WO2020183693A1 - Stator, rotating electric machine, and method for manufacturing stator - Google Patents

Stator, rotating electric machine, and method for manufacturing stator Download PDF

Info

Publication number
WO2020183693A1
WO2020183693A1 PCT/JP2019/010514 JP2019010514W WO2020183693A1 WO 2020183693 A1 WO2020183693 A1 WO 2020183693A1 JP 2019010514 W JP2019010514 W JP 2019010514W WO 2020183693 A1 WO2020183693 A1 WO 2020183693A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
stator
magnetic pole
pole pieces
stator core
Prior art date
Application number
PCT/JP2019/010514
Other languages
French (fr)
Japanese (ja)
Inventor
啓生 大藤
泰士 山本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021504746A priority Critical patent/JP7113959B2/en
Priority to PCT/JP2019/010514 priority patent/WO2020183693A1/en
Publication of WO2020183693A1 publication Critical patent/WO2020183693A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes

Definitions

  • the present invention relates to a stator, a rotary electric machine, and a method for manufacturing a stator.
  • an insulator is attached to the stator core, and an electric wire is wound around a plurality of teeth portions of the stator core to form a coil of a plurality of phases.
  • Some such stators connect the coils of each phase to the bus bar to conduct them (see, for example, Patent Document 1 and Patent Document 2).
  • the present invention has been made to solve the above problems, and obtains a method for manufacturing a stator, a rotary electric machine, and a stator, which can reduce man-hours for processing a bus bar.
  • the stator according to the present invention includes a plurality of magnetic pole pieces, a joint iron piece provided between adjacent magnetic pole pieces, a coil wound around the magnetic pole pieces, and an insulator provided between the magnetic pole pieces and the coil. It is provided with a bus bar that passes through when passing a coil between one magnetic pole piece of a plurality of magnetic pole pieces and another magnetic pole piece, and the magnetic pole piece and the joint iron piece are foldably connected at a thin wall portion, and the bus bar is formed. It is arranged so that it can be folded together with the thin part.
  • the bus bar is bent together with the stator core to form an annular stator. This eliminates the need for the step of forming the bus bar independently in an annular shape, and can reduce the processing cost of the rotary electric machine.
  • FIG. 7 is a plan view showing a state in which the stator core of FIG.
  • FIG. 7A is bent in the opposite direction.
  • FIG. 7 is a plan view showing a state in which the stator core of FIG. 7A is bent in the forward direction. It is a top view which shows the region where the electric wire is wound around the stator core. It is a top view which shows the modification of the stator of Embodiment 1.
  • FIG. FIG. 5 is a plan view showing a state in which the stator of the modified example of FIG. 9 is bent in the opposite direction. It is a figure which shows the manufacturing flow of the stator of Embodiment 1.
  • FIG. 5 is a plan view showing the stator according to the second embodiment of the present invention in a linearly developed state before the electric wire is wound. It is a top view which shows a part of the stator of FIG.
  • FIG. 5 is a partial plan view showing the stator according to the third embodiment of the present invention in a linearly developed state before the electric wire is wound. It is a top view of the stator of FIG. It is a perspective view of the stator of FIG. 18A.
  • FIG. 5 is a plan view showing the stator according to the fourth embodiment of the present invention in a linearly developed state before the electric wire is wound.
  • FIG. 21 is a cross-sectional view taken along the line XXII-XXII of the stator constituting the rotary electric machine of FIG. It is a partially enlarged view of the stator of FIG. It is sectional drawing which shows the 1st modification of the stator of Embodiment 5. It is sectional drawing which shows the 2nd modification of the stator of Embodiment 5.
  • FIG. 1 is a plan view of the stator 200 according to the first embodiment of the present invention as viewed from the axial direction.
  • FIG. 2 is a plan view showing the stator 200 of FIG. 1 in a linearly developed state before the electric wire is wound.
  • FIG. 3 is a perspective view of the stator of FIG.
  • description will be made with reference to figures.
  • the stator 200 includes a stator core 1 composed of a plurality of magnetic pole pieces 2 and a joint iron piece 3 provided between the adjacent magnetic pole pieces 2, a coil 120 wound around each magnetic pole piece 2, and the coil 120. It has an insulator 4 which is an insulator that insulates a magnetic pole piece 2 and a joint iron piece 3 and a coil 120, and a bus bar 5 provided with a terminal for passing a coil of the same phase, and is formed in an annular shape.
  • Each magnetic pole piece 2 and each joint iron piece 3 are formed by laminating a thin plate-shaped electromagnetic steel plate punched out.
  • each magnetic pole piece 2 and each joint iron piece 3 may be formed in the shape of one block.
  • the bus bar 5 is insert-molded into the insulator 4 and integrally forms the bus bar assembly 51.
  • the bus bar assembly 51 is assembled to the stator core 1, and the coil 120 is wound to form the stator 200.
  • FIG. 4 is a diagram showing the bus bar 5 before bending.
  • the bus bar 5 is provided with a plurality of terminals 5A to which the coil 120 is connected.
  • the plurality of terminals 5A are exposed from the insulator 4 and insert-molded.
  • FIG. 5A is a diagram showing the stator core 1 before bending.
  • the stator core 1 is formed by laminating a plurality of punched thin plate-shaped electromagnetic steel sheets in the axial direction of a rotary electric machine.
  • the stator core 1 is formed in a shape in which six magnetic pole pieces 2 and six joint iron pieces 3 are alternately and continuously arranged.
  • a coupling convex portion 10 is formed on the magnetic pole piece 2 that forms one end of the stator core 1.
  • a coupling recess 11 is formed in the joint iron piece 3 forming the other end portion of the stator core 1.
  • the number of magnetic pole pieces 2 and the number of joint iron pieces 3 are the same, but the number of magnetic pole pieces 2 and the number of joint iron pieces 3 are not the same, such as when a plurality of joint iron pieces 3 are provided between the magnetic pole pieces 2. May be good.
  • FIG. 5B is an enlarged view of part A of FIG. 5A.
  • the plurality of magnetic pole pieces 2 forming the stator core 1 are formed on the radial outer side of the stator 200, respectively, and rotate from the first back yoke portion 7A and the first back yoke portion 7A arranged on the outer circumference of the ring. It has a teeth portion 8 extending radially inward toward the center.
  • Each of the plurality of joint iron pieces 3 has a second back yoke portion 7B arranged on the outer periphery of the annular stator 200.
  • a bent portion 6 is formed at the boundary between each magnetic pole piece 2 and each joint iron piece 3.
  • first back yoke portion 7A of the magnetic pole piece 2 and the second back yoke portion 7B of the joint iron piece 3 are distinguished, but the first back yoke portion 7A and the second back yoke portion are distinguished. It is continuous with 7B.
  • each bent portion 6 is formed by a notch 6A and a thin portion 9 that open inward in the radial direction of the stator 200, respectively.
  • the opening 6B of each notch 6A is formed in a tapered shape that widens toward the teeth portion 8 side in a state where the stator core 1 is developed in a straight line before bending.
  • each notch 6A has a circular opening 6D continuous with the tapered opening 6B, and has a keyhole shape as a whole.
  • a bending center point 6C for bending the stator core 1 toward the teeth portion 8 is formed on the thin portion 9 side of the circular opening 6D of each notch 6A. Then, the stator core 1 is bent inward in the radial direction about each bending center point 6C to form an annular shape.
  • each tooth portion 8 is radially inward to form an annular stator 200.
  • bending so that each tooth portion 8 is radially outward is referred to as “bending in the opposite direction”
  • bending so that each tooth portion 8 is radially inward is referred to as “bending in the forward direction”. ..
  • Making each tooth portion 8 into a straight line is called “developing in a straight line”.
  • FIG. 7A to 7C are views showing a bent state of the stator core 1 according to the first embodiment.
  • FIG. 7A shows a state in which the stator core 1 is linearly deployed.
  • FIG. 7B shows a state in which the stator core 1 is bent in the opposite direction.
  • FIG. 7C shows a state in which the stator core 1 is bent in the positive direction.
  • FIG. 8 is a plan view showing a region around which an electric wire is wound around the stator core 1.
  • the coil 120 is formed by winding the electric wire in the region 12 shown by the diagonal line in FIG.
  • a frame of a rotary electric machine (not shown) is arranged on the radial outer side of the core back 13 of the stator core 1 which constitutes the outer peripheral surface of the annular stator 200 on the radial outer side. Therefore, when the stator core 1 forms an annular shape, the bus bar 5 needs to be arranged at a position where each terminal 5A does not protrude radially outward from the core back 13. Therefore, as shown by the alternate long and short dash line in FIG. 9, the conventional bus bar 5C is arranged at a position radially inside the bending center C of the stator core 1 and radially outside the region 12 of the teeth portion 8. It had been.
  • the shaded area in the drawing shows the insulator 4.
  • the bus bar 5C does not overlap with each bending center point 6C of the stator core 1. Therefore, in the step of bending the stator core 1, the bus bar 5C cannot be easily bent. Then, when the bus bar 5C is bent, the bus bar 5C is greatly expanded and contracted. In addition, when the bus bar 5C is bent, the position of the bus bar 5C may shift. If the position of the bus bar 5C is deviated, the electric wire and each terminal 5A of the bus bar 5C may interfere with each other when the electric wire is wound around each tooth portion 8.
  • a plurality of bent portions 14 are formed on the bus bar 5.
  • the bus bar 5 is arranged along the longitudinal direction of the stator core 1. Then, each bent portion 14 of the bus bar 5 is arranged in a state of being insert-molded in the insulator 4 so as to overlap the bending center point 6C of each bent portion 6 of the stator core 1. As a result, as shown in FIG. 10, when each bent portion 6 of the stator core 1 is bent, each bent portion 14 of the bus bar 5 is bent together.
  • the pitches P1 to P3 of the two bending center points 6C formed at both ends of one magnetic pole piece 2 do not change even when the stator core 1 is bent. Therefore, if the bent portions 14 of the bus bar 5 are arranged so as to overlap each bending center point 6C of the stator core 1, the bus bar 5 can be bent without causing a large expansion and contraction when the stator core 1 is bent.
  • the linear bus bar 5 and the insulator 4 are integrated and assembled to the linear stator core 1.
  • the stator core 1 is assembled so that the bending center points 6C of the stator core 1 and the bending portions 14 of the bus bar 5 overlap each other.
  • the stator core 1 and the bus bar 5 are integrally bent and formed into an annular shape. The amount of expansion and contraction of the bus bar 5 when the bus bar 5 is bent can be reduced, and an increase in the internal resistance of the bus bar 5 can be suppressed. As a result, the efficiency of the rotary electric machine can be improved.
  • each terminal 5A of the bus bar 5 can be arranged so as to be moved inward in the radial direction of the stator core 1. Therefore, the outer diameter of the stator 200 can be reduced, and the rotary electric machine can be miniaturized.
  • FIG. 11 is a diagram showing a manufacturing flow of the stator 200.
  • step 1 the electromagnetic steel sheet is punched in step 1 (ST1), and a plurality of electromagnetic steel sheets are laminated to form a linear stator core 1.
  • step 2 the bus bar 5 and the insulator 4 are previously integrated by insert molding and attached so that each bent portion 14 of the bus bar 5 overlaps the position of each bent portion 6 of the stator core 1.
  • step 3 each bent portion 6 of the stator core 1 is bent in the opposite direction together with the bus bar 5 and the insulator 4 integrated by insert molding.
  • step 4 an electric wire is wound around each tooth portion 8 via an insulator 4 to form a coil 120.
  • step 5 each bent portion 6 of the stator core 1 is bent in the positive direction to form an annular shape.
  • the stator 200 is completed.
  • the work of winding the electric wire around each tooth portion 8 may be performed in a state where the stator core 1 is developed in a straight line. In this case, since the stator core 1 is not bent in the opposite direction in order to wind the electric wire, the metal fatigue of the bus bar 5 can be reduced, and the work can be reduced by one.
  • FIG. 12 is a plan view showing the stator 200 according to the second embodiment of the present invention in a linearly developed state before the electric wire is wound.
  • FIG. 13 is a diagram showing three portions of the joint iron piece of FIG. 14A and 14B are a perspective view and a plan view of the bus bar of FIG.
  • the bus bar 5 is different from the stator 200 of the first embodiment. Since other configurations are the same as those in the first embodiment, detailed description thereof will be omitted.
  • the bus bar 5 used in the stator 200 of the second embodiment has a convex portion 15 at a position corresponding to each joint iron piece 3 of the stator core 1.
  • each convex portion 15 is formed by three bent portions 16A to 16C, respectively. Then, as shown in FIG. 15, of the three bent portions 16A to 16C, the bent portion 16B and the bent portion 16C are located at the bent portion 6 of the stator core 1.
  • Each convex portion 15 deforms when the bus bar 5 is bent, and absorbs a force that tries to expand and contract the bus bar 5. For example, as shown by the broken line in FIG. 15, when the stator core 1 is bent outward in the radial direction, the bent portions 16A to 16C are further bent to absorb the force for contracting the bus bar 5. On the other hand, when the stator core 1 is bent inward in the radial direction, the bent portions 16A to 16C expand to absorb the force for extending the bus bar 5.
  • the stator 200 of the second embodiment has a convex portion 15 at a position corresponding to each joint iron piece 3 of the stator core 1 of the bus bar 5. Then, when the stator core 1 is bent, the three bent portions 16 of each convex portion 15 are bent or expanded to absorb the force for expanding and contracting the bus bar 5. As a result, the amount of expansion and contraction of the bus bar 5 can be reduced, and an increase in the internal resistance of the bus bar 5 can be suppressed. Further, when the stator core 1 is bent, the position of the bus bar 5 can be prevented from being displaced, and the quality of the stator 200 can be stabilized.
  • the convex portion has a shape that is convex outward in the radial direction, but the shape of the convex portion is not limited to this.
  • the shape of the convex portion may be a shape that is convex inward in the radial direction, or a plurality of convex portions may be continuously formed.
  • the shape of the convex portion is triangular, but as shown in FIG. 16, the convex portion may be arcuate.
  • FIG. 17 is a partial plan view showing the stator 200 according to the third embodiment of the present invention in a linearly unfolded state before the electric wire is wound.
  • FIG. 18A is a plan view of the stator 200 of FIG.
  • FIG. 18B is a perspective view of the stator 200 of FIG. 18A.
  • the range covering the bus bar 5 of the insulator is different from that of the first embodiment. Since other configurations are the same as those in the first embodiment, detailed description thereof will be omitted.
  • the magnetic pole piece 2 side from each bent portion 14 of the bus bar 5 is covered with an insulating material to form the insulator 4.
  • FIG. 19 is a plan view showing the stator according to the fourth embodiment of the present invention in a linearly developed state before the electric wire is wound.
  • 20A to 20C are plan views showing a bent state of the stator 200 of FIG.
  • the range covering the bus bar 5 of the insulator 4 is different from that of the first embodiment.
  • the bus bar 5 of the present embodiment is different from the first embodiment in that it does not have a bent portion 14. Since other configurations are the same as those in the first embodiment, detailed description thereof will be omitted.
  • the bus bar 5 is arranged on the teeth portion 8 side of the position of the bending center point 6C of the stator core 1. Further, the boundary portion 20 which is the boundary between the insulator 4 covering the bus bar 5 and the portion where the bus bar 5 is exposed from the insulator 4 is separated from the bent portion 6 toward the magnetic pole piece 2. There is. As a result, as shown in FIG. 20B, when the stator core 1 is bent radially outward, the bus bar 5 moves radially outward of the stator core 1. On the other hand, as shown in FIG. 20C, when the stator core 1 is bent inward in the radial direction, the bus bar 5 moves inward in the radial direction of the stator core 1.
  • the process of forming the bus bar 5 independently in an annular shape can be reduced, and the processing cost of the rotary electric machine can be reduced. Further, the amount of expansion and contraction of the bus bar 5 can be reduced, and an increase in the internal resistance of the bus bar 5 can be suppressed. Therefore, the efficiency of the rotary electric machine can be improved. Further, the bus bar 5 can be arranged on the innermost side in the radial direction of the stator core 1. As a result, the diameter of the stator core 1 can be reduced, and the size of the rotary electric machine can be reduced.
  • FIG. 21 is a cross-sectional view taken along the axial direction of the rotary electric machine using the stator 200 according to the fifth embodiment of the present invention.
  • the rotary machine is a pump.
  • the portion hatched by the diagonal line is the molded resin portion 601 molded with resin.
  • the rotor portion 608 located inside the stator 200 is not molded.
  • the mold resin portion 601 covers all of the coil 120, and also covers all of the plurality of magnetic pole pieces 2 and the plurality of joint iron pieces 3. Further, the bus bar 602 connecting the coil 120 wound around the magnetic pole piece 2 is also covered with resin by molding.
  • FIG. 22 is a cross-sectional view taken along the line XXII-XXII of the stator 200 constituting the rotary electric machine of FIG. 21.
  • the portion indicated by the diagonal line is the mold resin portion 601.
  • the stator 200 covered by the mold resin portion 601 is shown through the mold resin portion 601.
  • FIG. 23 is a partially enlarged view of the stator 200 of FIG. 22.
  • the bus bars 602 and 604 are arranged in the vicinity of the cylindrical frame 605 that covers the outer periphery of the stator 200. Therefore, for example, when the pump vibrates and the bus bars 602 and 604 move, the bus bars 602 and 604 touch the frame 605 and become conductive, which may cause a problem in the operation of the pump.
  • the bus bars 602 and 604 are covered by the mold resin portion 601. Therefore, as shown in the region B and the region C shown by the alternate long and short dash line in FIG. 23, the resin is filled between the bus bars 602 and 604 and the frame 605. As a result, even when the pump vibrates, it is possible to prevent the bus bars 602 and 604 from coming into contact with the frame 605 and conducting conduction.
  • the heat of the bus bars 602 and 604 generated when the coil 120 is energized is dissipated through the mold resin portion 601. Therefore, it is not necessary to increase the heat capacity of the magnetic pole piece 2, and the stator 200 can be miniaturized.
  • the mold resin portion 601 also covers the entire coil 120. Therefore, the insulating property of the coil 120 can be improved.
  • PPS resin polyphenylene sulfide resin
  • POM resin polyacetal resin
  • EP resin epoxy resin
  • FIG. 24 is a cross-sectional view showing a first modification of the stator 200 of the fifth embodiment.
  • the stator 200 covered by the mold resin portion 606 is shown through the mold resin portion 606.
  • the mold resin portion 606 covers the core back 13 side of the plurality of magnetic pole pieces 2 and the plurality of joint iron pieces 3. Therefore, the heat of the bus bars 602 and 604 generated when the coil 120 is energized can be efficiently dissipated through the mold resin portion 606.
  • the amount of resin used for molding the mold resin portion 606 can be reduced. Therefore, the price of the pump as a product can be suppressed. Further, in this example, the gap 607 between the adjacent magnetic pole pieces 2 is not covered with the resin. Therefore, the flow rate of the fluid passing through the pump can be increased.
  • FIG. 25 is a cross-sectional view showing a second modification of the stator of the fifth embodiment.
  • the stator 200 covered by the mold resin portion 606 is shown through the mold resin portion 606.
  • the coil 120 is covered with resin. Therefore, the heat generated when the coil 120 is energized can be efficiently dissipated through the mold resin portion 606.
  • stator core 1 stator core, 2 magnetic pole pieces, 3 joint iron pieces, 4 insulation, 5 busbars, 6 bent parts, 6A notches, 6B openings, 6C bending center points, 6D openings, 7A first back yoke parts, 7B second Back yoke part, 8 teeth part, 9 thin wall part, 10 joint convex part, 11 joint concave part, 12 area, 13 core back, 14 bent part, 15 convex part, 16A to 16C bent part, 20 boundary part, 51 busbar assembly , 120 coil, 200 stator, 601,606 mold resin part, 602,604 bus bar, 605 frame, 607 gap, 608 rotor part.

Abstract

This stator is provided with: a plurality of magnetic pole pieces; a yoke piece provided between the magnetic pole pieces adjacent to each other; coils wound around the magnetic pole pieces; an insulator provided between the magnetic pole pieces and the coils; and a bus bar through which the coils are passed from one of the plurality of magnetic pole pieces to another one thereof. The magnetic pole pieces and the yoke piece are connected to each other at a thin wall portion in a bendable manner, and the bus bar is disposed together with the thin wall portion in a bendable manner.

Description

ステータ、回転電機及びステータの製造方法Manufacturing method of stator, rotary electric machine and stator
 本発明は、ステータ、回転電機及びステータの製造方法に関する。 The present invention relates to a stator, a rotary electric machine, and a method for manufacturing a stator.
 従来、例えば車両用に用いられる回転電機のステータでは、ステータコアに絶縁物を取り付け、ステータコアの複数のティース部に電線を巻いて、複数の相のコイルを形成している。このようなステータには、各相のコイルをバスバーに接続して導通させるものがある(例えば、特許文献1及び特許文献2参照)。 Conventionally, in a rotary electric machine stator used for a vehicle, for example, an insulator is attached to the stator core, and an electric wire is wound around a plurality of teeth portions of the stator core to form a coil of a plurality of phases. Some such stators connect the coils of each phase to the bus bar to conduct them (see, for example, Patent Document 1 and Patent Document 2).
特開2008-312277号公報Japanese Unexamined Patent Publication No. 2008-31277 特開2007-202263号公報Japanese Unexamined Patent Publication No. 2007-20263
 しかしながら、特許文献1に記載された従来のステータでは、バスバーを直線状に製作し、単独で環状に加工した後に、ステータに組付けている。このため、バスバーの加工工数が多くなっている。 However, in the conventional stator described in Patent Document 1, the bus bar is manufactured in a straight line, processed independently into an annular shape, and then assembled to the stator. For this reason, the man-hours for processing the bus bar are increasing.
 特許文献2に記載された従来のステータでは、ステータの外周側に端子が位置しないように、バスバーに、単独で複雑な折り曲げ加工を行っている。そして、バスバーを折り曲げた後に、ステータに組付けている。よって、バスバーの加工工数が多くなっている。 In the conventional stator described in Patent Document 2, the bus bar is independently and complicatedly bent so that the terminals are not located on the outer peripheral side of the stator. Then, after the bus bar is bent, it is assembled to the stator. Therefore, the man-hours for processing the bus bar are increasing.
 本発明は、上記のような課題を解決するためになされたものであり、バスバーの加工工数を削減することのできる、ステータ、回転電機及びステータの製造方法を得る。 The present invention has been made to solve the above problems, and obtains a method for manufacturing a stator, a rotary electric machine, and a stator, which can reduce man-hours for processing a bus bar.
 本発明に係るステータは、複数の磁極片と、隣接する磁極片の間に設けられた継鉄片と、磁極片に巻かれたコイルと、磁極片とコイルとの間に設けられたインシュレータと、複数の磁極片の一の磁極片から他の磁極片との間で、コイルを渡す際に経由するバスバーと、を備え、磁極片と継鉄片とが薄肉部で折り曲げ可能に連結され、バスバーが薄肉部とともに折り曲げ可能に配置されている。 The stator according to the present invention includes a plurality of magnetic pole pieces, a joint iron piece provided between adjacent magnetic pole pieces, a coil wound around the magnetic pole pieces, and an insulator provided between the magnetic pole pieces and the coil. It is provided with a bus bar that passes through when passing a coil between one magnetic pole piece of a plurality of magnetic pole pieces and another magnetic pole piece, and the magnetic pole piece and the joint iron piece are foldably connected at a thin wall portion, and the bus bar is formed. It is arranged so that it can be folded together with the thin part.
 この発明によれば、バスバーをステータコアと一緒に折り曲げて環状のステータを形成している。これにより、バスバーを単独で環状に形成する工程が不要となり、回転電機の加工費を削減することができる。 According to the present invention, the bus bar is bent together with the stator core to form an annular stator. This eliminates the need for the step of forming the bus bar independently in an annular shape, and can reduce the processing cost of the rotary electric machine.
本発明の実施の形態1におけるステータを示す平面図である。It is a top view which shows the stator in Embodiment 1 of this invention. 図1のステータを、電線が巻線される前の直線状に展開された状態で示した平面図である。It is a top view which showed the stator of FIG. 1 in the state which was developed linearly before the electric wire was wound. 図2のステータの斜視図である。It is a perspective view of the stator of FIG. 図3のステータを構成するバスバーを示す斜視図である。It is a perspective view which shows the bus bar which constitutes the stator of FIG. 図2のステータを構成するステータコアを示す平面図である。It is a top view which shows the stator core which constitutes the stator of FIG. 図5AのA部拡大図である。It is an enlarged view of the part A of FIG. 5A. 図2のステータを逆方向に折り曲げた状態を示す平面図である。It is a top view which shows the state which the stator of FIG. 2 is bent in the opposite direction. 図5Aのステータコアの一部を示す平面図である。It is a top view which shows a part of the stator core of FIG. 5A. 図7Aのステータコアを逆方向に折り曲げた状態を示す平面図である。FIG. 7 is a plan view showing a state in which the stator core of FIG. 7A is bent in the opposite direction. 図7Aのステータコアを正方向に折り曲げた状態を示す平面図である。FIG. 7 is a plan view showing a state in which the stator core of FIG. 7A is bent in the forward direction. ステータコアに電線が巻かれる領域を示す平面図である。It is a top view which shows the region where the electric wire is wound around the stator core. 実施の形態1のステータの変形例を示す平面図である。It is a top view which shows the modification of the stator of Embodiment 1. FIG. 図9の変形例のステータを逆方向に折り曲げた状態を示す平面図である。FIG. 5 is a plan view showing a state in which the stator of the modified example of FIG. 9 is bent in the opposite direction. 実施の形態1のステータの製造フローを示す図である。It is a figure which shows the manufacturing flow of the stator of Embodiment 1. 本発明の実施の形態2におけるステータを、電線が巻線される前の直線状に展開された状態で示した平面図である。FIG. 5 is a plan view showing the stator according to the second embodiment of the present invention in a linearly developed state before the electric wire is wound. 図12のステータの一部を示す平面図である。It is a top view which shows a part of the stator of FIG. 図13のステータを構成するバスバーの斜視図である。It is a perspective view of the bus bar which constitutes the stator of FIG. 図14Aのバスバーの平面図である。It is a top view of the bus bar of FIG. 14A. 図12のステータの折り曲げ前後の状態を示す平面図である。It is a top view which shows the state before and after bending of the stator of FIG. 実施の形態2のステータの変形例を示す平面図である。It is a top view which shows the modification of the stator of Embodiment 2. 本発明の実施の形態3におけるステータを、電線が巻線される前の直線状に展開された状態で示した部分平面図である。FIG. 5 is a partial plan view showing the stator according to the third embodiment of the present invention in a linearly developed state before the electric wire is wound. 図17のステータの平面図である。It is a top view of the stator of FIG. 図18Aのステータの斜視図である。It is a perspective view of the stator of FIG. 18A. 本発明の実施の形態4におけるステータを、電線が巻線される前の直線状に展開された状態で示した平面図である。FIG. 5 is a plan view showing the stator according to the fourth embodiment of the present invention in a linearly developed state before the electric wire is wound. 図19のステータの一部を示す平面図である。It is a top view which shows a part of the stator of FIG. 図20Aのステータを逆方向に折り曲げた状態を示す平面図である。It is a top view which shows the state which the stator of FIG. 20A is bent in the opposite direction. 図20Aのステータを正方向に折り曲げた状態を示す平面図である。It is a top view which shows the state which the stator of FIG. 20A is bent in the positive direction. 本発明の実施の形態5におけるステータを用いた回転電機の、軸方向に沿う断面図である。It is sectional drawing along the axial direction of the rotary electric machine which used the stator in Embodiment 5 of this invention. 図21の回転電機を構成するステータのXXII-XXII線に沿う断面図である。FIG. 21 is a cross-sectional view taken along the line XXII-XXII of the stator constituting the rotary electric machine of FIG. 図22のステータの部分拡大図である。It is a partially enlarged view of the stator of FIG. 実施の形態5のステータの第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the stator of Embodiment 5. 実施の形態5のステータの第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the stator of Embodiment 5.
 実施の形態1.
 図1は、本発明の実施の形態1におけるステータ200を、軸方向からみた平面図である。図2は、図1のステータ200を、電線が巻線される前の直線状に展開された状態で示した平面図である。また、図3は、図2のステータの斜視図である。以下、図を用いて説明する。
Embodiment 1.
FIG. 1 is a plan view of the stator 200 according to the first embodiment of the present invention as viewed from the axial direction. FIG. 2 is a plan view showing the stator 200 of FIG. 1 in a linearly developed state before the electric wire is wound. Further, FIG. 3 is a perspective view of the stator of FIG. Hereinafter, description will be made with reference to figures.
 図1~3に示すように、ステータ200は、複数の磁極片2及び隣接する磁極片2間に設けられた継鉄片3からなるステータコア1と、各磁極片2に巻かれたコイル120と、磁極片2及び継鉄片3とコイル120とを絶縁する絶縁物であるインシュレータ4と、同相のコイルを渡す際の端子が設けられたバスバー5とを有しており、環状に形成されている。各磁極片2及び各継鉄片3は、薄板状の電磁鋼板を打ち抜いたものを積層して構成されている。なお、各磁極片2及び各継鉄片3は、一つのブロック状に形成されたものであってもよい。 As shown in FIGS. 1 to 3, the stator 200 includes a stator core 1 composed of a plurality of magnetic pole pieces 2 and a joint iron piece 3 provided between the adjacent magnetic pole pieces 2, a coil 120 wound around each magnetic pole piece 2, and the coil 120. It has an insulator 4 which is an insulator that insulates a magnetic pole piece 2 and a joint iron piece 3 and a coil 120, and a bus bar 5 provided with a terminal for passing a coil of the same phase, and is formed in an annular shape. Each magnetic pole piece 2 and each joint iron piece 3 are formed by laminating a thin plate-shaped electromagnetic steel plate punched out. In addition, each magnetic pole piece 2 and each joint iron piece 3 may be formed in the shape of one block.
 バスバー5は、インシュレータ4にインサート成形され、一体となってバスバー組立体51を形成する。ステータコア1にバスバー組立体51が組み付けられ、コイル120が巻かれることでステータ200が形成される。 The bus bar 5 is insert-molded into the insulator 4 and integrally forms the bus bar assembly 51. The bus bar assembly 51 is assembled to the stator core 1, and the coil 120 is wound to form the stator 200.
 図4は、折り曲げ前のバスバー5を示す図である。バスバー5には、コイル120が接続される複数の端子5Aが設けられている。複数の端子5Aは、インシュレータ4から露出してインサート成形される。 FIG. 4 is a diagram showing the bus bar 5 before bending. The bus bar 5 is provided with a plurality of terminals 5A to which the coil 120 is connected. The plurality of terminals 5A are exposed from the insulator 4 and insert-molded.
 図5Aは、折り曲げ前のステータコア1を示す図である。ステータコア1は、打ち抜き加工された薄板状の電磁鋼板を、回転電機の軸方向に複数枚積層することよって形成されている。図5Aに示すように、ステータコア1は、6個の磁極片2と6個の継鉄片3とを交互に連続して配置した形状に形成されている。また、ステータコア1の一方の端部を形成する磁極片2には、結合凸部10が形成されている。また、ステータコア1の他方の端部を形成する継鉄片3には、結合凹部11が形成されている。なお、ここでは、磁極片2と継鉄片3の数が同数となっているが、磁極片2間に複数個の継鉄片3を設ける場合など、磁極片2と継鉄片3は同数でなくてもよい。 FIG. 5A is a diagram showing the stator core 1 before bending. The stator core 1 is formed by laminating a plurality of punched thin plate-shaped electromagnetic steel sheets in the axial direction of a rotary electric machine. As shown in FIG. 5A, the stator core 1 is formed in a shape in which six magnetic pole pieces 2 and six joint iron pieces 3 are alternately and continuously arranged. Further, a coupling convex portion 10 is formed on the magnetic pole piece 2 that forms one end of the stator core 1. Further, a coupling recess 11 is formed in the joint iron piece 3 forming the other end portion of the stator core 1. Here, the number of magnetic pole pieces 2 and the number of joint iron pieces 3 are the same, but the number of magnetic pole pieces 2 and the number of joint iron pieces 3 are not the same, such as when a plurality of joint iron pieces 3 are provided between the magnetic pole pieces 2. May be good.
 図5Bは、図5AのA部拡大図である。ステータコア1を形成する複数の磁極片2は、それぞれ、ステータ200の径方向外側に形成され、環状の外周上に配置された第1のバックヨーク部7Aと、第1のバックヨーク部7Aから回転中心に向かって径方向内側に延びるティース部8とを有している。複数の継鉄片3は、それぞれ、環状のステータ200の外周上に配置された第2のバックヨーク部7Bを有している。そして、各磁極片2と各継鉄片3との境界には、それぞれ折り曲げ部6が形成されている。 FIG. 5B is an enlarged view of part A of FIG. 5A. The plurality of magnetic pole pieces 2 forming the stator core 1 are formed on the radial outer side of the stator 200, respectively, and rotate from the first back yoke portion 7A and the first back yoke portion 7A arranged on the outer circumference of the ring. It has a teeth portion 8 extending radially inward toward the center. Each of the plurality of joint iron pieces 3 has a second back yoke portion 7B arranged on the outer periphery of the annular stator 200. A bent portion 6 is formed at the boundary between each magnetic pole piece 2 and each joint iron piece 3.
 なお、ここでは、磁極片2の第1のバックヨーク部7Aと、継鉄片3の第2のバックヨーク部7Bとを区別しているが、第1のバックヨーク部7Aと第2のバックヨーク部7Bとは連続している。 Here, the first back yoke portion 7A of the magnetic pole piece 2 and the second back yoke portion 7B of the joint iron piece 3 are distinguished, but the first back yoke portion 7A and the second back yoke portion are distinguished. It is continuous with 7B.
 図5Bに示すように、各折り曲げ部6は、それぞれ、ステータ200の径方向内側に開口する切欠き6Aと薄肉部9により形成されている。各切欠き6Aの開口部6Bは、ステータコア1が折り曲げ前の直線状に展開された状態で、ティース部8側に向かうにつれて広くなるテーパ状に形成されている。また、各切欠き6Aは、テーパ状の開口部6Bと連続する円形の開口6Dを有し、全体として鍵穴形状となっている。各切欠き6Aの円形の開口6Dの薄肉部9側には、ステータコア1をティース部8側に折り曲げるときの折り曲げ中心点6Cが形成される。そして、ステータコア1は、各折り曲げ中心点6Cを中心として径方向内側に折り曲げられ、環状に形成される。 As shown in FIG. 5B, each bent portion 6 is formed by a notch 6A and a thin portion 9 that open inward in the radial direction of the stator 200, respectively. The opening 6B of each notch 6A is formed in a tapered shape that widens toward the teeth portion 8 side in a state where the stator core 1 is developed in a straight line before bending. Further, each notch 6A has a circular opening 6D continuous with the tapered opening 6B, and has a keyhole shape as a whole. A bending center point 6C for bending the stator core 1 toward the teeth portion 8 is formed on the thin portion 9 side of the circular opening 6D of each notch 6A. Then, the stator core 1 is bent inward in the radial direction about each bending center point 6C to form an annular shape.
 従来、各ティース部8に電線を巻く方法には、以下の二通りの方法がある。一つは、バスバー組立体51が組み付けられたステータコア1を、図6に示すように、各ティース部8が径方向外側になるように曲げて、各ティース部8に電線を巻く方法である。もう一つは、バスバー組立体51が組み付けられたステータコア1を直線状に展開した状態で、各ティース部8に電線を巻く方法である。 Conventionally, there are the following two methods for winding an electric wire around each tooth portion 8. One is a method in which the stator core 1 to which the bus bar assembly 51 is assembled is bent so that each tooth portion 8 is radially outward, and an electric wire is wound around each tooth portion 8, as shown in FIG. The other is a method in which an electric wire is wound around each tooth portion 8 in a state where the stator core 1 to which the bus bar assembly 51 is assembled is unfolded in a straight line.
 その後、バスバー組立体51を介してコイル120が巻かれたステータコア1を、各ティース部8が径方向内側になるように曲げることにより、環状のステータ200を形成する。以下、各ティース部8が径方向外側になるように曲げることを、「逆方向に曲げる」といい、各ティース部8が径方向内側になるように曲げることを、「正方向に曲げる」という。各ティース部8を一直線状にすることを「直線状に展開する」という。 After that, the stator core 1 around which the coil 120 is wound via the bus bar assembly 51 is bent so that each tooth portion 8 is radially inward to form an annular stator 200. Hereinafter, bending so that each tooth portion 8 is radially outward is referred to as "bending in the opposite direction", and bending so that each tooth portion 8 is radially inward is referred to as "bending in the forward direction". .. Making each tooth portion 8 into a straight line is called "developing in a straight line".
 図7Aから図7Cは、本実施の形態1に係るステータコア1の折り曲げ状態を示す図である。図7Aは、ステータコア1が直線状に展開された状態を示している。図7Bは、ステータコア1を逆方向に曲げた状態を示している。そして、図7Cは、ステータコア1を正方向に曲げた状態を示している。 7A to 7C are views showing a bent state of the stator core 1 according to the first embodiment. FIG. 7A shows a state in which the stator core 1 is linearly deployed. FIG. 7B shows a state in which the stator core 1 is bent in the opposite direction. FIG. 7C shows a state in which the stator core 1 is bent in the positive direction.
 図7Aにおいて、1つの継鉄片3の両端に形成された、各折り曲げ部6の各折り曲げ中心点6CのピッチをP1とする。同様に、図7Bにおける各折り曲げ中心点6CのピッチをP2とし、図7Cにおける各折り曲げ中心点6CのピッチをP3とする。また、図7Aにおいて、1つの継鉄片3の一端側に形成された切欠き6Aの外側の端部6Eと、他端側に形成された切欠き6Aの外側の端部6FとのピッチをQ1とする。同様に、図7Bにおける各切欠き6Aの端部6Eと6FのピッチをQ2とし、図7Cにおける各切欠き6Aの端部6Eと6FのピッチをQ3とする。 In FIG. 7A, let P1 be the pitch of each bending center point 6C of each bending portion 6 formed at both ends of one joint iron piece 3. Similarly, the pitch of each bending center point 6C in FIG. 7B is P2, and the pitch of each bending center point 6C in FIG. 7C is P3. Further, in FIG. 7A, the pitch between the outer end 6E of the notch 6A formed on one end side of one joint iron piece 3 and the outer end 6F of the notch 6A formed on the other end side is Q1. And. Similarly, let the pitch of the ends 6E and 6F of each notch 6A in FIG. 7B be Q2, and let the pitch of the ends 6E and 6F of each notch 6A in FIG. 7C be Q3.
 図7Aから図7Cにおいて、各折り曲げ中心点6Cのピッチは変化しない。よって、P1、P2及びP3は同一である。一方、図7BのピッチQ2は、図7AのピッチQ1よりも長くなる。そして、図7CのピッチQ3は、図7AのピッチQ1よりも小さくなる。 In FIGS. 7A to 7C, the pitch of each bending center point 6C does not change. Therefore, P1, P2 and P3 are the same. On the other hand, the pitch Q2 of FIG. 7B is longer than the pitch Q1 of FIG. 7A. Then, the pitch Q3 of FIG. 7C is smaller than the pitch Q1 of FIG. 7A.
 図8は、ステータコア1に電線が巻かれる領域を示す平面図である。図8に斜線で示す領域12に電線が巻かれることで、コイル120が形成される。また、環状のステータ200の径方向外側の外周面を構成するステータコア1のコアバック13の径方向外側には、図示しない回転電機のフレームが配置される。よって、ステータコア1が環状を形成した場合に、バスバー5は、各端子5Aが、コアバック13より径方向外側に突出しない位置に配置される必要がある。そこで、従来のバスバー5Cは、図9に一点鎖線で示すように、ステータコア1の折り曲げ中心Cよりも径方向内側であって、かつ、ティース部8の領域12よりも径方向外側の位置に配置されていた。なお、図面において網掛けを施した部位は、インシュレータ4を示している。 FIG. 8 is a plan view showing a region around which an electric wire is wound around the stator core 1. The coil 120 is formed by winding the electric wire in the region 12 shown by the diagonal line in FIG. Further, a frame of a rotary electric machine (not shown) is arranged on the radial outer side of the core back 13 of the stator core 1 which constitutes the outer peripheral surface of the annular stator 200 on the radial outer side. Therefore, when the stator core 1 forms an annular shape, the bus bar 5 needs to be arranged at a position where each terminal 5A does not protrude radially outward from the core back 13. Therefore, as shown by the alternate long and short dash line in FIG. 9, the conventional bus bar 5C is arranged at a position radially inside the bending center C of the stator core 1 and radially outside the region 12 of the teeth portion 8. It had been. The shaded area in the drawing shows the insulator 4.
 従来のバスバー5Cの位置では、バスバー5Cがステータコア1の各折り曲げ中心点6Cと重ならない。このため、ステータコア1を折り曲げる工程において、バスバー5Cを容易に折り曲げることができない。そして、バスバー5Cを折り曲げるときに、バスバー5Cに大きな伸縮を生じさせてしまう。また、バスバー5Cを折り曲げるときに、バスバー5Cの位置がずれてしまうこともあった。バスバー5Cの位置がずれてしまうと、各ティース部8に電線を巻く際に、電線とバスバー5Cの各端子5Aとが干渉するおそれがある。 At the position of the conventional bus bar 5C, the bus bar 5C does not overlap with each bending center point 6C of the stator core 1. Therefore, in the step of bending the stator core 1, the bus bar 5C cannot be easily bent. Then, when the bus bar 5C is bent, the bus bar 5C is greatly expanded and contracted. In addition, when the bus bar 5C is bent, the position of the bus bar 5C may shift. If the position of the bus bar 5C is deviated, the electric wire and each terminal 5A of the bus bar 5C may interfere with each other when the electric wire is wound around each tooth portion 8.
 そこで、図9に示すように、本実施の形態では、バスバー5に複数の屈曲部14を形成している。バスバー5は、ステータコア1の長手方向に沿って配置される。そして、バスバー5の各屈曲部14が、それぞれステータコア1の各折り曲げ部6の折り曲げ中心点6Cと重なるようにインシュレータ4にインサート成形された状態で配置される。これにより、図10に示すように、ステータコア1の各折り曲げ部6を折り曲げたときに、バスバー5の各屈曲部14が一緒に折れ曲がる。 Therefore, as shown in FIG. 9, in the present embodiment, a plurality of bent portions 14 are formed on the bus bar 5. The bus bar 5 is arranged along the longitudinal direction of the stator core 1. Then, each bent portion 14 of the bus bar 5 is arranged in a state of being insert-molded in the insulator 4 so as to overlap the bending center point 6C of each bent portion 6 of the stator core 1. As a result, as shown in FIG. 10, when each bent portion 6 of the stator core 1 is bent, each bent portion 14 of the bus bar 5 is bent together.
 図7Aから図7Cの説明で記載したように、1つの磁極片2の両端部に形成された2つの折り曲げ中心点6CのピッチP1~P3は、ステータコア1を折り曲げても変わらない。よって、バスバー5の各屈曲部14が、ステータコア1の各折り曲げ中心点6Cに重なるように配置すれば、ステータコア1を折り曲げるときに、バスバー5に大きな伸縮を生じさせることなく、折り曲げることができる。 As described in the description of FIGS. 7A to 7C, the pitches P1 to P3 of the two bending center points 6C formed at both ends of one magnetic pole piece 2 do not change even when the stator core 1 is bent. Therefore, if the bent portions 14 of the bus bar 5 are arranged so as to overlap each bending center point 6C of the stator core 1, the bus bar 5 can be bent without causing a large expansion and contraction when the stator core 1 is bent.
 このように、実施の形態1のステータ200によれば、直線状のバスバー5とインシュレータ4とを一体化して直線状のステータコア1に組み付けている。この際、ステータコア1の各折り曲げ中心点6Cと、バスバー5の各屈曲部14とが重なるように、ステータコア1に組み付けられる。その後、ステータコア1とバスバー5を一体として折り曲げて、環状に成形される。バスバー5を折り曲げる際のバスバー5の伸縮量を小さくすることができ、バスバー5の内部抵抗の増加を抑制することができる。これにより、回転電機の効率を向上させることができる。さらに、バスバー5の各屈曲部14を、ステータコア1の各折り曲げ中心点6Cの位置に重ねることにより、バスバー5の各端子5Aを、ステータコア1の径方向内側に寄せて配置することができる、これにより、ステータ200の外径を小さくすることができ、回転電機を小型化することができる。 As described above, according to the stator 200 of the first embodiment, the linear bus bar 5 and the insulator 4 are integrated and assembled to the linear stator core 1. At this time, the stator core 1 is assembled so that the bending center points 6C of the stator core 1 and the bending portions 14 of the bus bar 5 overlap each other. After that, the stator core 1 and the bus bar 5 are integrally bent and formed into an annular shape. The amount of expansion and contraction of the bus bar 5 when the bus bar 5 is bent can be reduced, and an increase in the internal resistance of the bus bar 5 can be suppressed. As a result, the efficiency of the rotary electric machine can be improved. Further, by superimposing each bent portion 14 of the bus bar 5 on the position of each bending center point 6C of the stator core 1, each terminal 5A of the bus bar 5 can be arranged so as to be moved inward in the radial direction of the stator core 1. Therefore, the outer diameter of the stator 200 can be reduced, and the rotary electric machine can be miniaturized.
 次に、実施の形態1のステータ200の製造方法について簡単に説明する。図11は、ステータ200の製造フローを示す図である。 Next, the manufacturing method of the stator 200 of the first embodiment will be briefly described. FIG. 11 is a diagram showing a manufacturing flow of the stator 200.
 まず、ステップ1(ST1)で電磁鋼板を打抜き加工して、複数枚積層することにより、直線状のステータコア1を形成する。
 次に、ステップ2(ST2)で、予めバスバー5とインシュレータ4とをインサート成形により一体化したものをバスバー5の各屈曲部14がステータコア1の各折り曲げ部6の位置に重なるように取り付ける。
 次に、ステップ3(ST3)で、ステータコア1の各折り曲げ部6を、バスバー5とインシュレータ4とをインサート成形により一体化したものとともに逆方向に曲げる。
 次に、ステップ4(ST4)で、各ティース部8にインシュレータ4を介して電線を巻いてコイル120を形成する。
 次に、ステップ5(ST5)で、ステータコア1の各折り曲げ部6を、正方向に曲げて、環状に成形形成する。以上により、ステータ200が完成する。なお、各ティース部8に電線を巻く作業は、ステータコア1を直線状に展開した状態で行ってもよい。この場合、電線を巻くためにステータコア1を逆方向に曲げることがないので、バスバー5の金属疲労が低減でき、また、作業が一つ少なくできる。
First, the electromagnetic steel sheet is punched in step 1 (ST1), and a plurality of electromagnetic steel sheets are laminated to form a linear stator core 1.
Next, in step 2 (ST2), the bus bar 5 and the insulator 4 are previously integrated by insert molding and attached so that each bent portion 14 of the bus bar 5 overlaps the position of each bent portion 6 of the stator core 1.
Next, in step 3 (ST3), each bent portion 6 of the stator core 1 is bent in the opposite direction together with the bus bar 5 and the insulator 4 integrated by insert molding.
Next, in step 4 (ST4), an electric wire is wound around each tooth portion 8 via an insulator 4 to form a coil 120.
Next, in step 5 (ST5), each bent portion 6 of the stator core 1 is bent in the positive direction to form an annular shape. With the above, the stator 200 is completed. The work of winding the electric wire around each tooth portion 8 may be performed in a state where the stator core 1 is developed in a straight line. In this case, since the stator core 1 is not bent in the opposite direction in order to wind the electric wire, the metal fatigue of the bus bar 5 can be reduced, and the work can be reduced by one.
 実施の形態2.
 図12は、本発明の実施の形態2におけるステータ200を、電線が巻線される前の直線状に展開された状態で示した平面図である。図13は、図12の継鉄片3部分を示す図である。また、図14A及び図14Bは、図12のバスバーの斜視図と平面図である。実施の形態2のステータ200は、バスバー5が実施の形態1のステータ200とは異なる。他の構成は、上記実施の形態1と同様であるため、詳しい説明は省略する。
Embodiment 2.
FIG. 12 is a plan view showing the stator 200 according to the second embodiment of the present invention in a linearly developed state before the electric wire is wound. FIG. 13 is a diagram showing three portions of the joint iron piece of FIG. 14A and 14B are a perspective view and a plan view of the bus bar of FIG. In the stator 200 of the second embodiment, the bus bar 5 is different from the stator 200 of the first embodiment. Since other configurations are the same as those in the first embodiment, detailed description thereof will be omitted.
 図13及び図14Aに示すように、実施の形態2のステータ200に用いられるバスバー5は、ステータコア1の各継鉄片3に対応する位置に、それぞれ凸部15を有している。各凸部15は、図14Bに示すように、それぞれ、3つの屈曲部16A~16Cにより形成されている。そして、図15に示すように、3つの屈曲部16A~16Cのうち、屈曲部16Bと屈曲部16Cは、ステータコア1の折り曲げ部6に位置している。 As shown in FIGS. 13 and 14A, the bus bar 5 used in the stator 200 of the second embodiment has a convex portion 15 at a position corresponding to each joint iron piece 3 of the stator core 1. As shown in FIG. 14B, each convex portion 15 is formed by three bent portions 16A to 16C, respectively. Then, as shown in FIG. 15, of the three bent portions 16A to 16C, the bent portion 16B and the bent portion 16C are located at the bent portion 6 of the stator core 1.
 各凸部15は、バスバー5が折り曲げられたときに変形して、バスバー5を伸縮させようとする力を吸収する。例えば、図15に破線で示すように、ステータコア1が径方向外側に折り曲げられた場合には、各屈曲部16A~16Cがさらに屈曲して、バスバー5を縮めようとする力を吸収する。一方、ステータコア1が径方向内側に折り曲げられた場合には、各屈曲部16A~16Cが広がり、バスバー5を伸ばそうとする力を吸収する。 Each convex portion 15 deforms when the bus bar 5 is bent, and absorbs a force that tries to expand and contract the bus bar 5. For example, as shown by the broken line in FIG. 15, when the stator core 1 is bent outward in the radial direction, the bent portions 16A to 16C are further bent to absorb the force for contracting the bus bar 5. On the other hand, when the stator core 1 is bent inward in the radial direction, the bent portions 16A to 16C expand to absorb the force for extending the bus bar 5.
 このように、実施の形態2のステータ200は、バスバー5の、ステータコア1の各継鉄片3に対応する位置に、それぞれ凸部15を有している。そして、ステータコア1が折り曲げられた場合に、各凸部15の3つの屈曲部16を屈曲させ、または広げて、バスバー5を伸縮させようとする力を吸収する。これにより、バスバー5の伸縮量を小さくすることができ、バスバー5の内部抵抗の増加を抑制することができる。また、ステータコア1が折り曲げられた場合に、バスバー5の位置がずれることを防止して、ステータ200の品質を安定させることができる。 As described above, the stator 200 of the second embodiment has a convex portion 15 at a position corresponding to each joint iron piece 3 of the stator core 1 of the bus bar 5. Then, when the stator core 1 is bent, the three bent portions 16 of each convex portion 15 are bent or expanded to absorb the force for expanding and contracting the bus bar 5. As a result, the amount of expansion and contraction of the bus bar 5 can be reduced, and an increase in the internal resistance of the bus bar 5 can be suppressed. Further, when the stator core 1 is bent, the position of the bus bar 5 can be prevented from being displaced, and the quality of the stator 200 can be stabilized.
 なお、本実施の形態では、凸部を、径方向外側に凸となる形状としたが、凸部の形状は、これに限るものではない。例えば凸部の形状は、径方向内側に凸となる形状としてもよいし、複数の凸部を連続させて形成してもよい。さらに、実施の形態2では、凸部の形状を三角形状としたが、図16に示すように円弧状の凸部としてもよい。 In the present embodiment, the convex portion has a shape that is convex outward in the radial direction, but the shape of the convex portion is not limited to this. For example, the shape of the convex portion may be a shape that is convex inward in the radial direction, or a plurality of convex portions may be continuously formed. Further, in the second embodiment, the shape of the convex portion is triangular, but as shown in FIG. 16, the convex portion may be arcuate.
 実施の形態3.
 図17は、本発明の実施の形態3におけるステータ200を、電線が巻線される前の直線状に展開された状態で示した部分平面図である。図18Aは、図17のステータ200の平面図である。図18Bは、図18Aのステータ200の斜視図である。本実施の形態では、インシュレータのバスバー5を被覆する範囲が、上記実施の形態1とは異なる。他の構成は、上記実施の形態1と同様であるため、詳しい説明は省略する。
Embodiment 3.
FIG. 17 is a partial plan view showing the stator 200 according to the third embodiment of the present invention in a linearly unfolded state before the electric wire is wound. FIG. 18A is a plan view of the stator 200 of FIG. FIG. 18B is a perspective view of the stator 200 of FIG. 18A. In the present embodiment, the range covering the bus bar 5 of the insulator is different from that of the first embodiment. Since other configurations are the same as those in the first embodiment, detailed description thereof will be omitted.
 図17、図18A及び図18Bに示すように、本実施の形態では、バスバー5の、各屈曲部14から磁極片2側が絶縁物で被覆され、インシュレータ4を構成している。 As shown in FIGS. 17, 18A and 18B, in the present embodiment, the magnetic pole piece 2 side from each bent portion 14 of the bus bar 5 is covered with an insulating material to form the insulator 4.
 このように構成することで、ステータを円環状に成形する場合に、各屈曲部14から磁極片2側がインシュレータ4で固定されているため、バスバー5を、各屈曲部14において安定させて折り曲げることができる。よって、バスバー5の折り曲げによる形状ばらつきを抑制でき、また、折り曲げ位置のばらつきも抑制できる。 With this configuration, when the stator is formed into an annular shape, the magnetic pole piece 2 side is fixed by the insulator 4 from each bent portion 14, so that the bus bar 5 can be stably bent at each bent portion 14. Can be done. Therefore, the shape variation due to the bending of the bus bar 5 can be suppressed, and the variation in the bending position can also be suppressed.
 実施の形態4.
 図19は、本発明の実施の形態4におけるステータを、電線が巻線される前の直線状に展開された状態で示した平面図である。また、図20Aから図20Cは、図19のステータ200の折り曲げ状態を示す平面図である。本実施の形態では、インシュレータ4のバスバー5を被覆する範囲が、上記実施の形態1とは異なる。また、本実施の形態のバスバー5は、屈曲部14を有していない点が、上記実施の形態1とは異なる。他の構成は、上記実施の形態1と同様であるため、詳しい説明は省略する。
Embodiment 4.
FIG. 19 is a plan view showing the stator according to the fourth embodiment of the present invention in a linearly developed state before the electric wire is wound. 20A to 20C are plan views showing a bent state of the stator 200 of FIG. In the present embodiment, the range covering the bus bar 5 of the insulator 4 is different from that of the first embodiment. Further, the bus bar 5 of the present embodiment is different from the first embodiment in that it does not have a bent portion 14. Since other configurations are the same as those in the first embodiment, detailed description thereof will be omitted.
 図20Aに示すように、本実施の形態では、バスバー5を、ステータコア1の折り曲げ中心点6Cの位置よりもティース部8側に配置している。また、バスバー5を被覆している絶縁物4と、バスバー5が絶縁物4から露出している部位との境界である境界部20を、折り曲げ部6に対して磁極片2側に離間させている。これにより、図20Bに示すように、ステータコア1を径方向外側に折り曲げた場合には、バスバー5が、ステータコア1の径方向外側に移動する。一方、図20Cに示すように、ステータコア1を径方向内側に折り曲げた場合には、バスバー5が、ステータコア1の径方向内側に移動する。 As shown in FIG. 20A, in the present embodiment, the bus bar 5 is arranged on the teeth portion 8 side of the position of the bending center point 6C of the stator core 1. Further, the boundary portion 20 which is the boundary between the insulator 4 covering the bus bar 5 and the portion where the bus bar 5 is exposed from the insulator 4 is separated from the bent portion 6 toward the magnetic pole piece 2. There is. As a result, as shown in FIG. 20B, when the stator core 1 is bent radially outward, the bus bar 5 moves radially outward of the stator core 1. On the other hand, as shown in FIG. 20C, when the stator core 1 is bent inward in the radial direction, the bus bar 5 moves inward in the radial direction of the stator core 1.
 このように構成されたステータ200によれば、バスバー5を単独で環状に形成する工程が削減でき、回転電機の加工費を低減させることができる。また、バスバー5の伸縮量を小さくすることができ、バスバー5の内部抵抗の増加を抑制することができる。よって、回転電機の効率を向上させることができる。さらに、バスバー5を、ステータコア1の径方向の最も内側に配置することができる。これにより、ステータコア1を小径化することができ、回転電機を小型化することができる。 According to the stator 200 configured in this way, the process of forming the bus bar 5 independently in an annular shape can be reduced, and the processing cost of the rotary electric machine can be reduced. Further, the amount of expansion and contraction of the bus bar 5 can be reduced, and an increase in the internal resistance of the bus bar 5 can be suppressed. Therefore, the efficiency of the rotary electric machine can be improved. Further, the bus bar 5 can be arranged on the innermost side in the radial direction of the stator core 1. As a result, the diameter of the stator core 1 can be reduced, and the size of the rotary electric machine can be reduced.
 実施の形態5.
 図21は、この発明の実施の形態5におけるステータ200を用いた回転電機の、軸方向に沿う断面図である。この例では、回転電機はポンプである。図において、斜線でハッチングされた部分は、樹脂でモールド成型されたモールド樹脂部601である。ステータ200の内部に位置するローター部608はモールド成型をしない。
Embodiment 5.
FIG. 21 is a cross-sectional view taken along the axial direction of the rotary electric machine using the stator 200 according to the fifth embodiment of the present invention. In this example, the rotary machine is a pump. In the figure, the portion hatched by the diagonal line is the molded resin portion 601 molded with resin. The rotor portion 608 located inside the stator 200 is not molded.
 モールド樹脂部601は、コイル120のすべてを覆うとともに、複数の磁極片2および複数の継鉄片3のすべてを覆っている。さらに、磁極片2に巻かれたコイル120を接続するバスバー602もモールド成型により樹脂で覆われている。 The mold resin portion 601 covers all of the coil 120, and also covers all of the plurality of magnetic pole pieces 2 and the plurality of joint iron pieces 3. Further, the bus bar 602 connecting the coil 120 wound around the magnetic pole piece 2 is also covered with resin by molding.
 図22は、図21の回転電機を構成するステータ200のXXII-XXII線に沿う断面図である。図において、斜線で示された部分はモールド樹脂部601である。なお、図22では、モールド樹脂部601によって覆われているステータ200を、モールド樹脂部601を透過させて示している。 FIG. 22 is a cross-sectional view taken along the line XXII-XXII of the stator 200 constituting the rotary electric machine of FIG. 21. In the figure, the portion indicated by the diagonal line is the mold resin portion 601. In FIG. 22, the stator 200 covered by the mold resin portion 601 is shown through the mold resin portion 601.
 図23は、図22のステータ200の部分拡大図である。図に示すように、バスバー602,604は、ステータ200の外周を覆う円筒状のフレーム605の近傍に配置されている。従って、例えばポンプが振動してバスバー602,604が移動すると、バスバー602,604がフレーム605に触れて導通し、ポンプの動作に不具合が生じるおそれがある。 FIG. 23 is a partially enlarged view of the stator 200 of FIG. 22. As shown in the figure, the bus bars 602 and 604 are arranged in the vicinity of the cylindrical frame 605 that covers the outer periphery of the stator 200. Therefore, for example, when the pump vibrates and the bus bars 602 and 604 move, the bus bars 602 and 604 touch the frame 605 and become conductive, which may cause a problem in the operation of the pump.
 実施の形態5のステータ200では、モールド樹脂部601によってバスバー602,604を覆っている。このため、図23に二点鎖線で示す領域B及び領域Cのように、バスバー602,604とフレーム605との間に樹脂が充填されている。これにより、ポンプが振動した場合であっても、バスバー602,604がフレーム605に接触して導通することが防止できる。 In the stator 200 of the fifth embodiment, the bus bars 602 and 604 are covered by the mold resin portion 601. Therefore, as shown in the region B and the region C shown by the alternate long and short dash line in FIG. 23, the resin is filled between the bus bars 602 and 604 and the frame 605. As a result, even when the pump vibrates, it is possible to prevent the bus bars 602 and 604 from coming into contact with the frame 605 and conducting conduction.
 また、コイル120に通電した際に発生するバスバー602,604の熱は、モールド樹脂部601を介して放熱される。このため、磁極片2の熱容量を増加させる必要がなく、ステータ200を小型化することができる。 Further, the heat of the bus bars 602 and 604 generated when the coil 120 is energized is dissipated through the mold resin portion 601. Therefore, it is not necessary to increase the heat capacity of the magnetic pole piece 2, and the stator 200 can be miniaturized.
 また、モールド樹脂部601は、コイル120の全体も覆っている。このため、コイル120の絶縁性を向上させることができる。 The mold resin portion 601 also covers the entire coil 120. Therefore, the insulating property of the coil 120 can be improved.
 モールド樹脂部601の成形には、例えばPPS樹脂(ポリフェニレンスルファイド樹脂)、POM樹脂(ポリアセタール樹脂)、EP樹脂(エポキシ樹脂)が用いられる。 For molding of the mold resin portion 601, for example, PPS resin (polyphenylene sulfide resin), POM resin (polyacetal resin), and EP resin (epoxy resin) are used.
 図24は、実施の形態5のステータ200の第1変形例を示す断面図である。なお、図24では、モールド樹脂部606によって覆われているステータ200を、モールド樹脂部606を透過させて示している。 FIG. 24 is a cross-sectional view showing a first modification of the stator 200 of the fifth embodiment. In FIG. 24, the stator 200 covered by the mold resin portion 606 is shown through the mold resin portion 606.
 この例では、モールド樹脂部606は、複数の磁極片2および複数の継鉄片3のコアバック13側を覆っている。このため、コイル120に通電した際に発生するバスバー602,604の熱を、モールド樹脂部606を介して効率的に放熱することができる。 In this example, the mold resin portion 606 covers the core back 13 side of the plurality of magnetic pole pieces 2 and the plurality of joint iron pieces 3. Therefore, the heat of the bus bars 602 and 604 generated when the coil 120 is energized can be efficiently dissipated through the mold resin portion 606.
 さらに、この例では、モールド樹脂部606の成形に使用する樹脂の量を少なくすることができる。このため、製品としてのポンプの価格を抑えることができる。また、この例では、隣接する磁極片2間の隙間607を樹脂で覆っていない。このため、ポンプ内を通過する流体の流量を増加させることができる。 Further, in this example, the amount of resin used for molding the mold resin portion 606 can be reduced. Therefore, the price of the pump as a product can be suppressed. Further, in this example, the gap 607 between the adjacent magnetic pole pieces 2 is not covered with the resin. Therefore, the flow rate of the fluid passing through the pump can be increased.
 図25は、実施の形態5のステータの第2変形例を示す断面図である。なお、図25では、モールド樹脂部606によって覆われているステータ200を、モールド樹脂部606を透過させて示している。この例では、図24の第1変形例に加えて、コイル120を樹脂によって覆っている。このため、コイル120に通電した際に発生する熱を、モールド樹脂部606を介して効率的に放熱させることができる。 FIG. 25 is a cross-sectional view showing a second modification of the stator of the fifth embodiment. In FIG. 25, the stator 200 covered by the mold resin portion 606 is shown through the mold resin portion 606. In this example, in addition to the first modification of FIG. 24, the coil 120 is covered with resin. Therefore, the heat generated when the coil 120 is energized can be efficiently dissipated through the mold resin portion 606.
 1 ステータコア、2 磁極片、3 継鉄片、4 絶縁物、5 バスバー、6 折り曲げ部、6A 切り欠き、6B 開口部、6C 折り曲げ中心点、6D 開口、7A 第1のバックヨーク部、7B 第2のバックヨーク部、8 ティース部、9 薄肉部、10 結合凸部、11 結合凹部、12 領域、13 コアバック、14 屈曲部、15 凸部、16A~16C 屈曲部、20 境界部、51 バスバー組立体、120 コイル、200 ステータ、601,606 モールド樹脂部、602,604 バスバー、605 フレーム、607 隙間、608 ローター部。 1 stator core, 2 magnetic pole pieces, 3 joint iron pieces, 4 insulation, 5 busbars, 6 bent parts, 6A notches, 6B openings, 6C bending center points, 6D openings, 7A first back yoke parts, 7B second Back yoke part, 8 teeth part, 9 thin wall part, 10 joint convex part, 11 joint concave part, 12 area, 13 core back, 14 bent part, 15 convex part, 16A to 16C bent part, 20 boundary part, 51 busbar assembly , 120 coil, 200 stator, 601,606 mold resin part, 602,604 bus bar, 605 frame, 607 gap, 608 rotor part.

Claims (15)

  1.  複数の磁極片と、
     隣接する前記磁極片の間に設けられた継鉄片と、
     前記磁極片に巻かれたコイルと、
     前記磁極片と前記コイルとの間に設けられたインシュレータと、
     複数の前記磁極片の一の前記磁極片から他の前記磁極片との間で、前記コイルを渡す際に経由するバスバーと
    を備え、
     前記磁極片と前記継鉄片とが薄肉部で折り曲げ可能に連結され、前記バスバーが前記薄肉部とともに折り曲げ可能に配置されているステータ。
    With multiple magnetic pole pieces,
    A joint iron piece provided between the adjacent magnetic pole pieces and
    The coil wound around the magnetic pole piece and
    An insulator provided between the magnetic pole piece and the coil,
    It is provided with a bus bar through which the coil is passed between the magnetic pole piece of one of the plurality of magnetic pole pieces and the other magnetic pole pieces.
    A stator in which the magnetic pole piece and the joint iron piece are foldably connected at a thin wall portion, and the bus bar is foldably arranged together with the thin wall portion.
  2.  前記バスバーは、各前記折り曲げ部の折り曲げ中心点に重なる位置に配置されている、
    請求項1に記載のステータ。
    The bus bar is arranged at a position overlapping the bending center point of each of the bending portions.
    The stator according to claim 1.
  3.  前記バスバーは、各前記折り曲げ部に対応する部位に、それぞれ屈曲部を有する、
    請求項2に記載のステータ。
    The bus bar has a bent portion at a portion corresponding to each of the bent portions.
    The stator according to claim 2.
  4.  前記バスバーは、各前記継鉄片に対応する部位における、一端側の前記屈曲部と他端側の前記屈曲部との間に、それぞれ、さらに少なくとも1つの屈曲部を有する、
    請求項3に記載のステータ。
    The bus bar further has at least one bent portion between the bent portion on one end side and the bent portion on the other end side at a portion corresponding to each of the joint iron pieces.
    The stator according to claim 3.
  5.  前記バスバーは、各前記磁極片に対応する部位の一部が絶縁物で被覆されており、
     前記バスバーは、各前記継鉄片に対応する部位と、各前記折り曲げ部に対応する部位が、前記絶縁物から露出している、
    請求項1から4のいずれか1項に記載のステータ。
    A part of the portion corresponding to each of the magnetic pole pieces of the bus bar is covered with an insulating material.
    In the bus bar, a portion corresponding to each of the joint iron pieces and a portion corresponding to each of the bent portions are exposed from the insulator.
    The stator according to any one of claims 1 to 4.
  6.  前記バスバーは、各前記磁極片に対応する部位の一部が絶縁物で被覆されており、
     前記バスバーは、各前記継鉄片に対応する部位と、各前記折り曲げ部に対応する部位と、各前記折り曲げ部に対応する部位から、各前記磁極片側にあらかじめ定められた距離離れた位置までの部位が、前記絶縁物から露出している、
    請求項1に記載のステータ。
    A part of the portion corresponding to each of the magnetic pole pieces of the bus bar is covered with an insulating material.
    The bus bar is a portion corresponding to each of the joint iron pieces, a portion corresponding to each of the bent portions, and a portion corresponding to each of the bent portions to a position separated by a predetermined distance on each magnetic pole piece side. Is exposed from the insulation,
    The stator according to claim 1.
  7.  前記バスバーは、前記絶縁物と一体化されてバスバー組立体を形成しており、
     前記バスバー組立体は、ステータコアに組付けられている、
    請求項5または6に記載のステータ。
    The bus bar is integrated with the insulation to form a bus bar assembly.
    The busbar assembly is assembled to the stator core.
    The stator according to claim 5 or 6.
  8.  前記ステータコアは、各前記折り曲げ部で折り曲げられており、
     前記バスバーは、前記ステータコアに沿って折り曲げられており、
     前記ステータコア及び前記バスバーは、環状に形成されている、
    請求項7に記載のステータ。
    The stator core is bent at each of the bent portions, and the stator core is bent.
    The bus bar is bent along the stator core and
    The stator core and the bus bar are formed in an annular shape.
    The stator according to claim 7.
  9.  請求項8に記載のステータを有する回転電機。 A rotary electric machine having the stator according to claim 8.
  10.  第1のバックヨーク部とティース部とを有する複数の磁極片と第2のバックヨーク部を有する前記複数の磁極片と同数の継鉄片とを有し、磁極片と継鉄片とが交互に連結配置され、各前記磁極片と各前記継鉄片とが、それぞれ折り曲げ部が形成された薄肉部で連結された電磁鋼板を複数枚積層して、直線状のステータコアを形成する工程と、
     直線状のバスバーを、前記ステータコアの長手方向に沿って、かつ各前記折り曲げ部に重なる位置に取付ける工程と、
     前記複数の磁極片の各前記ティース部に電線を巻いてコイルを形成する工程と、
     前記ステータコアの、各前記折り曲げ部を折り曲げるとともに、前記バスバーを前記ステータコアに沿って折り曲げて環状に形成する工程とを有する、
    ステータの製造方法。
    It has a plurality of magnetic pole pieces having a first back yoke portion and a teeth portion, and the same number of joint iron pieces as the plurality of magnetic pole pieces having a second back yoke portion, and the magnetic pole pieces and the joint iron pieces are alternately connected. A step of forming a linear stator core by laminating a plurality of electromagnetic steel sheets which are arranged and in which each of the magnetic pole pieces and each of the joint iron pieces are connected by a thin-walled portion in which a bent portion is formed.
    A step of attaching a linear bus bar along the longitudinal direction of the stator core and at a position overlapping each of the bent portions.
    A step of winding an electric wire around each of the teeth portions of the plurality of magnetic pole pieces to form a coil, and
    It includes a step of bending each of the bent portions of the stator core and bending the bus bar along the stator core to form an annular shape.
    How to manufacture the stator.
  11.  前記直線状のバスバーを、前記ステータコアの長手方向に沿って、かつ各前記折り曲げ部に重なる位置に取付ける工程は、
     前記直線状のバスバーを、各前記折り曲げ部の各折り曲げ中心に重なる位置に取付ける工程である、
    請求項10に記載のステータの製造方法。
    The step of attaching the linear bus bar along the longitudinal direction of the stator core and at a position overlapping each of the bent portions is
    This is a step of attaching the linear bus bar at a position overlapping each bending center of each of the bending portions.
    The method for manufacturing a stator according to claim 10.
  12.  前記直線状のバスバーは、絶縁物と一体化している、
    請求項10または11に記載のステータの製造方法。
    The linear bus bar is integrated with the insulation.
    The method for manufacturing a stator according to claim 10 or 11.
  13.  ステータコアを複数の磁極片で構成し、
     前記複数の磁極片に巻かれたコイルと、前記コイルと接続されたバスバーとを樹脂で覆うことにより、前記ステータコアの外周を囲むフレームと前記バスバーとの間の絶縁を確保するステータの製造方法。
    The stator core is composed of multiple magnetic pole pieces,
    A method for manufacturing a stator that secures insulation between a frame surrounding the outer periphery of the stator core and the bus bar by covering the coil wound around the plurality of magnetic pole pieces and a bus bar connected to the coil with a resin.
  14.  ステータコアを複数の磁極片で構成し、
     前記複数の磁極片と、前記複数の磁極片に巻かれるコイルと接続されるバスバーのコアバック側とを樹脂で覆うことにより、前記ステータコアの外周を囲むフレームと前記バスバーとの間の絶縁を確保するステータの製造方法。
    The stator core is composed of multiple magnetic pole pieces,
    By covering the plurality of magnetic pole pieces and the core back side of the bus bar connected to the coil wound around the plurality of magnetic pole pieces with resin, insulation between the frame surrounding the outer periphery of the stator core and the bus bar is ensured. How to manufacture the stator.
  15.  複数の磁極片で構成されたステータコアと、
     前記複数の磁極片に巻かれたコイルと、
     前記コイルに接続されたバスバーと、
     前記複数の磁極片及び前記バスバーを覆う樹脂と
    を有し、
     前記バスバーに発生する熱を前記樹脂を介して放熱するステータ。
    A stator core composed of multiple magnetic pole pieces and
    A coil wound around the plurality of magnetic pole pieces and
    With the bus bar connected to the coil
    It has the plurality of magnetic pole pieces and a resin that covers the bus bar.
    A stator that dissipates heat generated in the bus bar through the resin.
PCT/JP2019/010514 2019-03-14 2019-03-14 Stator, rotating electric machine, and method for manufacturing stator WO2020183693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021504746A JP7113959B2 (en) 2019-03-14 2019-03-14 STATOR, ROTATING ELECTRICAL MACHINE, AND STATOR MANUFACTURING METHOD
PCT/JP2019/010514 WO2020183693A1 (en) 2019-03-14 2019-03-14 Stator, rotating electric machine, and method for manufacturing stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010514 WO2020183693A1 (en) 2019-03-14 2019-03-14 Stator, rotating electric machine, and method for manufacturing stator

Publications (1)

Publication Number Publication Date
WO2020183693A1 true WO2020183693A1 (en) 2020-09-17

Family

ID=72426982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010514 WO2020183693A1 (en) 2019-03-14 2019-03-14 Stator, rotating electric machine, and method for manufacturing stator

Country Status (2)

Country Link
JP (1) JP7113959B2 (en)
WO (1) WO2020183693A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160170A (en) * 2003-11-21 2005-06-16 Fujitsu General Ltd Motor
JP2008312277A (en) * 2007-06-12 2008-12-25 Fuji Heavy Ind Ltd Electric motor
JP2009130963A (en) * 2007-11-20 2009-06-11 Mitsubishi Heavy Ind Ltd Bus bar structure and inverter-integrated electric compressor
JP2015070632A (en) * 2013-09-26 2015-04-13 株式会社ミツバ Bus bar unit, method of manufacturing the same, and brushless motor
JP2015100147A (en) * 2013-11-18 2015-05-28 三菱電機株式会社 Stator and rotary electric machine with the stator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6584331B2 (en) 2016-01-25 2019-10-02 三菱電機株式会社 Single-phase brushless motor and method for manufacturing single-phase brushless motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160170A (en) * 2003-11-21 2005-06-16 Fujitsu General Ltd Motor
JP2008312277A (en) * 2007-06-12 2008-12-25 Fuji Heavy Ind Ltd Electric motor
JP2009130963A (en) * 2007-11-20 2009-06-11 Mitsubishi Heavy Ind Ltd Bus bar structure and inverter-integrated electric compressor
JP2015070632A (en) * 2013-09-26 2015-04-13 株式会社ミツバ Bus bar unit, method of manufacturing the same, and brushless motor
JP2015100147A (en) * 2013-11-18 2015-05-28 三菱電機株式会社 Stator and rotary electric machine with the stator

Also Published As

Publication number Publication date
JP7113959B2 (en) 2022-08-05
JPWO2020183693A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6439622B2 (en) Rotating electric machine stator
JP5493906B2 (en) Rotating electric machine stator
JP5554383B2 (en) Stator for rotating electric machine and method for manufacturing the stator
JP5586969B2 (en) Rotating electric machine stator
JP5429132B2 (en) Manufacturing method of stator of rotating electric machine and stator of rotating electric machine
JP5471867B2 (en) Rotating electric machine stator
US7994677B2 (en) Stator for rotary electric machine, and rotary electric machine using the stator
US10491056B2 (en) Stator formed by winding stator coils, rotary electric machine using said stator, method for manufacturing stator formed by winding stator coils, and method for manufacturing rotary electric machine
JP5531634B2 (en) Manufacturing method of stator of rotating electric machine
WO2012049759A1 (en) Motor
JP5151738B2 (en) Rotating electric machine stator and rotating electric machine
JP5483056B2 (en) Manufacturing method of stator of rotating electric machine
JP2009131092A (en) Stator of dynamo electric machine, and dynamo electric machine
JP5437118B2 (en) Resolver
JP4502041B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP5621263B2 (en) Stator winding manufacturing method and manufacturing apparatus thereof
JP5370245B2 (en) Manufacturing method of stator of rotating electric machine
JP6638629B2 (en) Rotating electric machine stator
JP5163278B2 (en) Rotating electric machine stator
WO2018055895A1 (en) Stator for rotary electric machine, method for manufacturing stator for rotary electric machine, and rotary electric machine
WO2020183693A1 (en) Stator, rotating electric machine, and method for manufacturing stator
JP6279122B1 (en) Rotating electric machine
JP2016123247A (en) coil
JP6851499B2 (en) Manufacturing method of stator, stator assembly and stator
EP3905485A1 (en) Stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918576

Country of ref document: EP

Kind code of ref document: A1