JPH03218243A - Manufacture of armature coil of dc motor - Google Patents

Manufacture of armature coil of dc motor

Info

Publication number
JPH03218243A
JPH03218243A JP1330590A JP1330590A JPH03218243A JP H03218243 A JPH03218243 A JP H03218243A JP 1330590 A JP1330590 A JP 1330590A JP 1330590 A JP1330590 A JP 1330590A JP H03218243 A JPH03218243 A JP H03218243A
Authority
JP
Japan
Prior art keywords
coil
axial direction
wire
conductor
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1330590A
Other languages
Japanese (ja)
Inventor
Takeshi Kasezawa
加瀬沢 健
Takeshi Tanaka
猛 田中
Norikazu Takagi
高木 憲和
Shigeru Kurosawa
黒沢 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Denso Corp
Original Assignee
Asmo Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd, NipponDenso Co Ltd filed Critical Asmo Co Ltd
Priority to JP1330590A priority Critical patent/JPH03218243A/en
Publication of JPH03218243A publication Critical patent/JPH03218243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Dc Machiner (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

PURPOSE:To realize a simple and easy process for manufacture of an armature coil having a double-layer structure by a method wherein the axial direction intermediate parts of respective conductor coil wires are the axial direction intermediate parts of inner and outer coil and both the axial direction end parts of the respective conductor coil wires are in parallel with the axial direction. CONSTITUTION:The method of manufacture of an armature coil 14 of the present embodiment is such that the axial direction intermediate parts of respective conductor coil wires 26 and 36 to which ferromagnetic elements 28 and 38 are fixed are the axial direction intermediate parts of an inner coil 20 and an outer coil 30. Further, both the axial direction end parts, i.e., the parts near the inner sides of slit plates 22 and 32 are in parallel with the axial direction. Therefore, in order to insert the coil conductors into the slits 24 or the slits 34 of a pair of slit plates 22 or a pair of slit plates 32, the respective conductor soil wires 26 and 36 can be inserted into the slits of the respective slit plates 22 and 32 which are provided on both axial direction end parts from the same direction simultaneously.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は直流モータに用いられる電機子コイルの製作方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an armature coil used in a DC motor.

[従来の技術] 直流モータに用いられる電機子では、電機子コアの外側
に二層の電機子コイルを備えたものが知られている。
[Prior Art] It is known that armatures used in DC motors include two-layer armature coils outside an armature core.

この種の電機子では、強磁性体よりなる電機子コアの軸
線方向両端部には一対の絶縁板が配設されている。各絶
縁板はコアよりも若干大径の円形板で、外周には半径方
向に切り欠かれたスリットが全周に渡って複数形成され
ており、さらにこれらのスリット内にはそれぞれ導体コ
イル線が取り付けられている。
In this type of armature, a pair of insulating plates are disposed at both axial ends of an armature core made of a ferromagnetic material. Each insulating plate is a circular plate with a slightly larger diameter than the core, and the outer periphery has multiple slits cut out in the radial direction, and each of these slits has a conductor coil wire inside. installed.

導体コイル線は銅製の長尺体で、軸線方向中間部には強
磁性体(鉄)が一体的に固着されている。
The conductor coil wire is an elongated body made of copper, and a ferromagnetic material (iron) is integrally fixed to the middle part in the axial direction.

この導体コイル線の軸線方向両端部が、前記一対の絶縁
板のスリット内にそれぞれ半径方向に二重に組付けられ
ている。すなわち、内側に組付けられた導体コイル線に
よって、コアの外周に配置される円筒形の内側コイルが
形成され、さらに、この内側コイル(導体コイル線)の
外側に組付けられた導体コイル線によって、内側コイル
の外周に配置され内側コイルに電気的に接続される外側
コイルが形成される構成である。
Both ends of the conductor coil wire in the axial direction are double assembled in the radial direction within the slits of the pair of insulating plates. In other words, the conductor coil wire assembled on the inside forms a cylindrical inner coil arranged around the outer periphery of the core, and the conductor coil wire assembled on the outside of this inner coil (conductor coil wire) forms a cylindrical inner coil arranged around the outer periphery of the core. , an outer coil is formed around the outer periphery of the inner coil and electrically connected to the inner coil.

また、内側コイルと外側コイルのそれぞれ軸線方向両端
部(絶縁板の内側近傍)においては、各導体コイル線が
互いに反対方向へ傾斜されて(例えば60度)配設位置
が進められて渡り線部が形成されており、これによって
界磁内のコイルに適切な通電が行なえるようになってい
る。
Furthermore, at both ends in the axial direction of the inner coil and the outer coil (near the inside of the insulating plate), the conductor coil wires are inclined in opposite directions (for example, 60 degrees) and their arrangement positions are advanced to form crossover wires. is formed, which allows the coils within the field to be properly energized.

このような内外二層の電機子コイルを有する従来の直流
モータは、小型かつ高出力でまた応答性も良い等の利点
がある。
A conventional DC motor having two armature coil layers, an inner and an outer layer, has advantages such as being small, having high output, and having good response.

[発明が解決しようとする課題] しかしながら、内外二層に構成される従来の電機子コイ
ルは、製作加工の工程が複雑でコスト高である欠点があ
った。
[Problems to be Solved by the Invention] However, the conventional armature coil constructed of two layers, an inner and an outer layer, has the disadvantage that the manufacturing process is complicated and the cost is high.

すなわち、従来の電機子コイルでは、各コイルを形成す
る複数の導体コイル線は、絶縁板に組付ける以前に、そ
の両端部が軸線方向中間部(強磁性体固着部分)に対し
て直角方向へ屈曲され(すなわち、内外コイルの軸線方
向に対して周方向へ屈曲され)ていたため、屈曲成形さ
れたこれらの導体コイル線を絶縁板のスリット内に組付
ける際の位置決めが容易でなく、所定の組付精度を確保
するためには組付けに手間がかかり、これらのためにコ
スト高であった。
In other words, in conventional armature coils, the plurality of conductor coil wires forming each coil have both ends oriented perpendicularly to the axially intermediate part (ferromagnetic material fixed part) before being assembled to the insulating plate. Because these conductor coil wires were bent (that is, bent in the circumferential direction with respect to the axial direction of the inner and outer coils), it was difficult to position these bent conductor coil wires when assembling them into the slits of the insulating plate. Assembling requires time and effort to ensure assembly accuracy, resulting in high costs.

またこのような問題を解消するために、特開昭63−2
87338号、特開昭63−287339号公報には、
複数本のコイル素線から成るコイル素線シ一トを複数個
平行に円筒に配列して一方向に捩じって内外層コイルを
形成することが提案されている。
In addition, in order to solve this problem, Japanese Unexamined Patent Publication No. 63-2
No. 87338 and Japanese Unexamined Patent Publication No. 63-287339,
It has been proposed to form an inner and outer layer coil by arranging a plurality of coil wire sheets consisting of a plurality of coil wires in parallel in a cylinder and twisting them in one direction.

しかしながら、前記各公報に示される如く単に捩じった
場合には、第9図に示す如くコイル50の渡り線部52
が内側にへこみ、内層コイルと外層コイルの接続、組付
けが困難である。
However, in the case of simply twisting as shown in each of the above-mentioned publications, the connecting wire portion 52 of the coil 50 as shown in FIG.
is dented inward, making it difficult to connect and assemble the inner and outer coils.

本発明は上記事実を考慮し、内外二層に構成される電機
子コイルを簡単かつ確実に製作加工することができ、コ
ストの低減を図ることができる直流モータ用の電機子コ
イルの製作方法を得ることが目的である。
In consideration of the above facts, the present invention provides a method for manufacturing an armature coil for a DC motor, which can easily and reliably manufacture an armature coil composed of two layers, an inner and outer layer, and which can reduce costs. The purpose is to obtain.

[課題を解決するための手段] 請求項(1)に係る発明の直流モータ用の電機子コイル
の製作方法は、軸線方向中間部に強磁性体が一体的に固
着された導体コイル線の、前記強磁性体固着部分以外の
軸線方向両端部近傍を予め湾曲形状に形成し、電機子コ
アの軸線方向両端部に互いに同軸的に配設される一対の
絶縁板に、前記導体コイル線の端部を周方向に沿って複
数隣接して筒状に配列しかつ前記湾曲形状部分が筒径を
拡大する状態で組付けた後に、前記一対の絶縁板を互い
に軸線周りに反対方向へ回転させて前記導体コイル線の
湾曲形状部分を捩じり、これによって、前記複数の導体
コイル線が捩じり方向へ傾斜されて配設位置が進められ
た円筒形の渡り線部を有する外側コイルを製作し、次い
で、前記渡り線部における導体コイル線の傾斜方向が前
記外側コイルと異なると共に前記外側コイルの内周に配
置される内側コイルを、前記外側コイルの内方に組み込
んだ後に、前記外側コイルの導体コイル線と内側コイル
の導体コイル線とを電気的に接続して製作している。
[Means for Solving the Problems] A method for manufacturing an armature coil for a DC motor according to the invention according to claim (1) comprises a conductor coil wire having a ferromagnetic material integrally fixed to the intermediate portion in the axial direction. The ends of the conductor coil wire are formed into a curved shape in advance in the vicinity of both ends in the axial direction other than the ferromagnetic material fixed portion, and the ends of the conductor coil wire are attached to a pair of insulating plates disposed coaxially with each other at both ends in the axial direction of the armature core. After arranging a plurality of sections adjacent to each other in a cylindrical shape along the circumferential direction and assembling the curved section in a state in which the cylindrical diameter is enlarged, the pair of insulating plates are rotated in opposite directions about their respective axes. Twisting the curved portion of the conductor coil wire to produce an outer coil having a cylindrical crossover portion in which the plurality of conductor coil wires are inclined in the twisting direction and the arrangement position is advanced. Then, after incorporating an inner coil in which the direction of inclination of the conductor coil wire in the crossover portion is different from that of the outer coil and which is arranged on the inner periphery of the outer coil, the inner coil is installed inside the outer coil. The conductor coil wire of the inner coil is electrically connected to the conductor coil wire of the inner coil.

また、請求項(2)に係る発明の直流モータ用の電機子
コイルの製作方法は、請求項(1)記載の直流モータ用
の電機子コイルの製作方法において、前記内側コイルは
、前記外側コイルと同様の工程によって製作されて円筒
形の渡り線部を形成することを特徴としている。
Further, the method for manufacturing an armature coil for a DC motor according to the invention according to claim (2) is the method for manufacturing an armature coil for a DC motor according to claim (1), wherein the inner coil is the outer coil. It is characterized in that it is manufactured by the same process as , and a cylindrical crossover section is formed.

[作用] 請求項(1)記載の直流モータ用の電機子コイルの製作
方法では、各導体コイル線はその軸線方向中間部(強磁
性体固着部分)が内外コイルの軸線方向中間部とされ、
この軸線方向中間部に対して軸線方向両端部が、共に軸
線に沿って平行であるため、一対の絶縁板のスリット内
に挿入する際、両絶縁板に対し導体コイル線を同一方向
から同時に挿入でき、絶縁板への組付けが容易で高い組
付精度を確保することができる。
[Function] In the method for manufacturing an armature coil for a DC motor according to claim (1), each conductor coil wire has its axially intermediate portion (the ferromagnetic material fixed portion) serving as the axially intermediate portion of the inner and outer coils,
Both axial ends are parallel to the axial middle part, so when inserting the conductor coil wire into the slit of a pair of insulating plates, the conductor coil wire is inserted from the same direction into both insulating plates at the same time. This makes it easy to assemble to the insulating plate and ensures high assembly accuracy.

さらに、絶縁板を互いに軸線周りに反対方向へ回転させ
た後には、外側コイルのそれぞれ軸線方向両端部に渡り
線部が形成される。ここで、この渡り線部においては、
各導体コイル線の端部が予め湾曲形状に形成され筒径を
拡大する状態で組付けられるため、一対の絶縁板を互い
に反対方向へ回転させて湾曲形状部分を捩じって渡り線
部を形成する際に、この渡り線部(捩じり部分)が内側
へ突出することなく円筒形に形成される。
Further, after the insulating plates are rotated in opposite directions around the axis, crossover wire portions are formed at both ends of the outer coil in the axial direction. Here, in this crossover section,
Since the end of each conductor coil wire is formed into a curved shape in advance and assembled with the tube diameter enlarged, the crossover wire is formed by rotating the pair of insulating plates in opposite directions and twisting the curved portion. During formation, this crossover portion (twisted portion) is formed into a cylindrical shape without protruding inward.

すなわち、複数の導体コイル線によって形成される外側
コイルは、強磁性体固着部分から渡り線部にかけて連続
して同一径の円筒形となり、したがって、この外側コイ
ルの内方に内側コイルを挿入し、組み合わせることが容
易にできる。このように、内外二層の電機子コイルを簡
単かつ確実に製作加工することができ、コストの低減を
図ることができる。
That is, the outer coil formed by a plurality of conductor coil wires has a continuous cylindrical shape with the same diameter from the ferromagnetic fixed part to the connecting wire part, and therefore, the inner coil is inserted inside this outer coil, Can be easily combined. In this way, it is possible to easily and reliably manufacture and process the armature coil having two layers, the inner and outer layers, and the cost can be reduced.

一方、請求項(2)記載の直流モータ用の電機子コイル
の製作方法では、外側コイルのみならず内側コイルの渡
り線部も、内側へ突出することなく円筒形に形成される
On the other hand, in the method for manufacturing an armature coil for a DC motor according to claim (2), not only the outer coil but also the crossover portion of the inner coil are formed in a cylindrical shape without protruding inward.

すなわち、複数の導体コイル線によって形成される内側
コイルと外側コイルは、強磁性体固着部分から渡り線部
にかけて連続して同一径の円筒形となり、したがって、
電機子コアの外周に内側コイルを組付けさらにこの内側
コイルの外周に外側コイルを組み合わせることが容易に
できる。このように、内外二層の電機子コイルを簡単か
つ確実に製作加工することができ、コストの低減を図る
ことができる。
That is, the inner coil and outer coil formed by a plurality of conductor coil wires have a continuous cylindrical shape with the same diameter from the ferromagnetic fixed part to the connecting wire part, and therefore,
The inner coil can be easily assembled to the outer periphery of the armature core, and the outer coil can be further assembled to the outer periphery of the inner coil. In this way, it is possible to easily and reliably manufacture and process the armature coil having two layers, the inner and outer layers, and the cost can be reduced.

[実施例] 第1図には本発明に係る製作方法が適用されて製作され
た直流モーク用の電機子10の全体斜視図が示されてい
る。また、第2図乃至第8図には電機子10の構成部品
が製作段階に応じて示されている。
[Example] FIG. 1 shows an overall perspective view of an armature 10 for a DC moke manufactured by applying the manufacturing method according to the present invention. Further, in FIGS. 2 to 8, the components of the armature 10 are shown according to the manufacturing stage.

電機子10は、電機子コア12とこの電機子コア12の
外側に配置される電機子コイル14、及び整流子18と
を備えている。電機子コア12は鉄等の強磁性体によっ
て円柱形に形成されており、シャフト16が取り付けら
れている。
The armature 10 includes an armature core 12, an armature coil 14 disposed outside the armature core 12, and a commutator 18. The armature core 12 is made of a ferromagnetic material such as iron and has a cylindrical shape, and a shaft 16 is attached to the armature core 12 .

電機子コイル14は、内側コイル20と外側コイル30
とによって構成されている。第3図及び第4図に詳細に
示す如く、内側コイル20は一対のスリット板22を有
している。各スリット板22は絶縁性を有する板材で、
ドーナツ状に形成されており、電機子コア12の外径に
対応した内径寸法となっている。各スリット板22の外
周には、半径方向に切り欠かれたスリット24が隣接し
て全周に渡って複数形成されており、さらにこれらq のスリット24内にはそれぞれ導体コイル線26が取り
イ」けられている。
The armature coil 14 includes an inner coil 20 and an outer coil 30.
It is composed of. As shown in detail in FIGS. 3 and 4, the inner coil 20 has a pair of slit plates 22. As shown in FIGS. Each slit plate 22 is an insulating plate material,
It is formed in a donut shape, and has an inner diameter dimension corresponding to the outer diameter of the armature core 12. On the outer periphery of each slit plate 22, a plurality of slits 24 cut out in the radial direction are formed adjacent to each other over the entire circumference, and a conductor coil wire 26 is inserted into each of these q slits 24. "I'm being kicked."

導体コイル線26は銅製の長尺体で、軸線方向中間部に
は強磁性体く鉄)28が一体的に固着されている。また
、第5図にも示す如く、各導体コイル線26のそれぞれ
軸線方向両端部くスリット板22の内側近傍)には、各
導体コイル線26が互いに反対方向へ捩じられて(例え
ば60度)配設位置が進められた渡り線部26Aが形成
されており、これによって界磁内のコイルに適切な通電
が行なえるようになっている。
The conductor coil wire 26 is an elongated body made of copper, and a ferromagnetic material 28 is integrally fixed to the intermediate portion in the axial direction. Further, as shown in FIG. 5, at both ends of each conductor coil wire 26 in the axial direction (near the inside of the slit plate 22), the conductor coil wires 26 are twisted in opposite directions (for example, by 60 degrees). ) A crossover wire portion 26A is formed whose arrangement position is advanced, so that the coil in the field can be appropriately energized.

これらのスリット板22、導体コイル線26及び強磁性
体28によって、電機子コア12の外周に配置される円
筒形の内側コイル20が形成される構成である。
The slit plate 22, the conductor coil wire 26, and the ferromagnetic material 28 form a cylindrical inner coil 20 arranged around the outer periphery of the armature core 12.

一方、外側コイル30は、内側コイル20と同様に一対
のスリット板32を有している。各スリット板32も絶
縁性を有する板材でドーナツ状に形成されており、スリ
ット板22の外径に対応した内径寸法となっている。ス
リット板32の内周10 には、スリット板22の外周に形成されたスリット24
に対応して、半径方向に切り欠かれたスリット34が隣
接して全周に渡って複数形成されている。さらに、これ
らのスリット34内にはそれぞれ導体コイル線36が取
り付けられている。
On the other hand, the outer coil 30 has a pair of slit plates 32 similarly to the inner coil 20. Each slit plate 32 is also formed into a doughnut-like shape using an insulating plate material, and has an inner diameter corresponding to the outer diameter of the slit plate 22. The inner periphery 10 of the slit plate 32 has a slit 24 formed on the outer periphery of the slit plate 22.
A plurality of slits 34 cut out in the radial direction are formed adjacent to each other over the entire circumference. Furthermore, a conductor coil wire 36 is attached within each of these slits 34.

導体コイル線36は、導体コイル線26と同様に銅製の
長尺体で、軸線方向中間部には強磁性体38が一体的に
固着されており、さらに、各導体コイル線36のそれぞ
れ軸線方向両端部(スリット板32の内側近傍)には、
各導体コイル線36が互いに反対方向へ捩じられて配設
位置が進められた渡り線部36Aが形成されている。
The conductor coil wire 36 is an elongated body made of copper like the conductor coil wire 26, and a ferromagnetic material 38 is integrally fixed to the middle part in the axial direction. At both ends (near the inside of the slit plate 32),
A crossover wire portion 36A is formed in which the conductor coil wires 36 are twisted in opposite directions to advance their arrangement positions.

これらのスリット板32、導体コイル線36及び強磁性
体38によって、内側コイル20の外周に配置される円
筒形の外側コイル30が形成される構成である。
The slit plate 32, the conductor coil wire 36, and the ferromagnetic material 38 form a cylindrical outer coil 30 arranged around the outer periphery of the inner coil 20.

なお、スリット板22から軸線方向外側に突出した導体
コイル線26の端部は、スリット板32から軸線方向外
側に突出した導体コイル線36の端部に接続されており
、これによって、内側コイ■ 1 ル20と外側コイル30とは電気的に接続されて電機子
コイル14が形成される構成である。
The end of the conductor coil wire 26 that protrudes outward in the axial direction from the slit plate 22 is connected to the end of the conductor coil wire 36 that protrudes outward in the axial direction from the slit plate 32. 1. The armature coil 14 is formed by electrically connecting the coil 20 and the outer coil 30.

さらに、これら内外接続部のうち所定数毎に整流子18
のセグメント19に電機的に接続される。
Furthermore, a commutator 18 is provided for each predetermined number of these internal and external connections.
electrically connected to segment 19 of.

次に、以上の構成による電機子10の製作方法を図面に
従って説明する。
Next, a method of manufacturing the armature 10 having the above configuration will be explained with reference to the drawings.

第2図に示す如く、導体コイル線26の、強磁性体28
固着部分以外の軸線方向両端部近傍を予め湾曲させて湾
曲形状部25を形成する。さらに、この湾曲形状部25
0両端部(すなわち、直線部分との境界部位)の互いに
表裏反対側に、切り込み40、42を形成する。なお、
これらの切り込み40、42の深さ寸法は、本実施例の
場合、導体コイル線26の厚さ寸法の20%以内とされ
ているが、これは材質等により異なるものである。
As shown in FIG. 2, the ferromagnetic material 28 of the conductor coil wire 26
The curved portion 25 is formed by pre-curving the vicinity of both ends in the axial direction other than the fixed portion. Furthermore, this curved portion 25
Cuts 40 and 42 are formed on opposite sides of each other at both ends (that is, at the boundary with the straight portion). In addition,
In this embodiment, the depth of these cuts 40 and 42 is within 20% of the thickness of the conductor coil wire 26, but this varies depending on the material and the like.

次いで、第3図に示す如く、一対のスリット板22のス
リット24内に、前記導体コイル線26の端部を組付け
る。さらにその後に、第4図に示す如く、一対のスリッ
ト板22を互いに反対方向く第4図矢印A方向)へ回転
させて各導体コイル1 2 線26の湾曲形状部25を捩じり、これによって、第5
図に示す如く渡り線部26Aを有する内側コイル20を
形成する。
Next, as shown in FIG. 3, the ends of the conductor coil wire 26 are assembled into the slits 24 of the pair of slit plates 22. Further, as shown in FIG. 4, the pair of slit plates 22 are rotated in opposite directions (in the direction of arrow A in FIG. 4) to twist the curved portion 25 of each conductor coil 1 2 wire 26. by the fifth
As shown in the figure, an inner coil 20 having a crossover portion 26A is formed.

また一方、第6図に示す如く、一対のスリット板32の
スリット34内に導体コイル線36の端部を組付け、さ
らに第7図に示す如く一対のスリット板32を互いに反
対方向く第7図矢印B方向)へ回転させて各導体コイル
線36の湾曲形状部35を捩じり、前述と同様の工程に
よって外側コイル30を形成する。なおこの場合には、
一対のスリット板32の捩じり方向は、前述のスリット
板22の場合とは逆方向とされており、これによって、
渡り線部36Aにおける導体コイル線36の傾斜方向が
内側コイル20の渡り線部26Aと異なるようにしてい
る。
On the other hand, as shown in FIG. 6, the ends of the conductor coil wires 36 are assembled into the slits 34 of the pair of slit plates 32, and as shown in FIG. The curved portion 35 of each conductor coil wire 36 is twisted by rotating it in the direction of arrow B in the figure, and the outer coil 30 is formed by the same process as described above. In this case,
The twisting direction of the pair of slit plates 32 is opposite to that of the slit plate 22 described above, so that
The inclination direction of the conductor coil wire 36 in the crossover wire portion 36A is made to be different from that in the crossover wire portion 26A of the inner coil 20.

次いで、第8図に示す如<、電機子コア12の外周に内
側コイル20を組み込むと共に、内側コイル20の外方
に外側コイル30を組み込み、さらに、内側コイル20
の導体コイル線26と外側コイル30の導体コイル線3
6とを電気的に接続13 し、かつ、上記内外コイル接続部の所定数毎と、整流子
18のセグメント19とを溶接等にて電気的に接続して
電機子10の製作が完了する。
Next, as shown in FIG. 8, the inner coil 20 is installed on the outer periphery of the armature core 12, and the outer coil 30 is installed outside the inner coil 20.
The conductor coil wire 26 of the outer coil 30 and the conductor coil wire 3 of the outer coil 30
6 are electrically connected 13 , and a predetermined number of the above-mentioned inner and outer coil connecting portions are electrically connected to the segments 19 of the commutator 18 by welding or the like, thereby completing the manufacture of the armature 10 .

このように、上記の電機子コイル14 (電機子10)
の製作方法では、各導体コイル線26、36はその軸線
方向中間部(強磁性体28、38固着部分)が内側コイ
ル20及び外側コイル30の軸線方向中間部とされ、こ
の軸線方向中間部に対して軸線方向両端部が、軸線に沿
って平行であるため、一対のスリット板22又は一対の
スリット板32のスリット24又はスリット34内に挿
入する際、軸線方向両端部に位置する各スリット板22
、32に対し各導体コイル線26、36を、同一方向か
ら同時に挿入でき、位置決めが容易で高い組付精度を確
保することができる。
In this way, the above armature coil 14 (armature 10)
In the manufacturing method, each conductor coil wire 26, 36 has its axially intermediate portion (ferromagnetic material 28, 38 fixed portion) as the axially intermediate portion of the inner coil 20 and outer coil 30, and the axially intermediate portion thereof is On the other hand, since both ends in the axial direction are parallel to the axis, when inserting into the slit 24 or 34 of the pair of slit plates 22 or the pair of slit plates 32, each slit plate located at both ends in the axial direction 22
, 32, the conductor coil wires 26, 36 can be inserted simultaneously from the same direction, making positioning easy and ensuring high assembly accuracy.

さらに、各一対のスリット板22、32を互いに反対方
向へ回転させた後には、内側コイル20と外側コイル3
0のそれぞれ軸線方向両端部に渡り線部26A,36A
が形成される。ここで、この渡り線部26A,36Aに
おいては、各導体コ14 イル線26、36の端部が予め湾曲されて湾曲形状部2
5、35が形成されているため、スリット板22または
スリット板32をそれぞれ互いに反対方向へ回転させて
湾曲形状部25、35を捩じって渡り線部26A、36
Aを形成する際に、第5図に示す如くこの渡り線部26
A、36A(捩じり部分)が内側へ突出することなく円
筒形に形成される。
Furthermore, after each pair of slit plates 22 and 32 are rotated in opposite directions, the inner coil 20 and the outer coil 3
0, crossover wire portions 26A, 36A are provided at both ends in the axial direction, respectively.
is formed. Here, in the crossover wire portions 26A and 36A, the ends of the respective conductor coils 14 and the coil wires 26 and 36 are curved in advance to form the curved portions 26A and 36A.
5 and 35 are formed, the slit plate 22 or 32 is rotated in opposite directions to twist the curved portions 25 and 35 to form the crossover portions 26A and 36.
When forming A, as shown in FIG.
A and 36A (twisted portion) are formed into a cylindrical shape without protruding inward.

すなわち、複数の導体コイル線26、36によって形成
される内側コイル20と外側コイル30は、強磁性体2
8、38固着部分から渡り線部26A、36Aにかけて
連続して同一径の円筒形となり、したがって、電機子コ
ア12の外周に内側コイル20を組付けさらにこの内側
コイル20の外周に外側コイル30を組み合わせること
が容易にできる。
That is, the inner coil 20 and the outer coil 30 formed by the plurality of conductor coil wires 26 and 36 are connected to the ferromagnetic material 2.
8, 38 from the fixed portion to the crossover wire portions 26A, 36A are continuously cylindrical with the same diameter. Therefore, the inner coil 20 is attached to the outer periphery of the armature core 12, and the outer coil 30 is attached to the outer periphery of the inner coil 20. Can be easily combined.

また、各導体コイル線26、36の湾曲形状部25、3
5の両端部(直線部分との境界部位)の互いに表裏反対
側には切り込み40、42が形成されているため、湾曲
形状@25、35を捩しっ1 5 て渡り線部26A、36Aを形成する際に、各導体コイ
ル線26、36の湾曲形状部25、35を均一かつ確実
に屈曲させることができる。したがって、強磁性体28
、38が折り曲げられて変形することがなく加工精度が
向上し、内側コイル20と夕1側コイル30の界磁路を
連続して確実に構成できる。
In addition, the curved portions 25 and 3 of each conductor coil wire 26 and 36
Since notches 40 and 42 are formed on opposite sides of both ends (border areas with the straight portions) of 5, the curved shapes @25 and 35 are twisted to form crossover portions 26A and 36A. When forming, the curved portions 25, 35 of the conductor coil wires 26, 36 can be bent uniformly and reliably. Therefore, the ferromagnetic material 28
, 38 are not bent and deformed, processing accuracy is improved, and the field paths of the inner coil 20 and the first side coil 30 can be reliably configured to be continuous.

このように、内外二層の電機子コイル14を簡単かつ確
実で高精度に製作加工することができ、コストの低減を
図ることができる。
In this way, the two-layered armature coil 14, the inner and outer layers, can be fabricated easily, reliably, and with high precision, and costs can be reduced.

なお、本実施例においては、電機子コイル14を構成ず
る内側コイル20と外側コイル30を同じ製作工程で製
作する、すなわち、導体コイル線26、36に湾曲形状
部25、35を形成しこれを捩じって円筒形の渡り線部
26A,36Aを共に形成する構成としたが、これに限
らず、外側コイル30のみに円筒形の渡り線部36Aを
形成する構成止してもよい。この場合であっても、円筒
形に形成された外側コイル20の内方に内側コイル30
を組み合わせることが容易にできる。
In this embodiment, the inner coil 20 and the outer coil 30 that constitute the armature coil 14 are manufactured in the same manufacturing process, that is, the curved portions 25 and 35 are formed on the conductor coil wires 26 and 36, and Although the configuration is such that the cylindrical crossover wire portions 26A and 36A are formed together by twisting, the configuration is not limited to this, and the configuration may be such that the cylindrical crossover wire portion 36A is formed only on the outer coil 30. Even in this case, the inner coil 30 is placed inside the outer coil 20 formed in a cylindrical shape.
can be easily combined.

1 6 [発明の効果] 以上説明した如く本発明に係る直流モータ用の電機子コ
イルの製作方法は、内外二層に構成される電機子コイル
を簡単かつ確実に製作加工することができ、コストの低
減を図ることができる効果を有する。
1 6 [Effects of the Invention] As explained above, the method for manufacturing an armature coil for a DC motor according to the present invention can easily and reliably manufacture an armature coil composed of two layers, an inner and an outer layer, and can reduce costs. This has the effect of reducing the

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る直流モータ用の電機子コイルの製
作方法が適用されて製作された電機子の全体斜視図、第
2図はスリット板に組付けられる以前の導体コイル線の
斜視図、第3図及び第4図は内側コイルの製作工程を示
す斜視図、第5図は完成した内側コイルの正面図、第6
図及び第7図は外側コイルの製作工程を示す斜視図、第
8図は内側コイルと外側コイルの組付け工程における挿
入状態を示す斜視図、第9図は従来例に係るコイルの正
面図である。 10・・・電機子、 12・・・電機子コア、 14・・・電機子コイノベ 17 18 ・ ・ 20 ・ ・ 22 ・ ・ 25 ・ ・ 26 ・ ・ 26A ・ 28 ・ ・ 30 ・ ・ 32 ・ ・ 35 ・ ・ 36 ・ ・ 36A ・ 38 ・ ・ ・整流子、 ・内側コイノペ ・スリット板、 ・湾曲形状部、 ・導体コイル線、 ・・渡り線部、 ・強磁性体、 ・外側コイル、 ・スリット板、 ・湾曲形状部、 ・導体コイル線、 ・・渡り線部、 ・強磁性体。
FIG. 1 is an overall perspective view of an armature manufactured by applying the method of manufacturing an armature coil for a DC motor according to the present invention, and FIG. 2 is a perspective view of a conductor coil wire before being assembled to a slit plate. , Figures 3 and 4 are perspective views showing the manufacturing process of the inner coil, Figure 5 is a front view of the completed inner coil, and Figure 6 is a perspective view showing the manufacturing process of the inner coil.
7 and 7 are perspective views showing the manufacturing process of the outer coil, FIG. 8 is a perspective view showing the inserted state in the assembly process of the inner coil and the outer coil, and FIG. 9 is a front view of the coil according to the conventional example. be. 10... Armature, 12... Armature core, 14... Armature Koinobe 17 18 ・ ・ 20 ・ ・ 22 ・ ・ 25 ・ ・ 26 ・ ・ 26A ・ 28 ・ ・ 30 ・ ・ 32 ・ ・ 35・ ・ 36 ・ ・ 36A ・ 38 ・ ・ ・ Commutator, ・Inner Koinope slit plate, ・Curved portion, ・Conductor coil wire, ・Connection wire portion, ・Ferromagnetic material, ・Outer coil, ・Slit plate,・Curved portion, ・Conductor coil wire, ・Cover wire portion, ・Ferromagnetic material.

Claims (2)

【特許請求の範囲】[Claims] (1)軸線方向中間部に強磁性体が一体的に固着された
導体コイル線の、前記強磁性体固着部分以外の軸線方向
両端部近傍を予め湾曲形状に形成し、 電機子コアの軸線方向両端部に互いに同軸的に配設され
る一対の絶縁板に、前記導体コイル線の端部を周方向に
沿って複数隣接して筒状に配列しかつ前記湾曲形状部分
が筒径を拡大する状態で組付けた後に、 前記一対の絶縁板を互いに軸線周りに反対方向へ回転さ
せて前記導体コイル線の湾曲形状部分を捩じり、これに
よって、前記複数の導体コイル線が捩じり方向へ傾斜さ
れて配設位置が進められた円筒形の渡り線部を有する外
側コイルを製作し、次いで、前記渡り線部における導体
コイル線の傾斜方向が前記外側コイルと異なると共に前
記外側コイルの内周に配置される内側コイルを、前記外
側コイルの内方に組み込んだ後に、前記外側コイルの導
体コイル線と内側コイルの導体コイル線とを電気的に接
続して製作する直流モータ用の電機子コイルの製作方法
(1) A conductor coil wire, in which a ferromagnetic material is integrally fixed to an intermediate portion in the axial direction, is formed into a curved shape in advance in the vicinity of both ends in the axial direction other than the portion to which the ferromagnetic material is fixed, and the axial direction of the armature core is A plurality of end portions of the conductor coil wire are arranged adjacently in a cylindrical shape along the circumferential direction on a pair of insulating plates disposed coaxially with each other at both end portions, and the curved portion expands the cylindrical diameter. After the pair of insulating plates are assembled in this state, the pair of insulating plates are rotated in opposite directions around their axes to twist the curved portion of the conductor coil wire, whereby the plurality of conductor coil wires are twisted in the torsional direction. An outer coil having a cylindrical crossover portion whose arrangement position is advanced by being inclined toward the outer coil is fabricated, and then the inclination direction of the conductor coil wire in the crossover portion is different from that of the outer coil, and the inside of the outer coil is An armature for a DC motor manufactured by incorporating an inner coil disposed around the outer coil inside the outer coil and then electrically connecting a conductor coil wire of the outer coil and a conductor coil wire of the inner coil. How to make a coil.
(2)前記内側コイルは、前記外側コイルと同様の工程
によって製作されて円筒形の渡り線部を形成することを
特徴とする請求項(1)記載の直流モータ用の電機子コ
イルの製作方法。
(2) The method for manufacturing an armature coil for a DC motor according to claim (1), wherein the inner coil is manufactured by the same process as the outer coil to form a cylindrical crossover portion. .
JP1330590A 1990-01-23 1990-01-23 Manufacture of armature coil of dc motor Pending JPH03218243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330590A JPH03218243A (en) 1990-01-23 1990-01-23 Manufacture of armature coil of dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330590A JPH03218243A (en) 1990-01-23 1990-01-23 Manufacture of armature coil of dc motor

Publications (1)

Publication Number Publication Date
JPH03218243A true JPH03218243A (en) 1991-09-25

Family

ID=11829472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330590A Pending JPH03218243A (en) 1990-01-23 1990-01-23 Manufacture of armature coil of dc motor

Country Status (1)

Country Link
JP (1) JPH03218243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283849A (en) * 2007-04-11 2008-11-20 Asmo Co Ltd Direct current motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283849A (en) * 2007-04-11 2008-11-20 Asmo Co Ltd Direct current motor

Similar Documents

Publication Publication Date Title
US4463276A (en) Coil unit of coreless armature and method of manufacturing the same
JP5483056B2 (en) Manufacturing method of stator of rotating electric machine
US4370581A (en) Multilayered coil structure
JP2000023397A (en) Stator core of motor and manufacturing method of motor using the same
JP4811286B2 (en) Rotating electric machine and field coil manufacturing method
JPH03218243A (en) Manufacture of armature coil of dc motor
JPH04197054A (en) Armature winding method for miniature motor
JP2007181348A (en) Method for manufacturing stator
KR100219132B1 (en) Stator of motor
JP2875030B2 (en) Winding method of Y-connection armature for small motor
JP2002354718A (en) Stator of motor
JPH0419962Y2 (en)
JP4910742B2 (en) Rotating electric machine and field coil manufacturing method
JPH08154350A (en) Slotless motor and yoke for slotless motor
JP2000184632A (en) Electric rotating machine and its manufacture
JPS61135356A (en) Miniature motor
JPH08140291A (en) Stator of motor
JPH0479225B2 (en)
JP3598712B2 (en) Rotor of rotating electric machine and method of manufacturing the rotor
JPH10309065A (en) Manufacture of rotor of rotating electric machine
JPH09247882A (en) Stator of rotary electric machine and its manufacture
JP2004080902A (en) Dynamo-electric machine
WO2020183693A1 (en) Stator, rotating electric machine, and method for manufacturing stator
JPS6332029B2 (en)
JPS6353780B2 (en)