FIG. 1 are denoted by the same reference numerals (110, 120, 130), and description thereof is omitted.

微分演算部240は、曲率線の曲率の微分、捩率または捩率の微分の少なくともいずれかを算出する。微分演算部240が算出する微分は、1階微分であってもよいし、2階以上の微分であってもよい。
演算結果出力部290は、演算結果出力部190(図1)と同様、曲率演算部130が算出した曲率を出力する。加えて、演算結果出力部290は、微分演算部240が算出した曲率の微分や、捩率や、捩率の微分を出力する。
演算結果出力部190の場合と同様、演算結果出力部290が、演算結果(曲率や、曲率の微分や、捩率の微分)を画面表示するようにしてもよいし、他の装置に演算結果を送信するなど、画面表示以外の方法で演算結果を出力するようにしてもよい。
The differential calculation unit 240 calculates at least one of the differentiation of the curvature of the curvature line, the torsion, or the torsional derivative. The differentiation calculated by the differential operation unit 240 may be a first-order differentiation or a second-order or higher differentiation.
Similar to the calculation result output unit 190 (FIG. 1), the calculation result output unit 290 outputs the curvature calculated by the curvature calculation unit 130. In addition, the calculation result output unit 290 outputs the curvature differentiation, the torsion, and the torsional differentiation calculated by the differentiation calculation unit 240.
As in the case of the calculation result output unit 190, the calculation result output unit 290 may display the calculation result (curvature, derivative of curvature, or derivative of torsion) on the screen, or the calculation result on another device. The calculation result may be output by a method other than the screen display, such as transmitting.

次に、微分演算部240が行う曲率や捩率の微分について説明する。
式(33)〜式(40)を参照して上述した曲率の場合と同様、式(8)および式(25)より式(41)を得られる。
Next, the differentiation of curvature and torsion performed by the differential calculation unit 240 will be described.
As in the case of the curvature described above with reference to Expression (33) to Expression (40), Expression (41) is obtained from Expression (8) and Expression (25).

Figure 2014191487
Figure 2014191487

ここで、C 、C 、C およびαは、式(42)のように示される。 Here, C 3 t , C 3 n , C 3 b, and α 3 are expressed as in Expression (42).

Figure 2014191487
Figure 2014191487

式(41)の両辺にRの内積を作用させて式(43)を得られる。 Equation (43) is obtained by applying the inner product of Ru to both sides of equation (41).

Figure 2014191487
Figure 2014191487

また、式(41)の両辺にRの内積を作用させて式(44)を得られる。 Further, the resulting equation (44) is reacted with the inner product of both sides to R v of formula (41).

Figure 2014191487
Figure 2014191487

さらに、式(41)の両辺にnの内積を作用させて式(45)を得られる。   Further, the inner product of n is allowed to act on both sides of the equation (41) to obtain the equation (45).

Figure 2014191487
Figure 2014191487

式(43)、式(44)および式(45)には、u’’’、v’’’、κ’およびτの4つの未知数が含まれている。式(18)に対して2階微分を行うことで、4つ目の等式として式(46)を得られる。   Equations (43), (44), and (45) contain four unknowns u ″ ″, v ″ ″, κ ′, and τ. By performing second order differentiation on the equation (18), the equation (46) is obtained as the fourth equation.

Figure 2014191487
Figure 2014191487

ここで、βおよびβ(バー)は、式(47)のように示される。 Here, β 2 and β (bar) 2 are expressed as in Equation (47).

Figure 2014191487
Figure 2014191487

式(43)、式(44)、式(45)および、式(46)の第1式より、式(48)に示す連立方程式を得られる。   From the equations (43), (44), (45) and (46), the simultaneous equations shown in equation (48) can be obtained.

Figure 2014191487
Figure 2014191487

また、式(43)、式(44)、式(45)および、式(46)の第2式より、式(49)に示す連立方程式を得られる。   Further, simultaneous equations shown in the equation (49) can be obtained from the second equation of the equations (43), (44), (45), and (46).

Figure 2014191487
Figure 2014191487

|L+κE|≧|N+κG|の場合、式(48)を解くことで、曲率の微分κ’および捩率τを得られる。それ以外の場合は式(49)を解くことで、曲率の微分κ’および捩率τを得られる。   In the case of | L + κE | ≧ | N + κG |, the curvature κ ′ and the torsion τ can be obtained by solving the equation (48). In other cases, the curvature κ ′ and the torsion τ can be obtained by solving the equation (49).

次に、式(41)〜式(49)を、曲線c(s)のm階微分c(m)(s)の場合に一般化する。
式(11)および式(27)より式(50)を得られる。
Next, the equations (41) to (49) are generalized in the case of the m-th order derivative c (m) (s) of the curve c (s).
Expression (50) is obtained from Expression (11) and Expression (27).

Figure 2014191487
Figure 2014191487

また、式(11)より、c(m)(s)における曲率κの最高階微分の係数はC の項の中に存在し1であることが分かる。一方、c(m)(s)における捩率τの最高階微分の係数はC の項の中に存在しκであることが分かる。
これにより、係数C(バー) を式(51)のように定義する。
Also, from the equation (11), it can be seen the coefficient of the highest order differential of the curvature κ in c (m) (s) is 1 exists in terms of C m n. On the other hand, it can be seen the coefficient of the highest order differential of torsion of a curve τ in c (m) (s) is present in the section of C m b kappa.
Thus, defining the coefficients C (bar) m n by the equation (51).

Figure 2014191487
Figure 2014191487

また、係数C(バー) を式(52)のように定義する。 Also, define the coefficients C (bar) m b as in equation (52).

Figure 2014191487
Figure 2014191487

式(50)の両辺にRの内積を作用させ、式(51)および式(52)より式(53)を得られる。 Sides is reacted with the inner product of R u of formula (50), obtained from equation (51) and (52) Equation (53).

Figure 2014191487
Figure 2014191487

また、式(50)の両辺にRの内積を作用させ、式(51)および式(52)より式(54)を得られる。 Further, both sides is reacted with the inner product of R v of formula (50), obtained from equation (51) and (52) Equation (54).

Figure 2014191487
Figure 2014191487

さらに、式(50)の両辺にnの内積を作用させ、式(51)および式(52)より式(55)を得られる。   Further, an inner product of n is allowed to act on both sides of the equation (50), and the equation (55) is obtained from the equations (51) and (52).

Figure 2014191487
Figure 2014191487

式(53)、式(54)および式(55)には、u(m)、v(m)、κ(m−2)およびτ(m−3)の4つの未知数が含まれている。式(18)に対して(m−1)階微分を行うことで、4つ目の等式として式(56)を得られる。 Expressions (53), (54), and (55) include four unknowns u (m) , v (m) , κ (m−2), and τ (m−3) . By performing (m−1) th order differentiation on Expression (18), Expression (56) is obtained as the fourth equation.

Figure 2014191487
Figure 2014191487

ここで、βm−1およびβ(バー)m−1は、式(57)のように示される。 Here, β m−1 and β (bar) m−1 are expressed as in Equation (57).

Figure 2014191487
Figure 2014191487

式(53)、式(54)、式(55)および、式(56)の第1式より、式(58)に示す連立方程式を得られる。   From the equations (53), (54), (55) and (56), the simultaneous equations shown in equation (58) can be obtained.

Figure 2014191487
Figure 2014191487

また、式(53)、式(54)、式(55)および、式(56)の第2式より、式(59)に示す連立方程式を得られる。   The simultaneous equations shown in the equation (59) can be obtained from the second equation of the equations (53), (54), (55) and (56).

Figure 2014191487
Figure 2014191487

|L+κE|≧|N+κG|の場合、式(58)を解くことで、曲率の微分κ(m−2)および捩率の微分τ(m−3)を得られる。それ以外の場合は式(59)を解くことで、曲率の微分κ(m−2)および捩率の微分τ(m−3)を得られる。
なお、上記のように、式(58)や式(59)は、式(50)および式(56)に基づいて得られている。そして、式(50)は、曲率線を空間曲線としてみなしたときの弧長に関する微分(m階微分)の式(式(11))と、曲率線を曲面上の曲線として弧長に関して微分(m階微分)した式(式(27))とが等しいと置いて得られる。また、式(56)は、弧長をパラメータとして曲面の曲率線を示す式を弧長で微分して得られる式の一例に該当する。
微分演算部240は、式(58)または式(59)を解いて、曲率κの微分や、捩率τまたはその微分を算出する。
In the case of | L + κE | ≧ | N + κG |, the curvature κ (m−2) and the torsional differential τ (m−3) can be obtained by solving the equation (58). In other cases, the curvature derivative κ (m−2) and the torsional derivative τ (m−3) can be obtained by solving the equation (59).
As described above, Expression (58) and Expression (59) are obtained based on Expression (50) and Expression (56). Expression (50) is an expression (expression (11)) of a derivative (m-order derivative) related to the arc length when the curvature line is regarded as a space curve, and a derivative ((11)) of the curvature line as a curve on the curved surface ( It is obtained when the equation (formula (27)) obtained by m-order differentiation is equal. Expression (56) corresponds to an example of an expression obtained by differentiating an expression indicating a curvature line of a curved surface by the arc length using the arc length as a parameter.
The differential calculation unit 240 solves the equation (58) or the equation (59) to calculate the derivative of the curvature κ, the torsion τ or the derivative thereof.

次に、図4を参照して曲率演算装置200の動作について説明する。
図4は、曲率演算装置200が曲率を算出して出力する処理手順を示すフローチャートである。曲率演算装置200は、曲率の演算を指示するユーザ操作を受けると同図の処理を行う。
図4のステップS201〜S203は、図2のステップS101〜S103と同様である。
Next, the operation of the curvature calculation apparatus 200 will be described with reference to FIG.
FIG. 4 is a flowchart showing a processing procedure in which the curvature calculation device 200 calculates and outputs the curvature. When the curvature calculation device 200 receives a user operation for instructing calculation of curvature, the curvature calculation device 200 performs the processing shown in FIG.
Steps S201 to S203 in FIG. 4 are the same as steps S101 to S103 in FIG.

ステップS203の後、微分演算部240は、曲率線の曲率の微分、捩率または捩率の微分の少なくともいずれかを算出する(ステップS204)。
そして、演算結果出力部290は、曲率演算部130が算出した曲率や、微分演算部240が算出した曲率の微分や、捩率や、捩率の微分を出力する(ステップS205)。
その後、図4の処理を終了する。
After step S203, the differential operation unit 240 calculates at least one of the differentiation of the curvature of the curvature line, the torsion, or the torsional differentiation (step S204).
Then, the calculation result output unit 290 outputs the curvature calculated by the curvature calculation unit 130, the curvature differentiation calculated by the differentiation calculation unit 240, the torsion, and the torsional differentiation (step S205).
Thereafter, the process of FIG. 4 is terminated.

以上のように、微分演算部240は、曲率線を空間曲線としてみなしたときの弧長に関する微分の式と前記曲率線を曲面上の曲線として弧長に関して微分した式とが等しいと置いた式と、弧長をパラメータとして曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率の微分、捩率または捩率の微分の少なくともいずれかを算出する。
これにより、微分演算部240は、曲率線の曲率の微分や、捩率や、捩率の微分を算出することができる。演算結果出力部290が微分演算部240の演算結果を表示することで、ユーザは、曲率線上での最大の曲率や、捩れがどこにあるか等を把握して、より適切に曲率線を平面に展開することができる。例えば、ユーザは、κの最大値を把握することで、曲りの一番大きいところに最大曲率線を引くなど、様々に引くことのできる最大曲率線や最小曲率線のうち、いずれの最大曲率線や最小曲率線を引くべきかの選択に用いることができる。
As described above, the differential calculation unit 240 is an expression in which the differential expression related to the arc length when the curvature line is regarded as a space curve and the expression obtained by differentiating the curvature line as a curve on the curved surface are equal. And the equation obtained by differentiating the curvature line of the curved surface with the arc length as a parameter, and the equation obtained by differentiating the simultaneous equations, the curvature of the curvature line, the torsion or the torsional derivative at least Either one is calculated.
Thereby, the differential calculation part 240 can calculate the differential of the curvature of the curvature line, the torsion, and the torsional derivative. The calculation result output unit 290 displays the calculation result of the differential calculation unit 240, so that the user knows the maximum curvature on the curvature line, where the twist is, and the like, and more appropriately sets the curvature line to a plane. Can be deployed. For example, the user knows the maximum value of κ, and draws the maximum curvature line at the largest bend, such as the maximum curvature line and the maximum curvature line that can be drawn in various ways. And the minimum curvature line can be selected.

なお、曲率演算装置100や200の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することで各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
A program for realizing all or part of the functions of the curvature calculation devices 100 and 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. Thus, the processing of each unit may be performed. Here, the “computer system” includes an OS and hardware such as peripheral devices.
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.

100、200 曲率演算装置
110 曲面データ取得部
120 曲率線取得部
130 曲率演算部
190、290 演算結果出力部
240 微分演算部
100, 200 Curvature calculation device 110 Curved surface data acquisition unit 120 Curvature line acquisition unit 130 Curvature calculation unit 190, 290 Calculation result output unit 240 Differential calculation unit

Claims (5)

曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式と前記曲率線を曲面上の曲線として弧長に関して2階微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率を算出する曲率演算部を具備することを特徴とする曲率演算装置。   When the curvature line is regarded as a space curve, the second-order differential expression is the same as the expression obtained by second-order differentiation with respect to the arc length using the curvature line as a curve on the curved surface, and the arc length as a parameter. A curvature calculation device comprising: a curvature calculation unit that calculates a curvature of a curvature line by solving simultaneous equations based on an expression obtained by differentiating an expression indicating a curvature line of the curved surface by an arc length. 曲率線を空間曲線としてみなしたときの弧長に関する微分の式と前記曲率線を曲面上の曲線として弧長に関して微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率の微分、捩率または捩率の微分の少なくともいずれかを算出する微分演算部を具備することを特徴とする請求項1に記載の曲率演算装置。   The equation of differentiation regarding the arc length when the curvature line is regarded as a space curve and the equation obtained by differentiating the curvature line with respect to the arc length as a curve on the curved surface, and the curvature of the curved surface with the arc length as a parameter Based on the equation obtained by differentiating the equation representing the line by the arc length, a differential operation unit that solves the simultaneous equations and calculates at least one of the derivative of the curvature of the curvature line, the torsion or the torsion of the torsion is provided. The curvature calculation apparatus according to claim 1, wherein: 曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式と前記曲率線を曲面上の曲線として弧長に関して2階微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率を算出する曲率演算部と、
前記曲率演算部が算出した曲率に基づいて平面部材に曲率線を書き込む曲率線書込部と、
を具備することを特徴とする曲率線書込装置。
When the curvature line is regarded as a space curve, the second-order differential expression is the same as the expression obtained by second-order differentiation with respect to the arc length using the curvature line as a curve on the curved surface, and the arc length as a parameter. Based on an equation obtained by differentiating an equation indicating the curvature line of the curved surface with an arc length, a curvature calculating unit that calculates the curvature of the curvature line by solving simultaneous equations;
A curvature line writing unit that writes a curvature line on a planar member based on the curvature calculated by the curvature calculation unit;
A curvature line writing apparatus comprising:
曲率演算装置の曲率演算方法であって、
曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式と前記曲率線を曲面上の曲線として弧長に関して2階微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率を算出する曲率演算ステップを具備することを特徴とする曲率演算方法。
A curvature calculation method of a curvature calculation device,
When the curvature line is regarded as a space curve, the second-order differential expression is the same as the expression obtained by second-order differentiation with respect to the arc length using the curvature line as a curve on the curved surface, and the arc length as a parameter. A curvature calculation method comprising: a curvature calculation step of calculating a curvature of a curvature line by solving simultaneous equations based on an expression obtained by differentiating an expression indicating the curvature line of the curved surface with an arc length.
曲率演算装置としてのコンピュータに、
曲率線を空間曲線としてみなしたときの弧長に関する2階微分の式と前記曲率線を曲面上の曲線として弧長に関して2階微分した式とが等しいと置いた式と、弧長をパラメータとして前記曲面の曲率線を示す式を弧長で微分して得られる式とに基づいて、連立方程式を解いて曲率線の曲率を算出する曲率演算ステップを実行させるためのプログラム。
In a computer as a curvature calculator,
When the curvature line is regarded as a space curve, the second-order differential expression is the same as the expression obtained by second-order differentiation with respect to the arc length using the curvature line as a curve on the curved surface, and the arc length as a parameter. A program for executing a curvature calculation step of solving a simultaneous equation and calculating a curvature of a curvature line based on an expression obtained by differentiating an expression indicating a curvature line of the curved surface with an arc length.
JP2013064986A 2013-03-26 2013-03-26 Curvature calculation device, curvature line writing device, curvature calculation method and program Expired - Fee Related JP6090849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064986A JP6090849B2 (en) 2013-03-26 2013-03-26 Curvature calculation device, curvature line writing device, curvature calculation method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064986A JP6090849B2 (en) 2013-03-26 2013-03-26 Curvature calculation device, curvature line writing device, curvature calculation method and program

Publications (2)

Publication Number Publication Date
JP2014191487A true JP2014191487A (en) 2014-10-06
JP6090849B2 JP6090849B2 (en) 2017-03-08

Family

ID=51837709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064986A Expired - Fee Related JP6090849B2 (en) 2013-03-26 2013-03-26 Curvature calculation device, curvature line writing device, curvature calculation method and program

Country Status (1)

Country Link
JP (1) JP6090849B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321845A (en) * 1989-06-20 1991-01-30 Fujitsu Ltd Curvature calculation device
JPH09101136A (en) * 1995-10-04 1997-04-15 Res Dev Corp Of Japan Measuring method for three-dimensional curvature
JP2005135348A (en) * 2003-10-31 2005-05-26 Mitsubishi Heavy Ind Ltd Parameter real length development device, method, and program therefor
JP2005149245A (en) * 2003-11-17 2005-06-09 Mitsubishi Heavy Ind Ltd Cad system, curved surface analysis device, curved surface reproducing device, and method and program therefor
JP2007139680A (en) * 2005-11-22 2007-06-07 Nissan Motor Co Ltd Vehicular position detecting device and detecting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321845A (en) * 1989-06-20 1991-01-30 Fujitsu Ltd Curvature calculation device
JPH09101136A (en) * 1995-10-04 1997-04-15 Res Dev Corp Of Japan Measuring method for three-dimensional curvature
JP2005135348A (en) * 2003-10-31 2005-05-26 Mitsubishi Heavy Ind Ltd Parameter real length development device, method, and program therefor
JP2005149245A (en) * 2003-11-17 2005-06-09 Mitsubishi Heavy Ind Ltd Cad system, curved surface analysis device, curved surface reproducing device, and method and program therefor
JP2007139680A (en) * 2005-11-22 2007-06-07 Nissan Motor Co Ltd Vehicular position detecting device and detecting method

Also Published As

Publication number Publication date
JP6090849B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
US9213788B2 (en) Methods and apparatus for constructing and analyzing component-based models of engineering systems
Luo et al. Automatic p-version mesh generation for curved domains
Loeffler et al. Solving Helmholtz problems with the boundary element method using direct radial basis function interpolation
Boyer et al. Geometrically exact Kirchhoff beam theory: application to cable dynamics
US10410317B1 (en) Digital image transformation environment using spline handles
Silva Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries
Al-Taweel et al. A stabilizer free weak Galerkin finite element method for parabolic equation
Chabassier et al. Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string
Audusse et al. Analysis of modified Godunov type schemes for the two-dimensional linear wave equation with Coriolis source term on cartesian meshes
US20140340406A1 (en) Acoustic performance calculation device, acoustic performance calculation method, and acoustic performance calculation program
Can et al. Exact and asymptotic features of the edge density profile for the one component plasma in two dimensions
Cuenca et al. Harmonic Green's functions for flexural waves in semi-infinite plates with arbitrary boundary conditions and high-frequency approximation for convex polygonal plates
Novikov et al. Phaseless inverse scattering with background information
JP6090849B2 (en) Curvature calculation device, curvature line writing device, curvature calculation method and program
Skallerud et al. Thin shell and surface crack finite elements for simulation of combined failure modes
JP5792705B2 (en) Strain distribution measuring apparatus, strain distribution measuring method, and strain distribution measuring program
Bush et al. A locally conservative stress recovery technique for continuous Galerkin FEM in linear elasticity
Rao et al. Stable Generalized Iso-Geometric Analysis (SGIGA) for problems with discontinuities and singularities
Dell’Accio et al. Bivariate Shepard–Bernoulli operators
Ushijima et al. Error estimates for a fundamental solution method applied to reduced wave problems in a domain exterior to a disc
Loeffler et al. Comparison between the formulation of the boundary element method that uses fundamental solution dependent of frequency and the direct radial basis boundary element formulation for solution of Helmholtz problems
JP7180274B2 (en) Information processing device, display program and display method
Harizanov et al. Normal multi-scale transforms for curves
Lagache et al. Finite element synthesis of structural or acoustic receptances in view of practical design applications
US20080288222A1 (en) Storing or transmitting data representing a 3d object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R150 Certificate of patent or registration of utility model

Ref document number: 6090849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees