JPH03218414A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JPH03218414A
JPH03218414A JP1269990A JP1269990A JPH03218414A JP H03218414 A JPH03218414 A JP H03218414A JP 1269990 A JP1269990 A JP 1269990A JP 1269990 A JP1269990 A JP 1269990A JP H03218414 A JPH03218414 A JP H03218414A
Authority
JP
Japan
Prior art keywords
coils
coil
magnetic
circumference
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1269990A
Other languages
Japanese (ja)
Inventor
Atsushi Koshimizu
古清水 篤
Hiroshi Okaniwa
岡庭 広
Tsutomu Gotou
後藤 ▲つとむ▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP1269990A priority Critical patent/JPH03218414A/en
Publication of JPH03218414A publication Critical patent/JPH03218414A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten distance between coils and to improve the efficiency of a magnetic circuit by providing the three pairs of coils on the outer periphery of a circular passage while equally dividing the circumference into three parts. CONSTITUTION:On the outer periphery of a pipe P equipped with the circular passage in the internal part while insulating the inner surface, coils C1, C2 and C3 are arranged at the positions dividing the circumference into three parts equally at 120 deg. and one coil is excited so that the magnetic pole is different from those of the other two coils. As shown figures (a), (b) and (c), when an exciting pattern is successively moved in the order of C1, C2 and C3 for the coil equipped with the different magnetic pole from those of the other two coils, a flow rate signal is proportion to the velocity of fluid F and the strength of magnetic flux B is detected from electrode T1, T2 and T3 arranged among the three coils. Thus, the distance between coils is shortened and a magnetic field to be generated to the same exciting current is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は測定管内を流れる流体の流量を電気的K Al
1定する電磁流量計に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method of measuring the flow rate of a fluid flowing in a measuring tube using an electric KAl
The present invention relates to an electromagnetic flowmeter that has a fixed temperature.

〔従来の技術〕[Conventional technology]

従来のこの種の電磁流量計は、第7図に示すように内面
が絶縁され念パイプPの外周に2個のコイルCI,C2
を対向して設けて矢印で示すようにバイプPの直径方向
の交番磁界Bを流体Fに加えて磁界Bの強さと流体Fの
流速との積に比例した信号電圧eft電極Tl + ’
rzで検出するものである。
A conventional electromagnetic flowmeter of this type has two coils CI and C2 around the outer periphery of a pipe P whose inner surface is insulated, as shown in FIG.
are placed facing each other, and an alternating magnetic field B in the diametrical direction of the pipe P is applied to the fluid F as shown by the arrow to generate a signal voltage eft electrode Tl + ' proportional to the product of the strength of the magnetic field B and the flow velocity of the fluid F.
It is detected by rz.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このようK構成されるコイル方式の電磁
流量計は、コイルC1とコイルC2との間のコイル間距
離をパイブPの管径以下に設定できないので、発生磁場
を犬き〈するためにはコイルCl, Cxにより大きな
電流を供給するかもしくはコイル巻数を多くする手段し
かなかった。そして、コイルCI.C2に大きな電流を
供給することは、電磁流量計の消費電流を増大させ、ま
た、コイル巻数を多くすることは軽量,小型化の妨げと
なっていた。さらKバイプP内の重み関数の分布が均一
でないため、流速分布の変化により計測誤差が生じると
いう問題があった。
However, in such a coil-type electromagnetic flowmeter configured with K, the distance between the coils C1 and C2 cannot be set to be less than the diameter of the pipe P, so it is necessary to reduce the generated magnetic field. The only options available were to supply a larger current to the coils Cl and Cx or to increase the number of turns in the coils. And coil CI. Supplying a large current to C2 increases the current consumption of the electromagnetic flowmeter, and increasing the number of turns of the coil hinders reduction in weight and size. Furthermore, since the distribution of the weighting function within the K-pipe P is not uniform, there is a problem in that measurement errors occur due to changes in the flow velocity distribution.

〔課題を解決するための手段〕[Means to solve the problem]

このような課題を解決するために本発明は、流体を流通
させる円形流路と、この円形流路の外周に円周を3等分
して配置され隣接するコイルが逆の極性を有する3組の
コイルと、互いに隣接するコイルの中間点に配置してそ
の先漏を流体と接触させて配置された3個の電極とを有
している。
In order to solve such problems, the present invention has a circular flow path through which fluid flows, and three sets of coils arranged around the outer circumference of this circular flow path, dividing the circumference into three equal parts, and having adjacent coils with opposite polarities. and three electrodes disposed midway between adjacent coils with their pre-leakage in contact with the fluid.

〔作 用〕[For production]

本発明においては、円形流路の外周に円周を3等分して
3組のコイル全配置したことにより、コイル間距離が短
縮される。
In the present invention, the distance between the coils is shortened by arranging all three sets of coils on the outer periphery of the circular flow path by dividing the circumference into three equal parts.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例による電磁かC董計の構成を
示す図であL薊運の図と同一部分には同一符号を付して
ある。同図において、内面が絶縁されて内部K流体を流
通させる円形流路を形成するパイブPの外周部には円周
を120度ずつ3等分した位置に第1のコイルCI+ 
第2のコイルCl第3のコイルC3がそれぞれ配置され
、さらにこれらの互いに隣接する第1のコイルC1+第
2のコイルC2 ,第3のコイルC3の中間点には先端
部が流体Fと接触する第1の電極TI+  第2の電極
T!+第3の電極T3が同様に120度ずつ3等分して
配置されている。
FIG. 1 is a diagram showing the configuration of an electromagnetic meter according to an embodiment of the present invention, and the same parts as in the diagram of L-type are given the same reference numerals. In the same figure, a first coil CI
A second coil Cl and a third coil C3 are arranged respectively, and furthermore, at the intermediate point of these mutually adjacent first coil C1 + second coil C2 and third coil C3, the tip part contacts the fluid F. First electrode TI+ second electrode T! +Third electrode T3 is similarly arranged in three equal parts of 120 degrees each.

このような構成において、パイプPの外周に120@l
ずつ3等分して配置され之第1のコイルCI,第2のコ
イルC2+第3のコイルC1のうち、1個のコイルを他
の2個のコイルと異なる磁極となるように励磁し、他と
異なる磁極を有するコイルの位置を第2図(a+ + 
tbλ,(C)に示すように第1のコイルCI+第2の
コイルC2+第3のコイルC3の順に励磁パターンt−
順次移動させる。そして、各第1のコイルC1 l第2
のコイルC,第3のコイルC3間に配置した3個の第1
の電極TI+第2の電極T2  ,第3の電極T3から
流体Fの流速と磁束Bの強さに比例して発生する流量信
号が検出される。また、上記第1のコイルCI+@2の
コイルC2  ,第3のコイルC3の励磁パターンを第
3図(a) , (b), (c) K示すように変え
ることKより、各種の実施例が実現できる。さらに第4
図に示すように第1のコイルC+,1E2のコイルC2
+第3のコイルC3のうちの1組、例えば第1のコイル
C+の励磁電流を他の第2のコイルC2+@3のコイル
C3の励磁電流iに対して2倍(21)にしても良い。
In such a configuration, 120@l is placed on the outer periphery of the pipe P.
Of the first coil CI, second coil C2 and third coil C1, which are arranged in three equal parts, one coil is excited so that it has a different magnetic pole from the other two coils, and the other The position of the coil with different magnetic poles is shown in Figure 2 (a+ +
tbλ, as shown in (C), the excitation pattern t- is applied in the order of first coil CI + second coil C2 + third coil C3.
Move sequentially. And each first coil C1 l second
The three first coils arranged between the first coil C and the third coil C3
A flow rate signal generated in proportion to the flow velocity of the fluid F and the strength of the magnetic flux B is detected from the electrode TI+the second electrode T2 and the third electrode T3. In addition, by changing the excitation patterns of the coil C2 of the first coil CI+@2 and the third coil C3 as shown in FIGS. can be realized. Furthermore, the fourth
As shown in the figure, the first coil C+, the coil C2 of 1E2
+The excitation current of one set of the third coil C3, for example, the first coil C+, may be doubled (21) with respect to the excitation current i of the coil C3 of the other second coil C2+@3. .

なお、上記流量信号をサンプリングする各電極T+ +
 Tx + Tsの組合せは、第5図(al〜(f)に
破線で示す組合せがある。
Note that each electrode T+ + samples the above flow rate signal.
There are combinations of Tx + Ts shown by broken lines in FIG. 5 (al to (f)).

このような購成によれば、第6図(i)に示すようにそ
れぞれ第1のコイルCI ,第2のコイルC 2 r第
3のコイルC3のコイル間距離が同図(b)に示す従来
の距離dlc対して〆3d/2  となるので、同一励
磁電流に対して発生する磁場が大きくなり、効率の良い
磁気回路となる。
According to such purchasing, as shown in FIG. 6(i), the distances between the first coil CI, the second coil C2r, and the third coil C3 are as shown in FIG. 6(b). Since the distance is 3d/2 compared to the conventional distance dlc, the magnetic field generated for the same excitation current becomes large, resulting in a highly efficient magnetic circuit.

〔発明の効果] 以上説明したように本発明によれば、流体を流通させる
円形流路の外周に円周を3等分して隣接するコイルが逆
の極性を有する3組のコイルを設けるとともに互いに隣
接するコイルの中間点Kその先端が流体と接触する3個
の電極を設けたことにより、コイル間距離が短縮され、
磁気抵抗が低下し、磁気回路の効藁が向上するので、低
消費電力化が可能となる。ま九、3個の電極を設けたこ
とにより、2個の場合と比べて円形流路内の重み関数が
平均化され,流速分布の変化による計測誤差を最小限に
抑えることができるなどの極めて優れた効果が得られる
[Effects of the Invention] As explained above, according to the present invention, three sets of coils are provided on the outer periphery of a circular flow path through which fluid flows, dividing the circumference into three equal parts, and adjacent coils have opposite polarities. By providing three electrodes whose tips are in contact with the fluid at the midpoints of adjacent coils, the distance between the coils is shortened.
Since the magnetic resistance is reduced and the effectiveness of the magnetic circuit is improved, it is possible to reduce power consumption. Also, by providing three electrodes, the weighting function in the circular flow path is averaged compared to the case of two electrodes, and measurement errors due to changes in flow velocity distribution can be minimized. Excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電磁流量計の一実施例を示す構成
図、第2図は各コイルの励磁パターンを示す図、第3図
,第4図は励磁パターンの他の例を示す図、第5図は流
量信号をサンプリングする各電極の組合せ例を示す図、
第6図は本発明の効果を説明する図、第7図は従来のw
L磁流量計の構成を示す図である。 P●●●●パイブ、Cl II1111●第1のコイル
、C2 ・−・・第2のコイル C 3  * @ 1
1●第3のコイル、T,拳@@@第1の電極、72 m
mmm第2の電極、T3 ・・・・第3の電極、F・・
・・流体、B・・・・磁束。
FIG. 1 is a configuration diagram showing one embodiment of an electromagnetic flowmeter according to the present invention, FIG. 2 is a diagram showing excitation patterns of each coil, and FIGS. 3 and 4 are diagrams showing other examples of excitation patterns. FIG. 5 is a diagram showing an example of the combination of each electrode for sampling the flow rate signal,
FIG. 6 is a diagram explaining the effect of the present invention, and FIG. 7 is a diagram explaining the effect of the present invention.
FIG. 3 is a diagram showing the configuration of an L magnetic flowmeter. P●●●●Pipe, Cl II1111●First coil, C2 ---Second coil C 3 * @ 1
1●Third coil, T, fist@@@first electrode, 72 m
mmm Second electrode, T3...Third electrode, F...
...Fluid, B...Magnetic flux.

Claims (1)

【特許請求の範囲】[Claims] 流体を流通させる円形流路と、前記円形流路の外周に円
周を3等分して配置され隣接するコイルが逆の極性を有
する3組のコイルと、互いに隣接するコイルの中間点に
配置してその先端を流体と接触させて配置された3個の
電極とを備えたことを特徴とする電磁流量計。
A circular flow path through which fluid flows; three sets of coils arranged on the outer periphery of the circular flow path dividing the circumference into three equal parts, with adjacent coils having opposite polarities; and arranged at a midpoint between the adjacent coils. An electromagnetic flowmeter comprising: three electrodes arranged with their tips in contact with a fluid.
JP1269990A 1990-01-24 1990-01-24 Electromagnetic flowmeter Pending JPH03218414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1269990A JPH03218414A (en) 1990-01-24 1990-01-24 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1269990A JPH03218414A (en) 1990-01-24 1990-01-24 Electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JPH03218414A true JPH03218414A (en) 1991-09-26

Family

ID=11812639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1269990A Pending JPH03218414A (en) 1990-01-24 1990-01-24 Electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPH03218414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729545B1 (en) * 2005-12-16 2007-06-18 한국기초과학지원연구원 Detecting sensor, and measuring device having the same
EP2012096A1 (en) 1999-03-26 2009-01-07 Endress+Hauser Flowtec AG Magnetic-inductive flow rate value transmitter
CN104121954A (en) * 2014-07-10 2014-10-29 上海大学 Partially-filled-pipe electromagnetic flowmeter based on two-dimensional induction potential
JP2015534067A (en) * 2012-09-26 2015-11-26 ローズマウント インコーポレイテッド Magnetic flow meter with multiple coils
WO2021137089A1 (en) * 2019-12-31 2021-07-08 Abb Schweiz Ag An electromagnetic flowmeter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2012096A1 (en) 1999-03-26 2009-01-07 Endress+Hauser Flowtec AG Magnetic-inductive flow rate value transmitter
KR100729545B1 (en) * 2005-12-16 2007-06-18 한국기초과학지원연구원 Detecting sensor, and measuring device having the same
JP2015534067A (en) * 2012-09-26 2015-11-26 ローズマウント インコーポレイテッド Magnetic flow meter with multiple coils
CN104121954A (en) * 2014-07-10 2014-10-29 上海大学 Partially-filled-pipe electromagnetic flowmeter based on two-dimensional induction potential
WO2021137089A1 (en) * 2019-12-31 2021-07-08 Abb Schweiz Ag An electromagnetic flowmeter

Similar Documents

Publication Publication Date Title
CN103674131B (en) Magnetic flowmeter with multiple coils
US5125276A (en) Electromagnetic flowmeter
EP0233084B1 (en) Electromagnetic flowmeter
US9891293B2 (en) Magnetic sensor device preventing concentration of magnetic fluxes to a magnetic sensing element
US7293468B2 (en) Electromagnetic flowmeter
JPH03218414A (en) Electromagnetic flowmeter
JPH07505948A (en) Flowmeter with concentrically arranged electromagnetic fields
JPH05505469A (en) Device for inductively measuring the flow state of conductive liquid
JP5701407B2 (en) Magnetic circuit device for magnetic induction flow measuring device
JP2002202328A (en) Magnetic field type current sensor
JPH05196651A (en) Instrument transformer for measuring current having magnetic-field sensor
JPH04295722A (en) Residual-magnetism type electromagnetic flowmeter
US20060144160A1 (en) Inductive flow meter for electrically conductive liquids
JPH083499B2 (en) Current detector
JP2013238500A (en) Inclined core type current sensor
EP0069459A1 (en) Measuring device of electromagnetic flowmeter
JP2012198053A (en) Magnetic sensor and current sensor using the same
JPH10227807A (en) Rotation sensor
WO2013037986A1 (en) Precision near-field current transducer
JPS588449B2 (en) electromagnetic flow meter
JPH095361A (en) Dc current sensor
JP2002116242A (en) Magnetic detecting device
SU805069A1 (en) Contactless inductive flowmeter
WO2022207487A1 (en) An electromagnetic flowmeter with a plurality of coils
JP2005265621A (en) Magnetic sensitive element and device for measuring magnetic direction