JPH03217528A - Construction of multi-layer steel frame and steel-framed reinforced concrete structure - Google Patents

Construction of multi-layer steel frame and steel-framed reinforced concrete structure

Info

Publication number
JPH03217528A
JPH03217528A JP839690A JP839690A JPH03217528A JP H03217528 A JPH03217528 A JP H03217528A JP 839690 A JP839690 A JP 839690A JP 839690 A JP839690 A JP 839690A JP H03217528 A JPH03217528 A JP H03217528A
Authority
JP
Japan
Prior art keywords
steel
span
beams
center
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP839690A
Other languages
Japanese (ja)
Other versions
JP2637589B2 (en
Inventor
Yasuyuki Hashimoto
橋本 安之
Nobuo Yokoyama
横山 暢男
Yoshihide Murase
村瀬 良秀
Takehisa Fukuda
福田 武久
Eiji Kato
栄治 加藤
Toshiaki Nakamura
中村 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toda Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toda Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP839690A priority Critical patent/JP2637589B2/en
Publication of JPH03217528A publication Critical patent/JPH03217528A/en
Application granted granted Critical
Publication of JP2637589B2 publication Critical patent/JP2637589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

PURPOSE:To relieve the deflexion of the central spanned part by a method in which the steel framed beam, whose span center is divided into two sections and jointed and an upward load is applied to the joint to cause deflection, is rigid-jointed with steel columns, and the load is removed. CONSTITUTION:A steel column 1 and a steel framed beam 2 are made of H- steel. The beam 2 is divided into two sections at the center of span, and the divided beams 2a are shaped into a circular arc face 2b and joined with each other through a joint plate 3 and a joint pin 4 to form a pin-joint 6. They are rigid-joined with the steel column 1 in the horizontal attitude. An upward load P is applied by jacks, etc., to the center of span to cause upward deflection near the joints 6, and under the condition the beams 2 so divided are rigid- jointed with each other to remove the load P. The deflexion in the central span of the beams 2 can thus be relieved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多層鉄骨及び鉄骨鉄筋コンクリート構造物の改
良された架設工法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improved erection method for multi-layer steel frames and steel reinforced concrete structures.

(従来の技術) 高層ビル等の骨格となる多層階の鉄骨及び鉄骨鉄筋コン
クリート構造物では、柱材及び梁材をH型鋼等より構成
し、柱材間に梁材を多層階に接合して剛構造の骨格を架
設している。
(Prior art) In multi-story steel frames and steel-frame reinforced concrete structures that form the framework of high-rise buildings, columns and beams are made of H-shaped steel, etc., and beams are connected between the columns to form a multi-story structure. The framework of the structure is being erected.

この種多層鉄骨及び鉄骨鉄筋コンクリート構造物では、
従来鉛直荷重によって梁材に発生する撓み量を一定の基
準値以内に保つことを最優先条件として、梁中央部の断
面寸法が決定されたのち、これに基づいて全体の骨格部
材断面寸法が決定されており、また柱材及び梁材は最初
からボルト接合、あるいは溶接接合によって剛構造に組
立てられている。
In this kind of multi-story steel frame and steel reinforced concrete structure,
Conventionally, the cross-sectional dimensions of the central part of the beam are determined with the highest priority being to keep the amount of deflection that occurs in the beam material due to vertical loads within a certain standard value, and then the cross-sectional dimensions of the entire frame member are determined based on this. Moreover, the columns and beams are assembled into a rigid structure from the beginning by bolting or welding.

(発明が解決しようとする課題) 前記従来の部材寸法の設計方法によれば、強度的にみる
と予想される鉛直荷重、地震時の水平荷重に対して各梁
材は非常に大きい応力的な予裕を持ち、強度的に充分過
ぎる構造となって不経済である。
(Problems to be Solved by the Invention) According to the conventional design method of member dimensions, each beam material has a very large stress in response to the expected vertical load and horizontal load during an earthquake in terms of strength. It is uneconomical because it has a sufficient margin and has a structure that is too strong.

本発明は前記従来技術の有する問題点に鑑みて提案され
たもので、その目的とする処は、構造設計上、必要条件
を満たす範囲内で安全に構造部材の断面寸法が決定され
、この種構造物の軽量化が図られる多層鉄骨及び鉄骨鉄
筋コンクリート構造物の架設工法を提供する点にある。
The present invention has been proposed in view of the problems of the prior art, and its purpose is to safely determine the cross-sectional dimensions of structural members within a range that satisfies the necessary conditions for structural design. The object of the present invention is to provide a construction method for multi-layer steel frames and steel-frame reinforced concrete structures that can reduce the weight of the structures.

(課題を解決するための手段) 前記の目的を達成するため、本発明に係る多層鉄骨及び
鉄骨鉄筋コンクリート構造物の架設工法によれば、複数
の鉄骨柱間に接合される鉄骨梁を、スパン中央部で若干
の間隙を保持するように2分割して同各分割鉄骨梁の対
向端部をピン接合部を介して接合し、このようにピン接
合された前記分割鉄骨梁の各端部を前記鉄骨柱に水平姿
勢で剛接合し、次いで前記鉄骨梁のスパン中央付近に上
向き荷重を載荷して同鉄骨梁に所定の上向きの撓みを生
起せしめ、この状態においてスパン中央部において前記
各分割鉄骨梁相互間を剛接合し、しかる後に上向き荷重
を除去するものである。
(Means for Solving the Problems) In order to achieve the above object, according to the method for constructing a multi-layer steel frame and steel-frame reinforced concrete structure according to the present invention, a steel beam connected between a plurality of steel columns is The divided steel beams are divided into two parts with a slight gap maintained between them, and the opposing ends of each divided steel beam are joined via pin joints, and each end of the divided steel beams thus pin-joined is connected to the The steel beam is rigidly connected to a steel column in a horizontal position, and then an upward load is applied to the steel beam near the center of its span to cause the steel beam to undergo a predetermined upward deflection, and in this state, each of the divided steel beams is This is to rigidly connect them and then remove the upward load.

(作用) 本発明によれば前記したように、複数の鉄骨柱間に接合
される各階層の鉄骨梁をスパン中央部で若干の間隙を保
持するように2分割し、このように分割された各鉄骨梁
の対向端部をピン接合部を介して接合し、このようにピ
ン接合された前記各分割鉄骨梁の各端部を前記鉄骨柱に
水平姿勢で剛接合することによって、各階層の鉄骨梁の
スパン中央部がピン構造体とされた多階層鉄骨構造の骨
組が架構される。
(Function) According to the present invention, as described above, the steel beams of each floor connected between a plurality of steel columns are divided into two parts with a slight gap maintained at the center of the span, and the steel beams are divided in this way. By connecting the opposite ends of each steel beam through a pin joint, and rigidly connecting each end of each of the split steel beams thus pin-connected to the steel column in a horizontal position, each floor can be A multi-story steel frame is constructed with a pin structure at the center of the span of the steel beams.

従って同骨組における鉄骨梁のスパン中央部付近に上向
き荷重を加えると、同部が剛構造の場合に比して遥かに
小さい荷重の載荷によって、鉄骨梁のスパン中央部を上
方に撓ませることができる。
Therefore, if an upward load is applied near the center of the span of a steel beam in the same frame, the center of the span of the steel beam will be deflected upward due to a much smaller load than if the same section had a rigid structure. can.

かくして各階層毎に鉄骨梁の中央部に上向き荷重を載荷
し、鉄骨柱粱の応力変化が一定の値、例えば骨組完成時
の鉛直荷重によって発生する応力に相当する値に達した
状態で、前記ピン接合廻りの分割鉄骨梁を相互に剛接合
したのち、前記上向きの荷重の載荷を解消すると、鉄骨
梁の上縁側には圧縮のプレストレスが、下縁側には引張
のプレストレスが導入される。
In this way, an upward load is applied to the center of the steel beam for each floor, and when the stress change in the steel beam reaches a certain value, for example, a value corresponding to the stress generated by the vertical load when the frame is completed, the above-mentioned After the split steel beams around the pin joints are rigidly connected to each other and the upward load is removed, compressive prestress is introduced to the upper edge of the steel beam, and tension prestress is introduced to the lower edge of the steel beam. .

而して同鉄骨粱に導入された前記各プレストレスが、同
鉄骨梁に加わる鉛直荷重によって生起する応力方向の撓
みとは逆方向の撓みを与えるので、同鉛直荷重によって
鉄骨梁のスパン中央部に発生する撓みを減少し、同部に
おける撓み量は著しく小さくなる。
The prestresses introduced into the steel beam give a deflection in the direction opposite to the stress direction caused by the vertical load applied to the steel beam, so the vertical load causes the center of the span of the steel beam to bend. The amount of deflection in the same area is significantly reduced.

(実施例) 以下本発明を回示の実施例について説明する。(Example) The present invention will be described below with reference to some embodiments.

第1図は本発明の方法によって架構される多層鉄骨また
は鉄骨鉄筋コンクリート構造物の一実施例の一橋面を線
回的に示したもので、(1)はH型鋼等から構成された
鉄骨柱、(2)は同鉄骨柱(1)間に多層階に架設され
るH型鋼等からなる鉄骨梁である。
FIG. 1 is a diagram showing a bridge surface of an embodiment of a multi-layer steel frame or steel-frame reinforced concrete structure constructed by the method of the present invention. (1) shows a steel column made of H-shaped steel, (2) is a steel beam made of H-shaped steel, etc., which will be constructed on multiple floors between the same steel columns (1).

同鉄骨梁(2)はスパン中央部で間隙が形成されるよう
に2分割され、同両分割鉄骨梁(2a)の対向端部は相
手部材側に指向して膨出する円弧面(2b)に形成され
ている。
The steel beam (2) is divided into two parts so that a gap is formed at the center of the span, and the opposing ends of the two divided steel beams (2a) form an arcuate surface (2b) that bulges toward the other member. is formed.

而して前記相対する一双の分割鉄骨梁(2a)のうち、
一方の分割鉄骨梁(2a)のウエブ部に表裏一双の接合
板(3)(3)の基端部を溶接(ロ)し、同各接合板(
3)(3)の先端突出部によって他方の分割鉄骨梁(2
a)のウエブ部を挟着し、同ウエブ部に穿設された大径
の接続孔(4)を貫通する接合ピン(5)を前記一双の
接合板(3) (3)の先端突出部に固定して、前記鉄
骨梁(2)のスパン中央部にピン接合部(6)を構成す
る.(第2図及び第3図参照) なお前記鉄骨梁(2)のピン接合部は前記実施例とは他
の種々の方法で施工されるものであって、分割鉄骨梁(
2a) (2a)が鉄骨梁(2)のスパン中央部でピン
と同等の回転が許容される構成であればよい.前記左右
の分割鉄骨梁(2a) (2a>の対向端部を架台上で
ピン接合して、同各分割鉄骨梁(2a)の他端部を鉄骨
柱材(1)に水平姿勢でボルト接合、溶接等によって剛
接合するか、ピン接合された前記両分割鉄骨梁(2a)
 (2a)を吊支えて、前記同様に鉄骨柱(1)に水平
姿勢で剛接合する。図中(7)は柱梁の剛接合部である
Of the pair of opposing split steel beams (2a),
The base ends of a pair of front and back joint plates (3) (3) are welded (b) to the web part of one split steel beam (2a), and each joint plate (2a) is
3) The other split steel beam (2
The connecting pin (5) that passes through the large diameter connecting hole (4) drilled in the web portion of a) is inserted into the protruding tip of the pair of connecting plates (3) (3). A pin joint (6) is formed at the center of the span of the steel beam (2). (See Figures 2 and 3) The pin joints of the steel beams (2) are constructed using various methods other than those in the above embodiments, and the split steel beams (2) are constructed using various methods.
2a) It is sufficient if (2a) is configured to allow rotation equivalent to that of a pin at the center of the span of the steel beam (2). Opposite ends of the left and right split steel beams (2a) (2a>) are pin-joined on the frame, and the other end of each split steel beam (2a) is bolted to the steel column (1) in a horizontal position. , the two split steel beams (2a) are rigidly connected by welding or the like or are pin-connected.
(2a) is suspended and rigidly connected to the steel column (1) in a horizontal position in the same manner as described above. In the figure, (7) is the rigid joint between the column and beam.

次いで前記梁材(2)のスパン中央部付近に、ジャツキ
、若しくは吊上げ等によって上向き荷重Pを載荷して、
第4図に示すように鉄骨粱(2)のスパン中央のピン接
合部(6)付近に上向きの撓みを生起せしめる。
Next, an upward load P is applied near the center of the span of the beam material (2) by jacking or lifting,
As shown in FIG. 4, an upward deflection is caused near the pin joint (6) at the center of the span of the steel frame (2).

この際、ピン接合部(6)を中心として左右の分割鉄骨
梁(2a)が回動ずることによって、鉄骨梁(2)のス
パン中央部は1本の連続梁を撓ませる場合に比して遥か
に小さい荷重の載荷で容易に撓みを生起する。
At this time, by rotating the left and right split steel beams (2a) around the pin joint (6), the span center of the steel beam (2) is smaller than when one continuous beam is bent. Deflection easily occurs when a much smaller load is applied.

また前記鉄骨梁(2)及び同粱(2)が剛接合された鉄
骨柱(1)の近くには最寄りの位置にストレンゲージを
取付け、前記鉄骨梁(2)及び鉄骨柱(1)に生起する
応力変化を監視して上向き荷重Pの載荷を行なう。
In addition, a strain gauge is installed at the nearest position near the steel column (1) to which the steel beam (2) and the steel column (2) are rigidly connected. The upward load P is applied while monitoring the stress change.

而して前記鉄骨梁(2)の長さに応じて許容される最大
撓み時の応力に対応するような一定応力を超えた状態で
、第5圓に示すように、接合板(3)の突出端部を分割
鉄骨梁(2a)のウェブ部に熔接(w’l t,、更に
相対する分割鉄骨梁(2a) (2a)の円弧面(2b
) (2b)間に繋板(8)を挿入、填隙し、同各梁(
2a)の上部フランジ(2a1)(2a.)及び下部フ
ランジ(2a−) (2a−)に溶接接合して、左右の
分割鉄骨粱(2a) (2a)を剛接する。
As shown in the fifth circle, when the stress exceeds a certain stress corresponding to the maximum allowable stress depending on the length of the steel beam (2), The protruding end portion is welded to the web portion of the split steel beam (2a), and the arcuate surface (2b) of the opposing split steel beam (2a) (2a)
) (2b) Insert the connecting plate (8) between them, fill the gap, and connect each beam (
The upper flanges (2a1) (2a.) and lower flanges (2a-) (2a-) of 2a) are welded to connect the left and right split steel frames (2a) (2a) rigidly.

この状態で前記鉄骨柱(1)と鉄骨梁(2)とは剛構造
となり、上向き荷重Pの載荷を解除ずると、同荷重Pに
よって前記鉄骨梁(2)内に生じた応力により、同梁(
2)内部に、上縁側には圧縮プレストレスが、下縁側に
は引張ストレスが導入される。
In this state, the steel column (1) and the steel beam (2) have a rigid structure, and when the upward load P is released, the stress generated in the steel beam (2) by the same load P causes the (
2) Compressive prestress is introduced inside on the upper edge side and tensile stress is introduced on the lower edge side.

このような施工を、第1図の下層の鉄骨梁材(2)から
上層の鉄骨梁(2)に順次反覆して行なうことによって
、所要階の剛構造の多層鉄骨構造物が架構される。
By sequentially repeating such construction from the lower layer steel beam material (2) to the upper layer steel beam material (2) in FIG. 1, a rigid multi-layer steel structure of a desired floor is constructed.

前記実施例に示す方法によると撓みを生起させ難い剛性
の大きい構造材に、架設段階で安全且つ容易にプレスト
レスを導入することができ、また組立てられた鉄骨構造
物では各階毎に鉛直荷重に対する撓みが著しく小さくな
り、許容される撓みの大きさの限度内で、鉄骨梁の断面
を節減し、著しく軽量化しうるとともに、鉄骨柱に所要
の逆方向のプレストレスが容易に導入され、同鉄骨柱の
断面を縮減し、軽量化を図ることができる。
According to the method shown in the above embodiment, prestress can be safely and easily introduced into structural members with high rigidity that are difficult to cause deflection during the erection stage, and in the assembled steel structure, the vertical load can be applied to each floor. The deflection is significantly reduced, and within the limits of the allowable deflection, the cross section of the steel beam can be reduced and the weight can be significantly reduced, and the required prestress in the opposite direction can be easily introduced into the steel column. It is possible to reduce the cross section of the column and reduce its weight.

(発明の効果) 本発明によれば前記したように、多層階鉄骨構造物の架
設に際し、各階層の鉄骨梁をスパン中央部で若干の間隙
を保持するように2分割し、同各分割鉄骨梁の対向端部
をピン接合部を介して接合し、ピン接合された前記分割
鉄骨梁の両端部を水平姿勢で鉄骨柱に剛接合したのち、
前記鉄骨梁のスパン中央付近に設計荷重とは逆方向の上
向き荷重を載荷して同鉄骨梁に上向きの撓みを生起せし
め、この状態で前記分割鉄骨梁中央部を剛接合すること
によって、通常は撓みを生起させることが非常に困難で
非常に大きな荷重の載荷を必要とする剛性の大きい鉄骨
梁に架設段階において小さい荷重の載荷で安全、且つ容
易に必要とする逆方向の撓みの量を予め与え、この状態
で前記分割鉄骨粱をスパン中央部で剛接合することによ
って、本発明ムこよって架設された鉄骨柱に所要の逆方
向のプレストレスを容易に導入させ、その結果、前記鉄
骨柱、鉄骨梁の断面を縮減し、軽量化を回り、構造上合
理的で経済的な多層鉄骨または鉄骨鉄筋コンクリート構
造物の設計が可能となるものである。
(Effects of the Invention) According to the present invention, as described above, when constructing a multi-story steel structure, the steel beams of each story are divided into two with a slight gap maintained at the center of the span, and each divided steel beam is After joining the opposing ends of the beams via a pin joint, and rigidly joining both ends of the pin-joined split steel beam to the steel column in a horizontal position,
Usually, by applying an upward load in the opposite direction to the design load to the center of the span of the steel beam to cause the steel beam to deflect upward, and in this state, rigidly joining the center part of the split steel beam, It is very difficult to cause deflection and it is necessary to apply a very large load to a rigid steel beam. During the erection stage, we can safely and easily calculate the required amount of deflection in the opposite direction by applying a small load. In this state, by rigidly joining the split steel beams at the center of the span, the steel column constructed according to the present invention can easily receive prestress in the required opposite direction. By reducing the cross-section of the steel beam, it becomes possible to design a structurally rational and economical multi-layer steel frame or steel-frame reinforced concrete structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法によって架構された多層鉄骨また
は鉄骨鉄筋コンクリート構造物の一橋面を線図゛的に示
した正面V、第2lは銖骨梁の中央ピン接合部を示す拡
大正面図、第3図は第2回の矢視■−■図で一部を欠截
して示す。第4図及び第5図は前記ピン接合部の施工工
程を示す正面回である。 (1)・・・鉄骨柱、      (2)・・・鉄骨梁
、(2a)・・・分割鉄骨梁、   (3)・・・接合
板、(4)・・・接続孔、      (5)・・・接
合ピン、(6)・・・ピン接合部、    (力・・・
剛接合部、(8)・・・繋板、       (wl(
w’l・・・溶接部、P・・・上向き荷重。
1 is a front view V diagrammatically showing a bridge surface of a multi-layer steel frame or steel-frame reinforced concrete structure constructed by the method of the present invention; FIG. FIG. 3 is a partially cut-out view of the second arrow view ■-■. FIGS. 4 and 5 are front views showing the construction process of the pin joint. (1) Steel column, (2) Steel beam, (2a) Split steel beam, (3) Joint plate, (4) Connection hole, (5) ...Joining pin, (6)...Pin joint, (force...
Rigid joint, (8)...Connecting plate, (wl(
w'l...Welded part, P...Upward load.

Claims (1)

【特許請求の範囲】[Claims] 複数の鉄骨柱間に多層階に鉄骨梁を接合してなる多層鉄
骨及び鉄骨鉄筋コンクリート構造物の架設工法において
、前記鉄骨梁をスパン中央部で若干の間隙を保持するよ
うに2分割して同各分割鉄骨梁の対向端部をピン接合部
を介して接合し、このようにピン接合された前記分割鉄
骨梁の各端部を前記鉄骨柱に水平姿勢で剛接合し、次い
で前記鉄骨梁のスパン中央付近に上向き荷重を載荷して
同鉄骨梁に所定の上向きの撓みを生起せしめ、この状態
においてスパン中央部において前記各分割鉄骨梁相互間
を剛接合し、しかる後に上向き荷重を除去することを特
徴とする多層鉄骨及び鉄骨鉄筋コンクリート構造物の架
設工法。
In a construction method for multi-story steel frames and steel-framed reinforced concrete structures in which steel beams are connected between multiple steel columns in a multi-story manner, the steel beams are divided into two parts with a slight gap maintained at the center of the span. Opposite ends of the split steel beams are joined via pin joints, each end of the split steel beams thus pin-joined is rigidly joined to the steel column in a horizontal position, and then the span of the steel beams is An upward load is applied near the center to cause the steel beam to undergo a predetermined upward deflection, and in this state, each of the divided steel beams is rigidly connected at the center of the span, and then the upward load is removed. Features a construction method for multi-layer steel frames and steel-framed reinforced concrete structures.
JP839690A 1990-01-19 1990-01-19 Construction method of multi-layer steel frame and steel reinforced concrete structure Expired - Lifetime JP2637589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP839690A JP2637589B2 (en) 1990-01-19 1990-01-19 Construction method of multi-layer steel frame and steel reinforced concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP839690A JP2637589B2 (en) 1990-01-19 1990-01-19 Construction method of multi-layer steel frame and steel reinforced concrete structure

Publications (2)

Publication Number Publication Date
JPH03217528A true JPH03217528A (en) 1991-09-25
JP2637589B2 JP2637589B2 (en) 1997-08-06

Family

ID=11692025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP839690A Expired - Lifetime JP2637589B2 (en) 1990-01-19 1990-01-19 Construction method of multi-layer steel frame and steel reinforced concrete structure

Country Status (1)

Country Link
JP (1) JP2637589B2 (en)

Also Published As

Publication number Publication date
JP2637589B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
JP4261607B2 (en) Moment resistant structure, support member, and construction method
US5680738A (en) Steel frame stress reduction connection
US6237303B1 (en) Steel frame stress reduction connection
US7047695B2 (en) Steel frame stress reduction connection
JP6769549B2 (en) Beam joining method, beam joining structure, and support members
JPH03217528A (en) Construction of multi-layer steel frame and steel-framed reinforced concrete structure
JPH03137330A (en) Framing structure consisting of ferro-concrete pillar and steel skeleton beam/ferro-concrete pillar
JP3347942B2 (en) Unit building and its construction method
JP3247749B2 (en) Construction method of long span truss beams
JP7033406B2 (en) Post-attachment brace joint structure
JP5024619B2 (en) Truss beam structure and truss beam erection method
KR101748709B1 (en) Bending Reinforcement Method of Building Structure Beam
JPH0788686B2 (en) Front cross beam method
JP3103294B2 (en) Pillar steel frame, jig used for the connection, and steel frame connection method
RU2132433C1 (en) Method for strengthening of supporting unit in girder structure
JP7162457B2 (en) Joining structure of retrofitted brace
JP3153210B2 (en) Reinforcing method for upper deck of concrete structure
JP2916585B2 (en) Construction method of building
JPS6351215B2 (en)
JPH04216776A (en) Construction method of long span steel frame skeleton
JP2674442B2 (en) Structure of column-beam joint of steel reinforced concrete structure
JP2024088418A (en) Overhanging structure
JPS645141B2 (en)
JPH07150629A (en) Column and beam construction and beam member used therefor
JPH03228936A (en) Truss bridge and construction method therefor