JPH095361A - Dc current sensor - Google Patents

Dc current sensor

Info

Publication number
JPH095361A
JPH095361A JP7180721A JP18072195A JPH095361A JP H095361 A JPH095361 A JP H095361A JP 7180721 A JP7180721 A JP 7180721A JP 18072195 A JP18072195 A JP 18072195A JP H095361 A JPH095361 A JP H095361A
Authority
JP
Japan
Prior art keywords
detection
detection core
core
current sensor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7180721A
Other languages
Japanese (ja)
Other versions
JP3515233B2 (en
Inventor
Makoto Kawakami
川上  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP18072195A priority Critical patent/JP3515233B2/en
Publication of JPH095361A publication Critical patent/JPH095361A/en
Application granted granted Critical
Publication of JP3515233B2 publication Critical patent/JP3515233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To reduce the structure and power supply to an exciting coil by making a plurality of through holes, at a predetermined interval, in the circumferential direction of a detection core. CONSTITUTION: A plurality of through holes 13 are made, at a predetermined interval in the circumferential direction, in the side face of a detection core 12. An exciting coil 14 is set in the through holes 13 such that the direction of current flow is reversed between adjacent through holes. When a DC current I flows through a lead 11 to be detected, a magnetic filed H0 is induced in the detection core 12 and a flux ϕ0 is generated. A predetermined AC current is then fed through the exciting coil 14, and a field H is induced orthogonally to the field H0 . The direction of magnetization is turned in the detection core 12 based on the combined field and the flux ϕ0 is modulated. Consequently, a voltage VDET is induced in a detection coil 15 based on the circumferential component of flux in the detection core 12 incident to the variation of flux ϕ0 . More specifically, an electromotive force proportional to the current I flowing through the lead 11 to be detected is generated and detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種の直流電流を使
用する機器に配設される直流電流センサーの改良に係
り、特に、電気めっきのめっきむら防止等を目的として
めっき浴中の電流密度分布を測定・調整する所謂電流密
度測定器に適する、構造が簡単で小型化が可能な直流電
流センサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a direct current sensor provided in equipment using various direct currents, and particularly to a current density in a plating bath for the purpose of preventing uneven plating in electroplating. The present invention relates to a direct current sensor suitable for a so-called current density measuring device for measuring and adjusting distribution, which has a simple structure and can be downsized.

【0002】[0002]

【従来の技術】従来から、直流電流センサーとしてはシ
ャント抵抗方式、マグアンプ方式、磁気マルチバイブレ
ータ方式、ホール素子方式等が知られている。しかし、
これらの直流電流センサーは構造が複雑であるばかりで
はなく、微小な電流変化に対応できる構造とは言い難
く、高感度の直流電流センサーとして実用に至っていな
いのが現状である。
2. Description of the Related Art Conventionally, as a direct current sensor, a shunt resistance type, a mag-amp type, a magnetic multi-vibrator type, a hall element type and the like are known. But,
These DC current sensors are not only complicated in structure, but it is difficult to say that they are structures that can cope with minute current changes, and at present, they have not been put into practical use as highly sensitive DC current sensors.

【0003】本願発明者は、このような現状を鑑み、先
に、構造が比較的簡単であり、微小な電流変化に対して
も優れた検出能力を有する高感度の直流電流センサーと
して、従来の方式とは全く異なる構造からなる図9に示
す如き直流電流センサーを提案した(EP 0 579
462 A、特開平6−74978号、特開平6−1
94389号、特開平6−281674号)。図9に示
す直流電流センサーは、軟質磁性材料からなる一対の筒
状体からなる励磁コア部4a,4bと、該励磁コア部4
a,4bの各々開口端隣接部を軟質磁性材料にて接続一
体化し該接続部と励磁コア部4a,4b内側面部とで形
成される検出コア部2とを有する構成からなっている。
図中1は、前記検出コア部2の空隙部に貫通配置する被
検出導線である。また、図中3a,3bは一対の検出コ
イルであり、検出コア部2の周方向の対向位置にトロイ
ダル状に巻回配置されている。さらに図中5は励磁コイ
ルであり、検出コア部2の外周に巻回配置されている。
In view of such a situation, the inventor of the present application has previously proposed a conventional high-sensitivity direct current sensor having a relatively simple structure and having an excellent detection ability even for a minute current change. A DC current sensor as shown in FIG. 9 having a structure completely different from that of the method was proposed (EP 0 579).
462A, JP-A-6-74978, JP-A6-1-1.
94389, JP-A-6-281674). The direct current sensor shown in FIG. 9 includes excitation core portions 4a and 4b formed of a pair of cylindrical bodies made of a soft magnetic material, and the excitation core portion 4
Each of a and 4b is formed by connecting and integrating the adjacent opening ends with a soft magnetic material, and having a detection core portion 2 formed by the connection portion and inner side surface portions of the excitation core portions 4a and 4b.
In the figure, reference numeral 1 denotes a conductor to be detected which is arranged to pass through the void portion of the detection core portion 2. Further, in the figure, 3a and 3b are a pair of detection coils, which are wound in a toroidal shape at positions facing the detection core portion 2 in the circumferential direction. Further, reference numeral 5 in the drawing denotes an exciting coil, which is wound around the outer circumference of the detection core portion 2.

【0004】このような構成において、被検出導線1に
直流電流Iが流れると、検出コア部2内に直流電流Iの
方向に対して右回りの磁場が発生し、検出コア部2内に
磁束Φ0が発生する。この時、励磁コイル5に所定の交
流電流を通電して一対の励磁コア部4a,4bに周期的
に図中α方向に変化する磁束を発生し、該励磁コア部4
a,4bを周期的に磁気的に飽和させると、検出コア部
2の周方向の一部であるコア交差部6は比透磁率μが極
めて1に近い所謂実質的な磁気的なギャップとなり、検
出コア部2内の磁束Φ0をΦ1(Φ1近似0)にまで減少
させる。
In such a structure, when a direct current I flows through the conductor 1 to be detected, a magnetic field clockwise with respect to the direction of the direct current I is generated in the detection core portion 2 and a magnetic flux is generated in the detection core portion 2. Φ 0 is generated. At this time, a predetermined alternating current is passed through the exciting coil 5 to generate a magnetic flux that periodically changes in the α direction in the figure in the pair of exciting core portions 4a and 4b.
When a and 4b are magnetically saturated periodically, the core crossing portion 6 which is a part of the detection core portion 2 in the circumferential direction becomes a so-called substantial magnetic gap in which the relative permeability μ is extremely close to 1, The magnetic flux Φ 0 in the detection core unit 2 is reduced to Φ 11 approximation 0).

【0005】ここで、励磁コイル5に通電する交流電流
を周波数f0とし、その電流のピーク値近傍で励磁コア
部4a,4bが飽和するようにすると、励磁電流1周期
で2回励磁コア部4a,4bが飽和することとなる。し
たがって、被検出導線1に流れる直流電流Iによって検
出コア部2内に発生する磁束Φ0は、2f0で変調される
こととなり、上記の磁束Φ0の変化に伴い周波数2f0
電圧VDETが検出コイル3a,3bに発生することとな
る。被検出導線1に流れる直流電流Iの向きにかかわら
ず、いずれの場合も磁束Φ0∝直流電流I、電圧VDET
磁束Φ0との関係から電圧VDET∝直流電流Iとなり、被
検出導線1に流れる直流電流Iに比例した起電力を検出
コイル3a,3bによって検出することが可能となる。
以上に説明するように、図9に示す直流電流センサー
は、構造が比較的簡単で、しかも電磁気的にバランスの
良い構造であることから、微小な電流変化に対しても優
れた検出能力を有し、安定した高感度の測定を実現でき
る。
Here, when the alternating current passing through the exciting coil 5 is set to frequency f 0 and the exciting core portions 4a and 4b are saturated near the peak value of the current, the exciting core portion is excited twice in one cycle of the exciting current. 4a and 4b will be saturated. Therefore, the magnetic flux [Phi 0 generated in the detecting core 2 by the DC current I flowing through the lead wire being detected 1 becomes a be modulated with 2f 0, the voltage V DET of frequency 2f 0 with the change of the magnetic flux [Phi 0 Will be generated in the detection coils 3a and 3b. Regardless of the direction of the direct current I flowing through the conductor 1 to be detected, the magnetic flux Φ 0 ∝ DC current I and voltage V DET
Due to the relationship with the magnetic flux Φ 0 , the voltage becomes V DET ∝ DC current I, and the electromotive force proportional to the DC current I flowing in the conductor 1 to be detected can be detected by the detection coils 3a and 3b.
As described above, the DC current sensor shown in FIG. 9 has a relatively simple structure and has an electromagnetically well-balanced structure, and therefore has an excellent detection ability even for a minute current change. In addition, stable and highly sensitive measurement can be realized.

【0006】[0006]

【発明が解決しようとする課題】図9に示す直流電流セ
ンサーは、従来から知られる各種の直流電流センサーに
比べ構造が簡単で、しかも高感度の測定が可能となるこ
とから、用途範囲の拡大が達成できた。しかし、例え
ば、電気めっきのめっきむら防止等を目的としてめっき
浴中の電流密度分布を測定・調整する電流密度測定器等
に使用する場合には、上記の感度を低下させることなく
一層の小型化を達成することが必要であり、特に、検出
コアや励磁コアの形状を簡単にし、検出コイルや励磁コ
イルの巻線構成を簡単にすることが望まれている。
The DC current sensor shown in FIG. 9 has a simple structure and enables high-sensitivity measurement as compared with various kinds of DC current sensors known in the related art, and thus has a wide range of applications. Was achieved. However, for example, when used in a current density measuring device for measuring and adjusting the current density distribution in the plating bath for the purpose of preventing uneven plating of electroplating, further miniaturization without decreasing the sensitivity described above. In particular, it is desired to simplify the shapes of the detection core and the excitation core and simplify the winding configuration of the detection coil and the excitation coil.

【0007】また、図9に示す直流電流センサーでは、
磁気的なスイッチングを行うために検出コアの周方向の
一部又は全部を磁気的に飽和することが必要となり、励
磁コイルに比較的大きな電力を供給することとなる。し
たがって、クランプメータ等の携帯用機器への使用にお
いては、必ずしも好ましい構成とは言い難い。
Further, in the DC current sensor shown in FIG.
In order to perform magnetic switching, it is necessary to magnetically saturate part or all of the detection core in the circumferential direction, and relatively large electric power is supplied to the exciting coil. Therefore, it cannot be said that this is a preferable configuration for use in a portable device such as a clamp meter.

【0008】この発明は、上記のような現状に鑑み提案
するもので、直流電流センサーを構成する軟質磁性材料
からなるコア形状を極力簡単な形状とし、検出コイルや
励磁コイルの巻線構成をも簡単にすることによって小型
化を達成するとともに、励磁コイルへの供給電力を低減
可能とした直流電流センサーの提供を目的とするもので
ある。
The present invention has been proposed in view of the above situation, and the core shape made of a soft magnetic material forming a direct current sensor is made as simple as possible, and a winding structure of a detection coil and an excitation coil is also provided. It is an object of the present invention to provide a DC current sensor which can be downsized by simplification and can reduce the power supplied to the exciting coil.

【0009】[0009]

【課題を解決するための手段】本願発明者は上記の目的
を達成する構成を種々検討した結果、磁気的なスイッチ
ングの方法を変えることによってコア形状を簡単な形状
にすることが可能であることを知見した。すなわち、図
9に示す直流電流センサーでは、検出コアの周方向の一
部又は全部を磁気的に飽和することによって磁気的なス
イッチングを行う構成を採用していたが、本願発明者
は、被検出導線に流れる直流電流によって発生する検出
コア部の周方向の磁場に対して、該周方向の磁場に直交
し周期的に向きが変化するの磁場を作用させることによ
って、検出コア部内での磁化方向を回転させ、実質的に
検出コア部内の周方向の磁束に変調をかけることで磁気
的なスイッチングが可能であることを確認し、結果とし
て直流電流センサーを構成する軟質磁性材料のコアを筒
状のコアのみとした構成で目的が達成できることを知見
したのである。
As a result of various studies on the structure for achieving the above-mentioned object, the inventor of the present application has found that the core shape can be made simple by changing the magnetic switching method. I found out. That is, the DC current sensor shown in FIG. 9 employs a configuration in which magnetic switching is performed by magnetically saturating a part or all of the detection core in the circumferential direction. By applying a magnetic field, which is orthogonal to the circumferential magnetic field and whose direction changes periodically, to the magnetic field in the circumferential direction of the detection core portion generated by the direct current flowing through the conducting wire, the magnetization direction in the detection core portion is increased. It was confirmed that magnetic switching is possible by rotating and rotating the magnetic flux in the circumferential direction inside the detection core, and as a result, the core of soft magnetic material that constitutes the DC current sensor is cylindrical. We have found that the objective can be achieved by using only the core.

【0010】この発明は、上記の知見に基づき完成した
ものであり、筒状の軟質磁性材料からなり、その側面に
周方向に所定間隔毎で形成した複数の貫通孔を有する検
出コアと、前記貫通孔に互いに隣接する貫通孔内での電
流の向きが逆向きになるよう巻回配置する励磁コイル
と、前記検出コアの外周にトロイダル状に巻回配置する
検出コイルとを有することを特徴とする直流電流センサ
ーである。
The present invention has been completed based on the above findings, and is made of a cylindrical soft magnetic material and has a plurality of through-holes formed in its side surface at predetermined intervals in the circumferential direction, and An exciting coil wound so that the directions of currents in the through holes adjacent to each other are opposite to each other, and a detection coil wound around the outer circumference of the detection core in a toroidal shape. It is a direct current sensor that does.

【0011】また、より高性能の直流電流センサーとし
て、筒状の軟質磁性材料からなり、その側面に周方向に
所定間隔毎で形成した複数の貫通孔を有する検出コア
と、前記貫通孔に互いに隣接する貫通孔内での電流の向
きが逆向きになるよう巻回配置する励磁コイルと、これ
ら励磁コイルを巻回配置してなる検出コアを包囲する軟
質磁性材料からなるシールドケースと、該シールドケー
スの外周にトロイダル状に巻回配置する検出コイルとを
有することを特徴とする直流電流センサーを併せて提案
する。さらに、クランプメータ等の用途に望ましい構成
として、上記構成において、検出コアが周方向で分割可
能な構成であることを特徴とする直流電流センサーを提
案する。
Further, as a higher performance direct current sensor, a detection core made of a cylindrical soft magnetic material and having a plurality of through holes formed on its side surface at predetermined intervals in the circumferential direction, and the through hole are provided with each other. An exciting coil wound so that the directions of the currents in adjacent through holes are opposite to each other, a shield case made of a soft magnetic material surrounding a detection core formed by winding the exciting coils, and the shield. A DC current sensor is also proposed, which has a detection coil wound around the outer circumference of the case in a toroidal shape. Further, as a desirable configuration for applications such as a clamp meter, in the above configuration, a DC current sensor is proposed in which the detection core is a configuration that can be divided in the circumferential direction.

【0012】特に、めっき浴中の電流密度分布を測定・
調整する電流密度測定器等に使用する場合には、上記の
直流電流センサー全体をめっき浴中に浸漬するため、該
直流電流センサー表面に合成樹脂等の耐腐食性保護膜を
被覆したり、合成樹脂製ケースにて包囲することが好ま
しい。
In particular, the current density distribution in the plating bath is measured.
When used in a current density measuring device or the like to be adjusted, since the entire DC current sensor is immersed in a plating bath, the surface of the DC current sensor is coated with a corrosion-resistant protective film such as synthetic resin, or synthesized. It is preferable to surround with a resin case.

【0013】この発明の直流電流センサーにおいて、検
出コアは、後述の実施例に示す如き円筒状のパーマロイ
削り出し品に限定されることなく、要求される磁気特性
や検出コア内に貫通配置する被検出導線の本数、加工性
等を考慮して形状や材質を選定することが望ましい。例
えば、形状としては円筒状の他、楕円筒状、矩形筒状等
の構成が採用できる。また、これらの構成においても、
所定材料を削り出した一体品だけでなく、長尺の薄帯材
料を渦巻状に巻付けて筒状に形成したもの、複数の筒状
薄帯材料を同心状に積層して筒状に形成したもの等、検
出コアを構成する軟質磁性材料の形状、寸法、機械的特
性等を考慮して選定することが望ましい。
In the DC current sensor of the present invention, the detection core is not limited to a cylindrical permalloy machined product as shown in the embodiments described later, but the magnetic properties required and the object to be penetrated and arranged in the detection core. It is desirable to select the shape and material in consideration of the number of detection wires and workability. For example, in addition to the cylindrical shape, a configuration such as an elliptic cylinder shape or a rectangular cylinder shape can be adopted. Also, in these configurations,
Not only an integrated product made by cutting out a predetermined material, but also a long ribbon material wound in a spiral shape into a tubular shape, or a plurality of tubular ribbon materials stacked concentrically to form a tubular shape. It is desirable to select the soft magnetic material such as the above-mentioned one in consideration of the shape, size, mechanical characteristics, etc. of the soft magnetic material.

【0014】検出コアの材質としては、通常、磁気特性
や加工性等の観点からパーマロイが好ましいが、その他
ケイ素鋼板、アモルファス、電磁軟鉄、ソフトフェライ
ト等の公知の軟質磁性材料の使用が可能である。
As the material of the detection core, permalloy is usually preferable from the viewpoint of magnetic properties and workability, but other known soft magnetic materials such as silicon steel plate, amorphous, electromagnetic soft iron, and soft ferrite can be used. .

【0015】[0015]

【作用】この発明の直流電流センサーの作用を図1から
図4に示す一実施例に基づいて説明する。図1は直流電
流センサーの部分断面平面説明図であり、図2はその部
分拡大説明図、図3は作動原理説明図、図4は励磁コイ
ルに印加する励磁電流と検出コア内における周方向の磁
束及び検出コイルの起電力(出力)との関係を示すグラ
フである。
The operation of the DC current sensor of the present invention will be described based on an embodiment shown in FIGS. FIG. 1 is a partial cross-sectional plan view of a DC current sensor, FIG. 2 is an enlarged view of a portion thereof, FIG. 3 is an explanatory view of the operating principle, and FIG. 4 is an exciting current applied to an exciting coil and a circumferential direction in a detection core. It is a graph which shows the relationship with the electromotive force (output) of a magnetic flux and a detection coil.

【0016】図1及び図2において11は、パーマロイ
を削り出した一体品からなる円筒状検出コア12の内側
に貫通配置する被検出導線である。検出コア12の側面
には、周方向に所定間隔毎で複数の貫通孔13が形成さ
れている。この貫通孔13には、互いに隣接する貫通孔
13内での電流の向きが逆向きになるよう励磁コイル1
4が巻回配置されている。図においては、互いに隣接す
る貫通孔13への挿入向きが逆向きになるようにして全
体として右回り又は左回りに全貫通孔13を通過するよ
うに巻回配置した後、再度、全体として逆回りにて全貫
通孔13を通過するように巻回配置し、一つの貫通孔1
3内に電流の向きが同一となる2本の励磁コイル14a
(図中太実線),14b(図中太破線)が配置されるよ
うに構成されている。図中15は前記検出コア12の外
周にトロイダル状に巻回配置する検出コイルである。
In FIG. 1 and FIG. 2, reference numeral 11 denotes a conductor to be detected which is penetrated and arranged inside a cylindrical detection core 12 which is an integrally formed product obtained by carving out permalloy. A plurality of through holes 13 are formed on the side surface of the detection core 12 at predetermined intervals in the circumferential direction. In this through hole 13, the exciting coil 1 is arranged so that the directions of the currents in the through holes 13 adjacent to each other are opposite to each other.
4 are wound and arranged. In the figure, after the windings are arranged so as to pass through all the through holes 13 clockwise or counterclockwise as a whole so that the insertion directions of the through holes 13 adjacent to each other are opposite, the whole structure is reversed again. One through hole 1 is arranged so that all the through holes 13 are wound around it.
Two exciting coils 14a in which the directions of currents are the same in 3
(Thick solid line in the figure) and 14b (thick broken line in the figure) are arranged. Reference numeral 15 in the drawing denotes a detection coil wound around the outer circumference of the detection core 12 in a toroidal shape.

【0017】このような構成において、被検出導線11
に直流電流Iが流れると、図2に示すように検出コア1
2に直流電流Iの方向に対して右回りの磁場H0(図中
白抜き矢印)が発生し、検出コア12内に磁束Φ0が発
生する。この時、励磁コイル14に所定の交流電流を通
電すると、例えば、図中矢印iで示す向きの電流が流れ
ると検出コア12に前記被検出導線11に流れる直流電
流Iによって発生する磁場H0に対して直交する向きの
磁場H(図中黒矢印)が発生し、これらの合成磁場に基
づき検出コア12内の磁化方向が回転し、磁束Φ0が変
調されることとなる。したがって、検出コイル15に
は、上記の磁束Φ0の変化に伴う検出コア12内の周方
向の磁束成分に基づく電圧VDETが発生することとな
る。
In such a structure, the lead wire 11 to be detected is
When a direct current I flows through the detection core 1, as shown in FIG.
A clockwise magnetic field H 0 with respect to the direction of the direct current I (white arrow in the figure) is generated at 2, and a magnetic flux Φ 0 is generated in the detection core 12. At this time, when a predetermined alternating current is applied to the exciting coil 14, for example, when a current flows in the direction indicated by an arrow i in the drawing, a magnetic field H 0 generated by the direct current I flowing through the detection lead wire 11 is generated in the detection core 12. A magnetic field H (black arrow in the figure) in a direction orthogonal to that is generated, the magnetization direction in the detection core 12 is rotated based on the combined magnetic field, and the magnetic flux Φ 0 is modulated. Therefore, the voltage V DET based on the circumferential magnetic flux component in the detection core 12 is generated in the detection coil 15 according to the change in the magnetic flux Φ 0 .

【0018】さらに、このような現象について図3及び
図4にて詳細に説明する。図3は、検出コア12に形成
される互いの貫通孔13間に発生する磁束の向きを矢印
にて模式的に表したものである。なお、励磁コイル14
及び検出コイル15の図示は省略してある(ただし、検
出コイル15については図3Aについてのみ図示)。被
検出導線11に直流電流Iが流れると、図3Aに示すよ
うに、検出コア12内に直流電流Iの方向に対して右回
りの磁場が発生し、検出コア12内に磁束Φ0が発生す
る。
Further, such a phenomenon will be described in detail with reference to FIGS. 3 and 4. FIG. 3 schematically shows the directions of magnetic fluxes generated between the through holes 13 formed in the detection core 12 by arrows. The exciting coil 14
Also, the illustration of the detection coil 15 is omitted (however, the detection coil 15 is shown only in FIG. 3A). When a direct current I flows through the conductor 11 to be detected, as shown in FIG. 3A, a clockwise magnetic field with respect to the direction of the direct current I is generated in the detection core 12, and a magnetic flux Φ 0 is generated in the detection core 12. To do.

【0019】この時、励磁コイル14に所定の交流電流
を通電して、検出コア12に前記被検出導線11に流れ
る直流電流Iによって発生する磁場に対して直交する向
きの磁場を発生すると、これらの合成磁場に基づき検出
コア12内の磁化方向が回転し、隣接する貫通孔13間
に発生する磁束の向きは図3Bの(↑↓)、図3Cの
(→→)、図3Dの(↑↓)に示すように変化する。励
磁電流の大きさは、被検出導線11に流れる直流電流I
によって検出コア12内の周方向に発生した磁化の向き
を回転させるに必要な電流の大きさでよく、検出コア1
2全体を磁気的に飽和させる必要はない。
At this time, when a predetermined alternating current is passed through the exciting coil 14 to generate a magnetic field in the detection core 12 in a direction orthogonal to the magnetic field generated by the direct current I flowing in the conductor 11 to be detected, these are generated. The magnetization direction in the detection core 12 rotates based on the combined magnetic field of (1), and the directions of the magnetic flux generated between the adjacent through holes 13 are (↑ ↓) in FIG. 3B, (→→) in FIG. 3C, and (↑) in FIG. 3D. ↓) changes as shown. The magnitude of the exciting current is the direct current I flowing through the detected lead wire 11.
The magnitude of the current required to rotate the direction of the magnetization generated in the detection core 12 in the circumferential direction by
It is not necessary to magnetically saturate the entire 2.

【0020】すなわち、励磁コイル14への励磁電流が
最大になった時に検出コア12内の磁束の向きは周方向
と直交する向き(図3B及び図3Dにて図示)となり、
検出コア12内の周方向の磁束成分が実質的に零とな
る。また、励磁コイル14への励磁電流が最小になった
時には、被検出導線11に流れる直流電流Iによって発
生する磁場に対して直交する向きの磁場は実質的に零と
なることから、検出コア12内の周方向の磁束成分(Φ
Θ近似Φ0)も最大(図3(A)及び図3(C)にて図
示)となる。したがって、このような検出コア12内で
の磁束の変化量に相当する起電力(VDET)が検出コイ
ル15に発生することとなる。
That is, when the exciting current to the exciting coil 14 becomes maximum, the direction of the magnetic flux in the detecting core 12 becomes the direction orthogonal to the circumferential direction (shown in FIGS. 3B and 3D),
The circumferential magnetic flux component in the detection core 12 becomes substantially zero. Further, when the exciting current to the exciting coil 14 becomes the minimum, the magnetic field in the direction orthogonal to the magnetic field generated by the direct current I flowing in the conductor 11 to be detected becomes substantially zero. Magnetic flux component in the circumferential direction (Φ
The Θ approximation Φ 0 ) is also maximum (illustrated in FIGS. 3A and 3C). Therefore, an electromotive force (V DET ) corresponding to the amount of change of the magnetic flux in the detection core 12 is generated in the detection coil 15.

【0021】ここで、励磁コイル14に通電する交流電
流を周波数f0とし、その電流のピーク値近傍で検出コ
ア12内の周方向の磁束成分が実質的に零となるように
すると、図4に示すように、励磁電流1周期で2回検出
コア12内の周方向の磁束成分が実質的に零となる(図
4a及び図4bにて図示)。したがって、被検出導線1
1に流れる直流電流Iによって検出コア12内に発生す
る磁束Φ0は、2f0で変調されることとなり、上記の磁
束Φ0の変化に伴い周波数2f0の電圧VDETが検出コイ
ル15に発生することとなる(図4cにて図示)。な
お、図4中のA〜Dは図3A〜Dとの関係を示してい
る。被検出導線11に流れる直流電流Iの向きにかかわ
らず、いずれの場合も磁束Φ0∝直流電流I、電圧VDET
∝磁束Φ0との関係から電圧VDET∝直流電流Iとなり、
被検出導線11に流れる直流電流Iに比例した起電力を
検出コイル15によって検出することが可能となる。
Here, if the alternating current passing through the exciting coil 14 is set to frequency f 0 and the magnetic flux component in the circumferential direction in the detection core 12 is substantially zero in the vicinity of the peak value of the current, FIG. As shown in, the magnetic flux component in the circumferential direction in the detection core 12 is substantially zero twice in one cycle of the exciting current (illustrated in FIGS. 4a and 4b). Therefore, the detected lead wire 1
Magnetic flux [Phi 0 generated in the detecting core 12 by the DC current I flowing through the 1 becomes a be modulated with 2f 0, generating a voltage V DET is detection coil 15 of the frequency 2f 0 with the change of the magnetic flux [Phi 0 (As shown in FIG. 4c). Note that A to D in FIG. 4 show the relationship with FIGS. Regardless of the direction of the direct current I flowing through the conductor 11 to be detected, in any case, the magnetic flux Φ 0 ∝ DC current I and voltage V DET
From the relationship with ∝ magnetic flux Φ 0 , voltage V DET ∝ DC current I,
The detection coil 15 can detect an electromotive force proportional to the direct current I flowing through the conductor 11 to be detected.

【0022】以上に説明するように、この発明の直流電
流センサーは、先に説明した図9に示す直流電流センサ
ーとは磁気的なスイッチング手段は異なるものの、検出
コイル15への起電力発生メカニズムは実質的に同様と
なり、図9に示す直流電流センサーと同等以上の高感度
の測定を実現でき、しかも構造を非常に簡単にすること
ができる。また、図9に示す直流電流センサーと検出コ
イル15への起電力発生メカニズムが実質的に同様であ
ることから、図9に示す直流電流センサーの特性を向上
させることを目的に付加される種々の機械的及び電気的
機器を同様に付設することができる。
As described above, the DC current sensor of the present invention is different from the DC current sensor shown in FIG. 9 described above in magnetic switching means, but the mechanism for generating electromotive force in the detection coil 15 is different. Substantially the same, high-sensitivity measurement equivalent to or higher than that of the DC current sensor shown in FIG. 9 can be realized, and the structure can be extremely simplified. Further, since the electromotive force generation mechanism for the DC current sensor shown in FIG. 9 and the detection coil 15 are substantially the same, various types of additional DC current sensors shown in FIG. 9 are added for the purpose of improving the characteristics of the DC current sensor. Mechanical and electrical equipment can be attached as well.

【0023】以上の説明においては、検出コア12の側
面に形成される各々の貫通孔13内に電流の向きが同一
となる2本の励磁コイル14a(図中太実線),14b
(図中太破線)が配置される構成にて説明したが、全体
として右回り又は左回りとなるように各々の貫通孔13
内に1本の励磁コイル(14a又は14b)のみを配置
する構成においても、この発明の目的を達成することが
できる。しかし、磁気的な効率やバランスとの観点から
は図示の構成が望ましい。また、以上の説明において
は、検出コア12の内側に被検出導線11が配置された
構成にて説明したが、被検出導線11を配置しない、例
えば、めっき浴中の電流密度分布を測定・調整する電流
密度測定器等のように該検出コア12の内側における荷
電物質の通過量の変化を測定するような構成において
も、高感度の測定を実施することが可能である。以下に
説明する他の一実施例においても同様である。
In the above description, the two exciting coils 14a (thick solid lines in the figure) and 14b having the same current direction in each through hole 13 formed in the side surface of the detection core 12 are described.
(Thick broken line in the figure) has been described in the configuration, but each through hole 13 is arranged so as to be clockwise or counterclockwise as a whole.
The object of the present invention can be achieved even in a configuration in which only one exciting coil (14a or 14b) is arranged inside. However, from the viewpoint of magnetic efficiency and balance, the illustrated configuration is desirable. Further, in the above description, the detected conductor 11 is arranged inside the detection core 12, but the detected conductor 11 is not arranged, for example, the current density distribution in the plating bath is measured and adjusted. High-sensitivity measurement can be performed even in a configuration in which a change in the amount of charged substances passing inside the detection core 12 is measured, such as a current density measuring device. The same applies to the other embodiment described below.

【0024】図5は、この発明の直流電流センサーの他
の一実施例を示す部分断面斜視説明図であり、図6は部
分拡大縦断面説明図である。この直流電流センサーにお
いて、検出コア12と該検出コア12の側面に形成され
た貫通孔13に配置される励磁コイル14とは、図1と
同様な構成である。これら励磁コイル14を巻回配置し
てなる検出コア12を軟質磁性材料からなるシールドケ
ース16にて包囲した後、該シールドケース16の外周
に検出コイル15をトロイダル状に巻回配置する。図中
11は被検出導線である。このような構成からなる直流
電流センサーにおいても、図1の構成からなる直流電流
センサーと同様な作動原理によって、高感度の測定を実
現することができる。
FIG. 5 is a partially sectional perspective explanatory view showing another embodiment of the direct current sensor of the present invention, and FIG. 6 is a partially enlarged vertical sectional explanatory view. In this DC current sensor, the detection core 12 and the exciting coil 14 arranged in the through hole 13 formed in the side surface of the detection core 12 have the same configuration as that in FIG. After the detection core 12 formed by winding the exciting coils 14 is surrounded by the shield case 16 made of a soft magnetic material, the detection coil 15 is wound around the outer circumference of the shield case 16 in a toroidal shape. Reference numeral 11 in the figure denotes a conductor to be detected. Also in the DC current sensor having such a configuration, high-sensitivity measurement can be realized by the same operating principle as the DC current sensor having the configuration in FIG.

【0025】この構成においては、励磁コイル14を巻
回配置してなる検出コア12を軟質磁性材料からなるシ
ールドケース16にて包囲することによって、検出コア
12からの漏洩磁束や励磁コイル14によって発生する
磁束をシールドケース16外に漏洩させることなく、検
出コイル15への悪影響(励磁信号とその高周波の混入
等)を低減できることから、図1の構成より一層高性能
の直流電流センサーを提供することが可能となる。特
に、図示の構成においては、図6に示すように、励磁コ
イル14a,14bによってシールドケース16内に発
生する磁束の向きは、励磁コイル14aによって発生す
る磁束の向きが実線矢印イの向きとなる場合は励磁コイ
ル14bによって発生する磁束の向きは破線矢印ロの向
きとなり、互いに逆向きになることから打ち消し合い、
実質的にシールドケース16に磁場が印加されない状態
と同様となる。すなわち、シールドケース16外に磁束
が漏洩することがなくなり、検出コイル15への悪影響
が低減できる。
In this structure, the detection core 12 formed by winding the exciting coil 14 is surrounded by the shield case 16 made of a soft magnetic material, so that the leakage magnetic flux from the detecting core 12 and the exciting coil 14 generate the magnetic flux. Since the adverse effect on the detection coil 15 (mixing of the excitation signal and its high frequency, etc.) can be reduced without leaking the generated magnetic flux to the outside of the shield case 16, it is possible to provide a direct current sensor with higher performance than the configuration of FIG. Is possible. In particular, in the illustrated configuration, as shown in FIG. 6, the direction of the magnetic flux generated in the shield case 16 by the excitation coils 14a and 14b is the direction of the magnetic flux generated by the excitation coil 14a as indicated by the solid arrow a. In this case, the directions of the magnetic fluxes generated by the exciting coil 14b are the directions indicated by the broken arrow B, which are opposite to each other, and thus cancel each other out.
This is substantially the same as the state where no magnetic field is applied to the shield case 16. That is, the magnetic flux does not leak to the outside of the shield case 16, and the adverse effect on the detection coil 15 can be reduced.

【0026】図7は、検出コアを周方向で分割可能な構
成としたクランプメータとして有用な構成からなるこの
発明の直流電流センサーを示す部分断面平面説明図であ
る。この構成において検出コアは、略半円状の一対の検
出コア部材12a,22からなり、各々検出コア部材1
2a,22の一方端が開閉自在になるよう他方端をクラ
ンプ部材17にて保持した構成からなっている。一対の
検出コア部材12a,22の側面に形成される各々の貫
通孔13,23内には、電流の向きが同一となる2本の
励磁コイル14a(図中太実線),14b(図中太破
線)及び24a(図中太実線),24b(図中太破線)
が巻回配置されている。さらに、検出コア部材12a,
22の外周には検出コイル15,25がトロイダル状に
巻回配置されている。
FIG. 7 is a partial cross-sectional plan view showing a DC current sensor of the present invention having a structure useful as a clamp meter in which the detection core is divided in the circumferential direction. In this configuration, the detection core is composed of a pair of substantially semicircular detection core members 12a and 22.
2a and 22 have a structure in which one end is held by a clamp member 17 so that one end can be opened and closed. In each of the through holes 13 and 23 formed on the side surfaces of the pair of detection core members 12a and 22, two exciting coils 14a (thick solid line in the figure) and 14b (thick line in the figure) having the same current direction are formed. Dashed line) and 24a (thick solid line in the figure), 24b (thick broken line in the figure)
Are arranged in a roll. Further, the detection core member 12a,
Detection coils 15 and 25 are wound around the outer circumference of 22 in a toroidal shape.

【0027】このような構成からなる直流電流センサー
においては、すでに配線が完了している被検出導線(図
示せず)を切断することなく、一対の検出コア部材12
a,22の開放端から被検出導線を検出コアの内側に配
置した後、該開放端を閉じて一体の円筒状検出コアとす
ることで、図1に示した直流電流センサーと同様な作動
原理によって被検出導線を流れる直流電流を高感度にて
測定することが可能となる。
In the DC current sensor having such a structure, the pair of detection core members 12 is provided without cutting the lead wire (not shown) to be detected, which has already been wired.
After arranging the conductor to be detected from the open ends of a and 22 inside the detection core, and closing the open end to form an integral cylindrical detection core, the same operating principle as the DC current sensor shown in FIG. By this, it becomes possible to measure the direct current flowing through the conductor to be detected with high sensitivity.

【0028】[0028]

【実施例】本願発明の作用効果を確認するために、図1
に示す構成からなる直流電流センサーを作成した。すな
わち、削り出し一体品からなる外径18mm×内径15
mm×高さ3mmの円筒状パーマロイ(78%Ni−5
%Mo−4%Cu−bal.Fe)の側面に、周方向に
等間隔で外径1mmの貫通孔を8箇所設け、さらに、水
素ガス雰囲気にて1100°C×3時間の磁性焼鈍を施
して検出コアとした。この検出コアに、励磁コイルとし
て外径0.3mmの絹巻導線を巻回配置するとともに、
検出コイルとして外径0.1mmのホルマル線を200
ターン巻回配置して本願発明の直流電流センサーを得
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to confirm the operation and effect of the present invention, FIG.
A direct current sensor having the structure shown in was prepared. That is, the outer diameter is 18 mm and the inner diameter is 15 which is a machined and integrated product.
mm x 3 mm height cylindrical permalloy (78% Ni-5
% Mo-4% Cu-bal. Eight through holes each having an outer diameter of 1 mm were provided on the side surface of Fe) at equal intervals in the circumferential direction, and further magnetic annealing was performed at 1100 ° C. for 3 hours in a hydrogen gas atmosphere to form a detection core. A silk winding wire having an outer diameter of 0.3 mm is wound around the detection core as an exciting coil, and
200 formal wire with an outer diameter of 0.1 mm is used as a detection coil.
A direct current sensor of the present invention was obtained by arranging in a turn winding.

【0029】上記検出コアの内側に外径8mmのビニル
被覆からなる被検出導線を貫通配置し、該被検出導線に
±10mAの範囲で直流電流を増減させて流した時の検
出コイルの起電力(出力)VDETを測定し、その結果を
図8に示した。なお、励磁コイルには200Hz、0.
1Armsの正弦波交流電流を印加し、また、検出コイ
ルの起電力(出力)VDETは、400Hz、Q=10の
バンドパスフィルターを通過した後の値で示している。
図8より、この発明の直流電流センサーによれば、10
mA程度の微小電流でも高感度の測定が可能であること
が分かる。
An electromotive force of a detection coil when a detection wire made of vinyl coating having an outer diameter of 8 mm is penetratingly arranged inside the detection core and a DC current is applied to the detection wire while increasing or decreasing a direct current within a range of ± 10 mA. (Output) V DET was measured, and the result is shown in FIG. The exciting coil has a frequency of 200 Hz, 0.
A sinusoidal alternating current of 1 Arms is applied, and the electromotive force (output) V DET of the detection coil is shown as a value after passing through a bandpass filter of 400 Hz and Q = 10.
From FIG. 8, according to the DC current sensor of the present invention, 10
It can be seen that highly sensitive measurement is possible even with a minute current of about mA.

【0030】[0030]

【発明の効果】この発明は、被検出導線に流れる直流電
流によって発生する検出コア部の周方向の磁場に対し
て、該周方向の磁場に直交し周期的に向きが変化するの
磁場を作用させることによって、検出コア部内での磁化
方向を回転させ、実質的に検出コア部内の周方向の磁束
に変調をかけることで磁気的なスイッチングを実施する
構成を採用することで、直流電流センサーを構成する軟
質磁性材料のコアを筒状のコアのみとした非常に簡単な
構成とすることを可能とした。その結果、検出コイルや
励磁コイルの巻線構成を簡単にすることも可能となり、
高感度の測定を実現するとともに直流電流センサー自体
の小型化をも達成することができる。したがって、電気
めっきのめっきむら防止等を目的としてめっき浴中の電
流密度分布を測定・調整する電流密度測定器等への使用
も可能となり、直流電流センサーの用途を一層拡大する
こととなった。また、検出コア内における磁化の向きを
回転するために、励磁コイルに供給する電力も比較的少
なくてすむことからクランプメータ等の携帯用機器への
使用が容易となった。
According to the present invention, a magnetic field which is orthogonal to the magnetic field in the circumferential direction and whose direction changes periodically is applied to the magnetic field in the circumferential direction of the detection core portion generated by the direct current flowing through the conductor to be detected. By rotating the magnetization direction in the detection core section by doing so, magnetic flux in the circumferential direction in the detection core section is modulated to implement magnetic switching, thereby adopting a DC current sensor. It has become possible to make a very simple structure in which the core of the soft magnetic material is only a cylindrical core. As a result, it is possible to simplify the winding configuration of the detection coil and excitation coil,
It is possible to realize high-sensitivity measurement and to downsize the direct current sensor itself. Therefore, it can be used for a current density measuring instrument or the like for measuring and adjusting the current density distribution in the plating bath for the purpose of preventing uneven plating of electroplating, and the application of the DC current sensor is further expanded. Further, since the direction of magnetization in the detection core is rotated, the electric power supplied to the exciting coil can be relatively small, which facilitates the use in a portable device such as a clamp meter.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の直流電流センサーの一実施例を示す
部分断面平面説明図である。
FIG. 1 is a partial cross-sectional plan view showing an embodiment of a direct current sensor of the present invention.

【図2】図1に示すこの発明の直流電流センサーの部分
拡大説明図である。
FIG. 2 is a partially enlarged explanatory view of the DC current sensor of the present invention shown in FIG.

【図3】A〜Dはこの発明の直流電流センサーの作動原
理説明図である。
3A to 3D are explanatory views of the operating principle of the DC current sensor of the present invention.

【図4】a〜cはそれぞれこの発明の直流電流センサー
の励磁コイルに印加する励磁電流と検出コア内における
周方向の磁束及び検出コイルの起電力(出力)との関係
を示すグラフである。
4A to 4C are graphs showing the relationship between the exciting current applied to the exciting coil of the DC current sensor of the present invention, the circumferential magnetic flux in the detecting core, and the electromotive force (output) of the detecting coil.

【図5】この発明の直流電流センサーの他の一実施例を
示す部分断面斜視説明図である。
FIG. 5 is a partial cross-sectional perspective explanatory view showing another embodiment of the DC current sensor of the present invention.

【図6】図5に示すこの発明の直流電流センサーの部分
拡大縦断面説明図である。
6 is a partially enlarged vertical cross-sectional explanatory view of the DC current sensor of the present invention shown in FIG.

【図7】この発明の直流電流センサーの他の一実施例を
示す部分断面平面説明図である。
FIG. 7 is a partial cross-sectional plan view showing another embodiment of the direct current sensor of the present invention.

【図8】図1に示すこの発明の直流電流センサーに基づ
く実測データを示すグラフである。
FIG. 8 is a graph showing measured data based on the DC current sensor of the present invention shown in FIG.

【図9】発明者が先に提案した直流電流センサーの斜視
説明図である。
FIG. 9 is a perspective explanatory view of a direct current sensor previously proposed by the inventor.

【符号の説明】[Explanation of symbols]

1,11 被検出導線 2 検出コア部 3a,3b 検出コイル 4a,4b 励磁コア部 5 励磁コイル 12 円筒状検出コア 12a,22 検出コア部材 13,23 貫通孔 14,14a,14b,24a,24b 励磁コイル 15,25 検出コイル 16 シールドケース 1, 11 Detected conducting wire 2 Detection core part 3a, 3b Detection coil 4a, 4b Excitation core part 5 Excitation coil 12 Cylindrical detection core 12a, 22 Detection core member 13, 23 Through hole 14, 14a, 14b, 24a, 24b Excitation Coil 15,25 Detection coil 16 Shield case

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 筒状の軟質磁性材料からなり、その側面
に周方向に所定間隔毎で形成した複数の貫通孔を有する
検出コアと、前記貫通孔に互いに隣接する貫通孔内での
電流の向きが逆向きになるよう巻回配置する励磁コイル
と、前記検出コアの外周にトロイダル状に巻回配置する
検出コイルとを有することを特徴とする直流電流センサ
ー。
1. A detection core made of a cylindrical soft magnetic material, having a plurality of through holes formed on its side surface at predetermined intervals in the circumferential direction, and a current flowing in the through holes adjacent to the through hole. A direct current sensor, comprising: an exciting coil wound in a reverse direction; and a detecting coil wound in a toroidal shape on the outer circumference of the detecting core.
【請求項2】 筒状の軟質磁性材料からなり、その側面
に周方向に所定間隔毎で形成した複数の貫通孔を有する
検出コアと、前記貫通孔に互いに隣接する貫通孔内での
電流の向きが逆向きになるよう巻回配置する励磁コイル
と、これら励磁コイルを巻回配置してなる検出コアを包
囲する軟質磁性材料からなるシールドケースと、該シー
ルドケースの外周にトロイダル状に巻回配置する検出コ
イルとを有することを特徴とする直流電流センサー。
2. A detection core made of a cylindrical soft magnetic material and having a plurality of through holes formed on its side surface at predetermined intervals in the circumferential direction, and a current flowing through the through holes adjacent to the through hole. Exciting coils wound in opposite directions, a shield case made of a soft magnetic material surrounding a detection core formed by winding these exciting coils, and a toroidal coil wound around the outer circumference of the shield case. A direct current sensor having a detection coil arranged.
【請求項3】 検出コアが周方向で分割可能な構成であ
ることを特徴とする請求項1及び請求項2の直流電流セ
ンサー。
3. The DC current sensor according to claim 1, wherein the detection core has a structure that can be divided in the circumferential direction.
JP18072195A 1995-06-23 1995-06-23 DC current sensor Expired - Fee Related JP3515233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18072195A JP3515233B2 (en) 1995-06-23 1995-06-23 DC current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18072195A JP3515233B2 (en) 1995-06-23 1995-06-23 DC current sensor

Publications (2)

Publication Number Publication Date
JPH095361A true JPH095361A (en) 1997-01-10
JP3515233B2 JP3515233B2 (en) 2004-04-05

Family

ID=16088161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18072195A Expired - Fee Related JP3515233B2 (en) 1995-06-23 1995-06-23 DC current sensor

Country Status (1)

Country Link
JP (1) JP3515233B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220798A (en) * 2010-04-08 2011-11-04 Ulvac Japan Ltd Core for differential transformer in stylus type profilometers and manufacturing method of the same
JP2012099537A (en) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp Ignition coil for internal combustion engine
JP2013080950A (en) * 2012-12-20 2013-05-02 Mitsubishi Electric Corp Ignition coil for internal combustion engine
KR102013286B1 (en) * 2019-03-15 2019-08-22 (주)인피니어 Current sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220798A (en) * 2010-04-08 2011-11-04 Ulvac Japan Ltd Core for differential transformer in stylus type profilometers and manufacturing method of the same
JP2012099537A (en) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp Ignition coil for internal combustion engine
JP2013080950A (en) * 2012-12-20 2013-05-02 Mitsubishi Electric Corp Ignition coil for internal combustion engine
KR102013286B1 (en) * 2019-03-15 2019-08-22 (주)인피니어 Current sensor

Also Published As

Publication number Publication date
JP3515233B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
TW312748B (en)
KR0135219B1 (en) Direct current sensor
JP4515905B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detection method, and magnetic bridge used in the sensor and detection method
Yang et al. A new compact fluxgate current sensor for AC and DC application
JP3515233B2 (en) DC current sensor
JP2002202328A (en) Magnetic field type current sensor
Chadebec et al. Rotor fault detection of electrical machines by low frequency magnetic stray field analysis
CN114019220B (en) Current detector and circuit
JPH08220141A (en) Split dc zero-phase current transformer
JPS599528A (en) Torque sensor
US5541503A (en) Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
Stoll Method of measuring alternating currents without disturbing the conducting circuit
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
JP3056136B2 (en) Apparatus and method for measuring corrosion of linear body
RU2100811C1 (en) Current sensor
JP2000055940A (en) Dc current sensor
JP3746359B2 (en) DC current sensor
JPH011970A (en) current detection device
JPH1068744A (en) Direct current sensor
JPH0674978A (en) Direct current sensor
JPH10332744A (en) Direct current sensor
JP3371019B2 (en) DC current sensor
JP3680363B2 (en) Magnetic bearing control device
SU779946A1 (en) Magnetic contact primary transducer
JP2005043154A (en) Eddy current flaw detecting probe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees