JPH03218007A - Semiconductor crystal growing method - Google Patents

Semiconductor crystal growing method

Info

Publication number
JPH03218007A
JPH03218007A JP2013278A JP1327890A JPH03218007A JP H03218007 A JPH03218007 A JP H03218007A JP 2013278 A JP2013278 A JP 2013278A JP 1327890 A JP1327890 A JP 1327890A JP H03218007 A JPH03218007 A JP H03218007A
Authority
JP
Japan
Prior art keywords
gas
cell
crystal
molecular beam
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013278A
Other languages
Japanese (ja)
Inventor
Kayoko Horie
堀江 香代子
Takeo Otsuka
武夫 大塚
Naoki Akiyama
直樹 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2013278A priority Critical patent/JPH03218007A/en
Publication of JPH03218007A publication Critical patent/JPH03218007A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve crystalline quality by adding hydrogen in the epitaxial growth process of II-VI compound semiconductor crystal by using a gas source MBE equipment. CONSTITUTION:After a gas source MBE(molecular beam epitaxy) equipment 20 is used, and in the first plane, impurities in a system are decreased by high temperature baking, a Zn molecular beam evaporation source cell 22 is heated and kept so is to obtain a desired amount of molecular beam, and molecules are evaporated from the cell 22. On the other hand, selenium hydride gas from an Se feeding cylinder 28 is subjected to flow rate control by an MFC(mass flow controller) 30. The gas is heated and decomposed by a gas, cracking cell 23. Hydrogen gas from an H2 feeding cylinder 29 is heated and decomposed by a gas cracking cell 32, via an MFC 31. The above gasses are simultaneously supplied, and deposited on a GaAs substrate crystal 15 to obtain single crystal of ZnSe. Hence the added hydrogen eliminates the lattice defect in crystal, and crystalline material is improved.

Description

【発明の詳細な説明】 (産業上の利用分野》 本発明は、半導体結晶成長方法に係り、特に青色発光ダ
イオードや短波長レーザーなどの発光素子に用いるII
−VI族化合物事導体結晶のエピタキシャル成長方法に
関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for growing semiconductor crystals, and in particular to a method for growing semiconductor crystals, particularly for use in II light emitting devices such as blue light emitting diodes and short wavelength lasers.
-Regarding a method for epitaxial growth of a group VI compound conductor crystal.

(従来の技術) II−Vl族化合物半導体結晶のエピタキシャル成長方
法としてM 3 E ( Molecular Bea
m Epitaxy)法がある。
(Prior art) M3E (Molecular Bea) is a method for epitaxial growth of II-Vl group compound semiconductor crystals.
mEpitaxy) method.

MBE法は、超高真空蒸着法の一種で、分子線を基板に
あてて薄膜結晶を成長させる方法である。
The MBE method is a type of ultra-high vacuum evaporation method, and is a method of growing thin film crystals by applying molecular beams to a substrate.

従来のMBE法によるII−Vl族化合物半導体の結晶
成長方法は以下の様なものであった。 第2図は従来の
MBE装置10の概略断面図である。
The conventional method for growing crystals of II-Vl group compound semiconductors using the MBE method is as follows. FIG. 2 is a schematic cross-sectional view of a conventional MBE apparatus 10.

同図において、11はMBEチャンバーであり、12は
分子I1蒸発源セル、13はMBEチャンバー11を冷
却するための液体窒素シュラウドである。
In the figure, 11 is an MBE chamber, 12 is a molecule I1 evaporation source cell, and 13 is a liquid nitrogen shroud for cooling the MBE chamber 11.

また、チャンバー11の中心部にはモリブデン等からな
る支持台14が設置され、この上に半導体基板結晶15
を支持する様になっている。
Further, a support base 14 made of molybdenum or the like is installed in the center of the chamber 11, and a semiconductor substrate crystal 15 is placed on this support base 14.
It seems to support the.

また、16は各分子線蒸発源セル12の分子線の射出口
12aの前部に設置されたセルシャッターである。17
はメインシャッターであり、前記支持台14の前部に配
置されている。18は真空測定装置である。
Further, 16 is a cell shutter installed in front of the molecular beam exit port 12a of each molecular beam evaporation source cell 12. 17
is a main shutter, which is arranged in front of the support base 14. 18 is a vacuum measuring device.

従来、MBE装I!10を使用して次の様にして結晶成
長を行なっていた。
Previously, MBE-equipped I! Crystal growth was carried out using No. 10 in the following manner.

まず、装置自体の不純物を除去するために、チャンバー
11内を加熱することによりベーキングを行なう。次に
、例えば、mb  族の原料としてZn、■b 族の原
料としてSeを用い、それぞれの原料を分子線蒸発源セ
ル12に充填し、所望の分子線憬になる様に加熱保持し
ておく。
First, in order to remove impurities from the device itself, baking is performed by heating the inside of the chamber 11. Next, for example, using Zn as the mb group raw material and Se as the b group raw material, the respective raw materials are filled into the molecular beam evaporation source cell 12 and heated and held to obtain the desired molecular beam concentration. .

そして、分子線蒸発源セル12より所定の分子を蒸発さ
せ、あらかじめ設定温度にしておいたモリブデン製の基
板支持台14上に固定されたGaAS基板結晶15の上
に、ZnSeの単結晶を結晶成長させる。
Then, predetermined molecules are evaporated from the molecular beam evaporation source cell 12, and a ZnSe single crystal is grown on the GaAS substrate crystal 15 fixed on the molybdenum substrate support 14, which has been set at a preset temperature. let

(発明が解決しようとする課題) この様な従来の半導体結晶成長方法においては、蒸気圧
の高い材料を用いているので、従来のMBE装置10を
用いた場合には、高温ベーキングができないため、真空
度が上らず残留不純物が多いものであった。
(Problems to be Solved by the Invention) Since such conventional semiconductor crystal growth methods use materials with high vapor pressure, high-temperature baking cannot be performed using the conventional MBE apparatus 10. The degree of vacuum could not be increased and there were many residual impurities.

また、液相成長方法に比べ、低温成長、非平衡状態の成
長であるが、自己補償効果が起りやすく、格子欠陥の低
減ができないため、良質なII−Vl族化合物半導体結
晶が得られなかった。そのため、所望する低抵抗でP型
導電性を示す良質な結晶が得られないなどの問題点があ
った。
In addition, compared to the liquid phase growth method, the method uses low-temperature growth and non-equilibrium growth, but self-compensation effects tend to occur and lattice defects cannot be reduced, making it impossible to obtain high-quality II-Vl group compound semiconductor crystals. . Therefore, there were problems such as the inability to obtain a high-quality crystal exhibiting the desired low resistance and P-type conductivity.

(課題を解決するための手段) 本発明は上記課題を解決するためになされたものであり
、II−VI族化合物からなる半導体結晶のエピタキシ
ャル成長過程において、Gass SourceMBE
装置を用いて、水素を添加することを特徴とする半導体
結晶成長方法を提供しようとするものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and in the epitaxial growth process of a semiconductor crystal made of a II-VI group compound, Gas Source MBE
The present invention attempts to provide a semiconductor crystal growth method characterized by adding hydrogen using an apparatus.

(実施例) 本発明はIf−Vl族化合物半導体結晶の原料に、例え
ば、水素ガス、有灘金属ガスなどの気体を用い、その気
体原料を加熱分解するガスクランキングセルを有するM
BE装置において、エピタキシャル成長中にIIb族、
■b  族原料分子線と共に水素ガスを基仮に照射する
ことにより、従来技術の問題点である結晶質を向上させ
ようとするものである。
(Example) The present invention uses a gas such as hydrogen gas or Nada metal gas as a raw material for an If-Vl group compound semiconductor crystal, and an M having a gas cranking cell for thermally decomposing the gas raw material.
In the BE equipment, during epitaxial growth, group IIb,
(2) By temporarily irradiating hydrogen gas together with the group b source molecular beam, it is attempted to improve the crystallinity, which is a problem with the prior art.

第1図は本発明に使用されるGas Source  
M BE装置(または、MOMBE装1!)20である
Figure 1 shows the gas source used in the present invention.
An MBE device (or MOMBE device 1!) 20.

同図において、21はチャンバー、22は固体原料S一
を加熱蒸発する分子線蒸発源セル、23は気体原料を加
熱分解するためのがスクラツキングセル、24は液体窒
素シュラウドである。
In the figure, 21 is a chamber, 22 is a molecular beam evaporation source cell for heating and evaporating the solid raw material S1, 23 is a scratching cell for thermally decomposing the gaseous raw material, and 24 is a liquid nitrogen shroud.

このGas Source  M B E装置20にお
いても、チrンバー21の中心部にモリブデン製の支持
台25が配置され、この上に半導体基板結晶15を支持
する様になっている。また、26は各分子線蒸発源セル
22及びガスクラツキングセル23の分子線の出射口2
2a及び23aの前部に設置されたセルシャッターであ
る。27はメインシャッターであり、前記支持台25の
前部に配置されている。
In this Gas Source MBE device 20 as well, a support stand 25 made of molybdenum is arranged at the center of the chamber 21, and the semiconductor substrate crystal 15 is supported on this support stand 25. Further, reference numeral 26 denotes a molecular beam exit port 2 of each molecular beam evaporation source cell 22 and gas cracking cell 23.
This is a cell shutter installed in front of 2a and 23a. A main shutter 27 is arranged in front of the support base 25.

同図に示す様なGas Source  M B E装
置20において、例えば、分子線蒸発源セル22に[b
族原料Znを充填し、ガスクラブキングセル23に接続
した供給ボンベ28にはSe,供給ボンベ29には水素
が封入されている。
In the Gas Source MBE device 20 as shown in the same figure, for example, [b
A supply cylinder 28 filled with group raw material Zn and connected to the gas club King cell 23 is filled with Se, and a supply cylinder 29 is filled with hydrogen.

本発明になる半導体結晶成長方法においては、同図に示
したGas Source  M B E @11 2
 0を用い、まず、200℃で高温ベーキングを行ない
系内の不純物を低減したのち、Zn分子線蒸発源セル2
2を所望の分子1m量になる様に加熱保持して、分子線
蒸発源セルよりZn分子を蒸発させる。
In the semiconductor crystal growth method according to the present invention, the Gas Source M B E @11 2 shown in the same figure
Using Zn molecular beam evaporation source cell 2, first perform high temperature baking at 200°C to reduce impurities in the system.
Zn molecules are evaporated from the molecular beam evaporation source cell by heating and maintaining Zn to a desired molecular weight of 1 m.

一方、Se供給ボンベ28より、例えば、水素化セレン
ガスをM F C ( Mass Flow Cont
roller)30により流量制御し、ガスクラッキン
グセル23により加熱分解したものと、更に、H2供給
ボンベ29よりH2をMFC31により流量制御し、ガ
スクラッキング32にて加熱分解したものとを同時供給
し、所定の温度に加熱保持された基板支持台25に固定
されたGaAs基板結晶15上に堆積させ、ZnSeの
単結晶を作製するものである。
On the other hand, from the Se supply cylinder 28, for example, hydrogenated selenium gas is supplied to MFC (Mass Flow Cont
At the same time, H2 is supplied from an H2 supply cylinder 29 with a flow rate controlled by an MFC 31 and thermally decomposed by a gas cracking cell 23, and H2 is heated to a predetermined level. A single crystal of ZnSe is produced by depositing it on a GaAs substrate crystal 15 fixed to a substrate support 25 heated and maintained at a temperature of .

以下に具体例を示す。A specific example is shown below.

前記Gas Source  M B E装置において
、GaAS絶縁基板の(100)結晶面上に、Ib族原
料としてZn、vtb族原料として水素化セレンガスを
用い、更に水素ガスをエピタキシャル成長に加えること
により、Z’n3e単結晶を作製する。
In the Gas Source MBE device, Z'n3e is grown on the (100) crystal plane of the GaAS insulating substrate by using Zn as the Ib group raw material and selenium hydride gas as the Vtb group raw material, and further adding hydrogen gas to the epitaxial growth. Create a single crystal.

なお、この結晶成長に用いた原料ガスの分子線最及び流
−はそれぞれZn 5.4x 10  TorrH 2
 3 e  0.4 〜1.6 SCCH ,  H 
2は 1.O  SCCHで成長基板温度は200℃で
、成長前のback groundpressureは
、約5xlO  Torrあった。
Note that the molecular beam length and flow of the raw material gas used for this crystal growth are Zn 5.4x 10 TorrH 2 respectively.
3 e 0.4 ~ 1.6 SCCH, H
2 is 1. The growth substrate temperature in the OSCCH was 200° C., and the back ground pressure before growth was about 5×1O Torr.

上記の様な条件の下で作製した結晶をvander p
aW法及び77Kの7ォトルミネッセンス法(HeCd
レーザ325nl. 5++W励起)により測定した4
45rv近{労の強度IS、ホール移動度μ及び、キャ
リア濃度NOは、次表の様になった。
The crystals produced under the above conditions were subjected to vander p
aW method and 77K 7 photoluminescence method (HeCd
Laser 325nl. 4 measured by 5++W excitation)
45rv near {labor intensity IS, hole mobility μ, and carrier concentration NO were as shown in the following table.

表 表からわかる様に、水素を添加することにより、ホール
移動度μが向上し、キャリア濃度NOの増加が見られ、
それに伴い、ZnSeの発光波長である445n一近傍
、即ち、青色発光領域において著しく発光強度ISが向
上した。
As can be seen from the table, by adding hydrogen, the hole mobility μ improves and the carrier concentration NO increases.
Accordingly, the emission intensity IS was significantly improved in the vicinity of 445n, which is the emission wavelength of ZnSe, that is, in the blue emission region.

(発明の効果) 上述の様に、本発明になる半導体結晶成長方法によれば
、■−■族化合物からなる半導体結晶のエピタキシャル
成長過程において、水素を添加することを特徴としたの
で、結晶中の格子欠陥をなくす効果があり、結晶質を向
上させるものである。
(Effects of the Invention) As described above, according to the semiconductor crystal growth method of the present invention, hydrogen is added in the epitaxial growth process of the semiconductor crystal made of the ■-■ group compound. It has the effect of eliminating lattice defects and improves crystal quality.

また、非発光性再結合を減らし、発光性再結合を増加さ
せ発光特性を向■きせるので、発光特性が向上し、 ひ
いては、従来、困難であった低抵抗のP型半導体の成長
も可能となる等、導電性の制御が可能な半導体結晶成長
方法の提供を可能とするものである。
In addition, it reduces non-radiative recombination and increases radiative recombination, which improves the light-emitting properties, making it possible to grow low-resistance P-type semiconductors, which was previously difficult. This makes it possible to provide a semiconductor crystal growth method that allows control of conductivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用されるGas Sauce M 
B E装置(または、MOMBE装置)、第2図は従来
のMBE装置10の概略断面図である。 15・・・半導体基板結晶、 2 0 ・GaSSource  lyl B E装置
、21・・・チャンバー、22−・・分子線蒸発源セル
、23、32・・・ガスクラッキングセル、24・・・
液体窒素シュラウド、25・・・支持台、26・・・セ
ルシャッタタ− 27・・・メインシャッター 28、29、・・・供給ボンベ、 30、31・・・MFC. 特 許 出願人 日本ビクター株式会社 代表者 垣木 邦夫 第 1 図
Figure 1 shows Gas Sauce M used in the present invention.
BE Apparatus (or MOMBE Apparatus) FIG. 2 is a schematic cross-sectional view of a conventional MBE apparatus 10. DESCRIPTION OF SYMBOLS 15... Semiconductor substrate crystal, 20 - GaSSource lyl BE apparatus, 21... Chamber, 22-... Molecular beam evaporation source cell, 23, 32... Gas cracking cell, 24...
Liquid nitrogen shroud, 25... Support stand, 26... Cell shutter 27... Main shutters 28, 29,... Supply cylinder, 30, 31... MFC. Patent Applicant: Japan Victor Co., Ltd. Representative: Kunio Kakiki Figure 1

Claims (1)

【特許請求の範囲】[Claims] II−VI族化合物からなる半導体結晶のエピタキシャル成
長過程において、GassSourceMBE装置を用
いて、水素を添加することを特徴とする半導体結晶成長
方法
A semiconductor crystal growth method characterized by adding hydrogen using a GasSource MBE device during the epitaxial growth process of a semiconductor crystal made of a II-VI group compound.
JP2013278A 1990-01-23 1990-01-23 Semiconductor crystal growing method Pending JPH03218007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013278A JPH03218007A (en) 1990-01-23 1990-01-23 Semiconductor crystal growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013278A JPH03218007A (en) 1990-01-23 1990-01-23 Semiconductor crystal growing method

Publications (1)

Publication Number Publication Date
JPH03218007A true JPH03218007A (en) 1991-09-25

Family

ID=11828736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013278A Pending JPH03218007A (en) 1990-01-23 1990-01-23 Semiconductor crystal growing method

Country Status (1)

Country Link
JP (1) JPH03218007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418738A (en) * 1990-05-11 1992-01-22 Mitsubishi Electric Corp Growth of semiconductor crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418738A (en) * 1990-05-11 1992-01-22 Mitsubishi Electric Corp Growth of semiconductor crystal

Similar Documents

Publication Publication Date Title
US7556688B2 (en) Method for achieving low defect density AlGaN single crystal boules
US20090130781A1 (en) Method for simultaneously producing multiple wafers during a single epitaxial growth run and semiconductor structure grown thereby
EP0576566A1 (en) A method for the preparation and doping of highly insulating monocrystalline gallium nitride thin films
JPH08181073A (en) Semiconductor wafer and crystal growth method
US5015327A (en) Method for producing semiconductive single crystal
EP0525619B1 (en) Compound semiconductor single crystal
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH03218007A (en) Semiconductor crystal growing method
JPH09266218A (en) Method to reduce resistance of p-type compound semiconductor
Beuchet et al. Hydride multibarrel reactors suitable for microwave and optoelectronic (Ga, In)(As, P) heterostructure growth
JP2607239B2 (en) Molecular beam epitaxy equipment
Wolfframm et al. A detailed surface phase diagram for ZnSe MBE growth and ZnSe/GaAs (0 0 1) interface studies
JPS59148325A (en) Method and device for growing single crystal thin film of compound semiconductor
JPH04187597A (en) Production of thin film of gallium nitride
JPS62186527A (en) Deposited film forming method
JP2563781B2 (en) Method for manufacturing compound semiconductor thin film
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
JPS63319296A (en) Production of semiconductor
JPH01239098A (en) Production of superlattice of ii-vi compound
JPH05234892A (en) Growing method for crystal and radical generator for growing crystal
JP2654608B2 (en) Method for manufacturing GaAs semiconductor diode
JPH04170397A (en) Production of gallium nitride thin film
JPH05206028A (en) Method of growing semiconductor crystal
JPH03295895A (en) Crystal growth method
JPH01192798A (en) Compound semiconductor crystal and crystal growth