JPH03217208A - Electroendosmosis dehydrator - Google Patents

Electroendosmosis dehydrator

Info

Publication number
JPH03217208A
JPH03217208A JP2009788A JP978890A JPH03217208A JP H03217208 A JPH03217208 A JP H03217208A JP 2009788 A JP2009788 A JP 2009788A JP 978890 A JP978890 A JP 978890A JP H03217208 A JPH03217208 A JP H03217208A
Authority
JP
Japan
Prior art keywords
press belt
anode
caterpillar
sludge
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009788A
Other languages
Japanese (ja)
Other versions
JP2643511B2 (en
Inventor
Mikimasa Yamaguchi
山口 幹昌
Hiroshi Imanishi
浩 今西
Masataka Yoshida
吉田 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009788A priority Critical patent/JP2643511B2/en
Publication of JPH03217208A publication Critical patent/JPH03217208A/en
Application granted granted Critical
Publication of JP2643511B2 publication Critical patent/JP2643511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To save power consumption and to prevent the press belt from being abnormally heated by providing an electric current collector between a press belt and an electric power source all over the area of dehydration section in which the electrodes of anode and cathode are confronted each other. CONSTITUTION:DC voltage is impressed on the electrodes of the anode 1 and the cathode 2 which are confronted each other with a sludge passage between so that the water contained in the sludge supplied to the sludge passage is collected to the side of one of the electrodes by the action of electroendosmosis and discharged to the outside of the system. One of the electrodes of anode and cathode is made of the endless press belt 2 which is moved around. The sliding contact type electric current collector consisting of, for instance, current collecting shoes 12 and a rail 14 is provided so that the press belt 2 is connected with an electric power source 5 all over the area of dehydration section in which the electrodes of the anode 1 and the cathode 2 are confronted each other. As a result, the power consumption is saved and the press belt is prevented from being abnormally heated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば下水処理場で発生した余剰汚泥を対象
に、汚泥を連続式に脱水処理する電気浸透式脱水機に関
する. 〔従来の技術〕 頭記した電気浸透式脱水機として、例えば特開昭63−
256112号公報に記戦の回転ドラム型電気浸透式脱
水機が既に実用化されている.次にかかる回転ドラム型
電気浸透式脱水機の概要を第9図により説明する.mに
おいて、1は周面上に陽極の電極板1aを被着した回転
ドラム、2は回転ドラムlの周域一部を取り巻いてスプ
ロケフトないしブーリの案内輪3に張架したエンドレス
の金属製プレスベルト、4はプレスベルト2の同上に重
ね合わせた濾布ベルト、5は回転ドラムlを陽極.プレ
スベルト2を陰極として電極間に電圧を印加する直流電
源、5a. 5bは電源5の十極,−極端子に接続して
回転ドラム1の回転軸.プレスベルト2を張架した案内
輪3の回転軸に接触する給電.集電用ブラシ、6は濾水
受皿であり、回転ドラム1と濾布ベルト4との間に汚泥
通路が画成されている. 上記の構成で、図示されてない駆動モータによりプレス
ベルト2を矢印方向に周回移動し、かつ回転ドラムlと
プレスベルト2との間に直流電圧を印加した状態で汚泥
通路に被脱水処理物である汚泥7を供給すると、汚泥7
は回転ドラムlとプレスベルト2との間に挟まれて機械
的な圧搾力を受けながら搬送され、岡時に対向電極間の
電場により電気浸透作用を受けるようになる.この電気
浸透作用により、汚泥フの含有水は正に帯電して陰極側
に集められてここから濾布ベルト4.プレスベルト3を
透過し、濾水受皿6に流下して系外に排出される.一方
、汚泥7は脱水により低含水率の脱水ケーキに変わり、
汚泥遍路の出口側にてプレスベルト2から分N回収され
る. なお、前記例では汚泥7の粒子のζ一電位が負てあるこ
とから回転ドラムl(非集水側)の極性を正.プレスベ
ルト2(集水側)の極性を負としたが、特に汚泥粒子の
ζ一電位が正である場合には、逆に回転ドラムlの極性
を負.プレスベルト2の極性を正に定めて電圧を印加す
るものとする.また、前記したプレスベルト2としては
、キャタピラ構造、あるいは金網構造のものが採用され
ている.ここでキャタピラ型プレスベルトは第10図.
第11図に示すように、多数枚の短冊形になるキャタピ
ラセグメント(ステンレス製)8を電極板として、各キ
ャタピラセグメント8をその左右両INに敷設したエン
ドレスチェーン9に連結したものであり、チェーン9が
第9WJに示したスプロケットに張架されている.なお
、8aはキャタピラセグメント8の板面に穿孔した濾水
透遇穴8aてある.一方、金網型プレスベルトは第12
図.第13図に示すように、平行に並ぶ多数本の芯線《
ステンレス製) 10にまたがりスバイラル線(ステン
レス製)11を絡ませてエンドレスベルトに編んだもの
である. 〔発明が解決しようとする1m11) ところで、前記した従来の回転ドラム型電気浸透式脱水
機では、第9図のように電源5の一極とプレスベルト2
との間がブラシ5bを介して電気的に接続されている.
つまりプレスベルト2に対する集電池点が回転ドラムl
と対向し合う脱水区間から外れた位置にある. このために、第lO図.第11図に示したキャタピラ型
プレスベルトでは、脱水区間の領域で汚泥7を通じてキ
ャタピラセグメント8に流れ込んだ電流がチェーン9.
案内輪3(スプロケット)を経てブラシ5bに集電され
ることになる.しかして、チェーン9はローラリンクと
ビンリンクをビン結合したフレキシブルな連結体であり
、リンク相互間の擢動面には潤滑油などの非導電性物質
が付着している.このためにチェーンを通電路として見
るとリンク相互間の電気的な結合が不完全であり、その
長手力向の実効的な電気抵抗がかなり大となる. 一方、第12図.第13図に示した金網型プレスベルト
の場合でも、通電路として見ると長手方向では各芯線1
Gとスバイラル線1lと間に接触抵抗が介在するので、
ベルト全体として長手方向の実効的な電気抵抗がかなり
大となる. このように、プレスベルト2自身を過電路としてその長
手方向に電流を流して菓電するようにした従来の集電方
式では、電源と電極との間の給電回路にプレスベルト自
身の実効的な電気抵抗が加わるために電力損失が大きく
、脱水区間で汚泥7に所要の電流を流すにためにはその
分だけ電源5の電圧を高くする必要があり、この結果と
して消費電力が増してランニングコストが高くなる.さ
らに、キャタピラ型プレスベルトではチェーン9が通電
電流で異常に発熱したり、金網型プレスベルトではベル
ト自身の発熱によりナイロンなどの繊維で編んだ滅布ベ
ルト4が損傷を受けると言った不具合も発生する. 本発明は上記の点にかんがみなされたものであり、プレ
スベルトに対する集電方式を改良することにより消費電
力の節減化.並びにプレスベルトの異常加熱を防止でき
るようにした電気浸透式脱水機を提供することを目的と
する. 〔課題を解決するための手段〕 上記RBを解決するために、本発明の電気浸透式脱水機
においては、 第1の解決手段として、陽極と陰極の電極が対向し合う
脱水区間の全域て前記プレスベルトと電源との間を接続
する摺動接触式の集電部材を設けるものとする. また、第2の解決手段として、キャタピラ型プレスベル
トを構成するキャタピラセグメントに対し、隣合うキャ
タピラセグメントの間を導電線を介して電諷的に相互接
統するものとする.〔作用) 前記した第1の解決手段によれば、陽極と陰極とが対向
し合う脱水区間では、その全域で電流がプレスベルトよ
り直接策電部材を介して電源側に集電されることになる
.したがってプレスベルトと電源との間の回路抵抗の増
加は殆どなく、プレスベルト自身の長手方向に沿った通
電経路の電気抵抗に起因する電力損失の増加.プレスヘ
ルト自身の発熱を抑えて効率よく運転できる.また、第
2の解決手段によれば、キャタピラ型プレスベルトの各
セグメントの相互間が,チェーンを経由することなく電
気抵抗の小さな導電線を介して互いに導通される.した
がって仮にプレスベルトの集電地点を脱水区間から隔た
った位置に設定した場合でも、余分な電力損失.プレス
ベルトの発熱を抑えて効率よく運転できる. C実施例〕 以下本発明の実施例を図面に基づいて説明する.なお、
以下述べる各実施例の図面において第9図ないし第13
図に対応する同一部材には同じ符号が付してある. 実施例1: 第1図.第2図はキャタピラ型プレスベルトを実施対象
とする先記第1の解決手段に対応した本発明の実施例を
示すものである.この実施例では、キャタピラ型プレス
ベルト2を構成している各ヰ中タビラセグメント8ごと
に、その左右両端部には長手方向に位置を揃えてステン
レスなどの金属片をC字形に湾曲成形した集電シェーl
2がボルトl3により固着されている.一方、集電シェ
ー12の列に対向して固定側には集電シェー12の先端
と摺動接触し合う円弧状の集電レールl4が敷設されて
いる.この集電レールl4は例えばステンレス製のバー
であり、回転ドラムlとプレスベルト2とが汚泥通路を
隔てて対向し合う脱水区間の全域に亙って敷設されてお
り、かつその一端が直流電源5の一極端子に配線接続さ
れている. かかる構成により、運転時に脱水区間に位置するキャタ
ピラプレスベルトの各セグメント8を流れる電流は、個
々に集電シェー12を通じて直接集電レールl4に集電
され、ここから電源5の一電極へ流れることになる.し
たがうて、あらかじめ集電シェーl2と集電レールl4
とが十分高い接触圧で接触し合うように構成して該部で
の電気的な接触抵抗を小さな値に抑えることにより、集
電経路での電力損失を最小限にすることができる.また
、電流はキャタピラセグメント8と連結したチェーン(
第9図.第10図参照)を分流することがなく、チェー
ン自身の抵抗発熱のおそれもない.実施例2: 第3図,第4図は実施例1の応用実施例であり、前記実
施例とは逆に集電シェー12がキャタピラセグメント8
の配列ピッチに合わせて脱水区間領域に敷設した円弧状
の集電パー15の周面上に固着されている. かかる構成により、運転時には脱水区間に位置する各キ
ャタピラセグメント8と集電シエー12とが摺動接触し
てキャタピラセグメント8を流れる電流を集電する.し
たがって実施例1と同樟な効果を奏することができる.
しかも、この実施例では集電シェー12は脱水区間の領
域にのみ設置するだけで済む. 実施例3: 第5図,第6図は金網型プレスベルトを実施対象とした
第1の解決手段に対応する実施例である.すなわち、芯
線10とスパイラル線11を編んで作られた金網型プレ
スベルト2に対し、脱水区間領域の裏面倒には円弧状の
集電バー15が敷設され、かつ集電バー15の同上には
ばね部材l6を介してプレスベルト2の面と個々に摺動
し合う複数個の集電ブラシ17 (カーボンブラシ)が
分散して設けてある. かかる構成により、運転時には脱水区間に位置する金網
型のプレスベルト2に対してその裏面側にカーボンブラ
シ17が直接摺動し、脱水区間の全域でプレスベルト2
より直接集電する.したがって、前記した各実施例1,
2と同欅に脱水区間におけるプレスベルト2と電源5と
の間の回路抵抗を小さな値に抑えることができるし、プ
レスベルト自身の興富発熱もない. 実施例4: 第7図.第8図は第2の解決手段に対応する本発明の実
施例を示すものである. すなわち、キャタピラ型のプレスベルト2対し、その全
周域に亙り隣り合うキャタピラセグメントの相互間が導
電線l8で電気的に渡り接続されている.この導電綿1
日は例えば錫メッキを施した素線で可撓性を持たせるよ
うに編んだ通電容量の大きな帯状平&Ww4線であり、
キャタピラセグメント8の間にまたがってボルトl9で
締結されている.かかる構成により、運転時には脱水区
間に位置するキャタピラセグメント8に流れる電流がプ
レスベルトの長手方向に沿い低抵抗の導電線l8を次々
に経由して集電ブラシ5bまで導かれ、実効的な電気抵
抗が大であるチェーン9を通電することがない.したが
って先記した各実施例と同樟に不要な電力損失の増加を
抑えることができ、かつチェーン9自身の通電に伴う異
常発熱のおそれも無くなる. (発明の効果) 本発明の電気浸透式脱水機は、以上説明したように構成
されているので次記の効果を奏する.すなわち、陽極と
陰極の電極が対向し合う脱水区間の全域て前記プレスベ
ルトと電源との間を接続する摺動接触式の集電部材を設
ける、あるいはキャタピラ型プレスベルトを構成するキ
ャタピラセグメントに対し、隣合うキャタピラセグメン
トの間を導電線を介して電気的に相互接続することによ
り、 (1)プレスベルトと電源との間の集電回路における電
気抵抗を低値に抑えて電気浸透脱水に要する消費電力の
節減化が図れる. (2)プレスベルト自身,ないしキャタピラ型プレスベ
ルトに結合したチェーンの通電に伴う異常発熱を抑止し
、プレスベルトに重ね合わせた濾布ベルトの加熱による
損傷を回避できる.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroosmotic dehydrator that continuously dehydrates surplus sludge generated, for example, in a sewage treatment plant. [Prior art] As the above-mentioned electroosmotic dehydrator, for example, Japanese Patent Application Laid-open No. 1983-
The rotating drum type electroosmotic dehydrator described in Publication No. 256112 has already been put into practical use. Next, the outline of such a rotating drum type electroosmotic dehydrator will be explained with reference to Fig. 9. In m, 1 is a rotating drum with an anode electrode plate 1a on its circumferential surface, and 2 is an endless metal press that surrounds a part of the circumferential area of the rotating drum l and is stretched around a guide ring 3 of a sprocket or bouli. A belt, 4 is a filter cloth belt superimposed on the press belt 2, and 5 is a rotating drum l as an anode. A DC power supply that applies a voltage between electrodes using the press belt 2 as a cathode, 5a. 5b is connected to the ten-pole and -pole terminals of the power source 5, and is connected to the rotating shaft of the rotating drum 1. The power supply contacts the rotating shaft of the guide wheel 3 on which the press belt 2 is stretched. The current collecting brush 6 is a drainage tray, and a sludge passage is defined between the rotating drum 1 and the filter cloth belt 4. With the above configuration, the press belt 2 is moved around in the direction of the arrow by a drive motor (not shown), and the material to be dewatered is placed in the sludge passage while a DC voltage is applied between the rotary drum l and the press belt 2. When a certain sludge 7 is supplied, the sludge 7
is conveyed while being sandwiched between the rotating drum 1 and the press belt 2 while being subjected to mechanical squeezing force, and at the same time is subjected to electroosmotic action by the electric field between the opposing electrodes. Due to this electroosmotic action, the water contained in the sludge is positively charged and collected on the cathode side, where it is transferred to the filter cloth belt 4. It passes through the press belt 3, flows down into the filtered water tray 6, and is discharged outside the system. On the other hand, the sludge 7 turns into a dehydrated cake with a low moisture content due to dehydration.
N is collected from the press belt 2 on the exit side of the sludge pilgrimage. In the above example, since the ζ-potential of the particles of the sludge 7 is negative, the polarity of the rotating drum 1 (non-water collection side) is set to positive. The polarity of the press belt 2 (water collection side) is set to negative, but if the ζ-potential of the sludge particles is positive, the polarity of the rotating drum 1 may be set to negative. Assume that the polarity of the press belt 2 is set to be positive and voltage is applied. Further, as the press belt 2 described above, one having a caterpillar structure or a wire mesh structure is adopted. Here, the caterpillar type press belt is shown in Figure 10.
As shown in FIG. 11, a large number of rectangular caterpillar segments (made of stainless steel) 8 are used as electrode plates, and each caterpillar segment 8 is connected to an endless chain 9 laid on both the left and right IN sides of the caterpillar segment 8. 9 is suspended on the sprocket shown in No. 9 WJ. Note that 8a is a drainage hole 8a drilled in the plate surface of the caterpillar segment 8. On the other hand, the wire mesh type press belt is the 12th
figure. As shown in Figure 13, a large number of parallel core wires
Sviral wire (made of stainless steel) 10 is intertwined with 11 wires (made of stainless steel) and woven into an endless belt. [1m11 to be solved by the invention] By the way, in the conventional rotating drum type electroosmotic dehydrator described above, as shown in FIG.
and are electrically connected via the brush 5b.
In other words, the battery collection point for the press belt 2 is the rotating drum l.
It is located away from the dehydration section facing the For this purpose, see FIG. In the caterpillar press belt shown in FIG. 11, the current flowing through the sludge 7 into the caterpillar segments 8 in the region of the dewatering section flows into the chain 9.
The current is collected by the brush 5b via the guide wheel 3 (sprocket). Thus, the chain 9 is a flexible connecting body made up of a roller link and a bottle link, and a non-conductive substance such as lubricating oil is attached to the sliding surfaces between the links. For this reason, when the chain is viewed as a current-carrying path, the electrical connection between the links is incomplete, and the effective electrical resistance in the longitudinal direction is quite large. On the other hand, Fig. 12. Even in the case of the wire mesh type press belt shown in Fig. 13, when viewed as a conductive path, each core wire 1 in the longitudinal direction
Since there is contact resistance between G and the spiral wire 1l,
The effective electrical resistance of the belt as a whole in the longitudinal direction is quite large. In this way, in the conventional current collection method in which the press belt 2 itself is used as an overcurrent path and current is passed in the longitudinal direction of the press belt 2 to collect electricity, the effective current of the press belt itself is Electrical resistance is added, which causes a large power loss, and in order to send the required current to the sludge 7 in the dewatering section, it is necessary to increase the voltage of the power supply 5 by that amount, resulting in increased power consumption and running costs. becomes higher. Furthermore, in the case of a caterpillar type press belt, the chain 9 generates abnormal heat due to the applied current, and in the case of a wire mesh type press belt, problems occur such that the belt 4, which is woven from fibers such as nylon, is damaged due to the heat generated by the belt itself. do. The present invention was developed in consideration of the above points, and it is possible to reduce power consumption by improving the current collection method for the press belt. Another object of the present invention is to provide an electroosmotic dehydrator that can prevent abnormal heating of the press belt. [Means for Solving the Problem] In order to solve the above-mentioned RB, in the electroosmotic dehydrator of the present invention, as a first solution, the entire dehydration section where the anode and cathode electrodes face each other is A sliding contact type current collecting member shall be provided to connect the press belt and the power source. In addition, as a second solution, adjacent caterpillar segments constituting a caterpillar press belt are electrically connected to each other via conductive wires. [Function] According to the first solution described above, in the dehydration section where the anode and the cathode face each other, current is collected from the press belt directly to the power supply side via the current countermeasure member throughout the dehydration section. Become. Therefore, there is almost no increase in circuit resistance between the press belt and the power supply, and there is an increase in power loss due to the electrical resistance of the current carrying path along the length of the press belt itself. The press helmet itself can be operated efficiently by suppressing its own heat generation. According to the second solution, the segments of the caterpillar press belt are electrically connected to each other via conductive wires with low electrical resistance without passing through chains. Therefore, even if the current collection point of the press belt is set at a location away from the dewatering section, there will be extra power loss. It can operate efficiently by suppressing the heat generation of the press belt. Embodiment C] Embodiments of the present invention will be described below based on the drawings. In addition,
9 to 13 in the drawings of each embodiment described below.
Identical parts corresponding to the figures are given the same reference numerals. Example 1: Figure 1. FIG. 2 shows an embodiment of the present invention corresponding to the first solution described above, which is applied to a caterpillar type press belt. In this embodiment, each center segment 8 constituting the caterpillar press belt 2 has a C-shaped collection of metal pieces, such as stainless steel, aligned in the longitudinal direction at both left and right ends. electric shade l
2 is fixed by bolt l3. On the other hand, on the fixed side opposite to the row of current collecting sheaves 12, an arcuate current collecting rail 14 is laid which makes sliding contact with the tips of the current collecting sheaves 12. This current collecting rail l4 is, for example, a bar made of stainless steel, and is laid over the entire dewatering section where the rotating drum l and the press belt 2 face each other across the sludge passage, and one end of which is connected to a DC power source. It is wired to the single pole terminal of 5. With this configuration, the current flowing through each segment 8 of the caterpillar press belt located in the dewatering section during operation is collected directly to the current collecting rail 14 through the current collecting sheath 12, and from there flows to one electrode of the power source 5. become. Therefore, in advance, the current collector shell l2 and the current collector rail l4
By configuring the parts so that they contact each other with a sufficiently high contact pressure and suppressing the electrical contact resistance at that part to a small value, power loss in the current collection path can be minimized. In addition, the current is applied to the chain connected to the caterpillar segment 8 (
Figure 9. (see Figure 10), and there is no risk of resistance heat generation in the chain itself. Embodiment 2: FIGS. 3 and 4 are applied examples of Embodiment 1, in which, contrary to the previous embodiment, the current collector sheath 12 is connected to the caterpillar segment 8.
It is fixed on the circumferential surface of an arc-shaped current collecting par 15 laid in the dewatering section area in accordance with the arrangement pitch of. With this configuration, during operation, each caterpillar segment 8 located in the dewatering section and the current collection shear 12 come into sliding contact to collect the current flowing through the caterpillar segment 8. Therefore, the same effect as in the first embodiment can be achieved.
Moreover, in this embodiment, the current collector shell 12 only needs to be installed in the dewatering section. Embodiment 3: Figures 5 and 6 are examples corresponding to the first solution, which are applied to a wire mesh press belt. That is, for a wire mesh type press belt 2 made by knitting a core wire 10 and a spiral wire 11, an arc-shaped current collecting bar 15 is laid on the back side of the dewatering section area, and on the same side of the current collecting bar 15. A plurality of current collecting brushes 17 (carbon brushes) which individually slide on the surface of the press belt 2 via spring members l6 are provided in a distributed manner. With this configuration, during operation, the carbon brush 17 slides directly on the back side of the wire mesh type press belt 2 located in the dewatering section, and the press belt 2 is moved over the entire dewatering section.
Collect current more directly. Therefore, each of the above embodiments 1,
2 and Keyaki, the circuit resistance between the press belt 2 and the power source 5 in the dehydration section can be suppressed to a small value, and the press belt itself does not generate heat. Example 4: Figure 7. FIG. 8 shows an embodiment of the present invention corresponding to the second solution. That is, adjacent caterpillar segments of the caterpillar-shaped press belt 2 are electrically connected to each other by conductive wires 18 over the entire circumference thereof. This conductive cotton 1
For example, it is a band-shaped flat & Ww4 wire with a large current carrying capacity, which is made of tin-plated wire and woven to give it flexibility.
It straddles between the caterpillar segments 8 and is fastened with bolts 19. With this configuration, during operation, the current flowing in the caterpillar segment 8 located in the dewatering section is guided to the current collecting brush 5b along the longitudinal direction of the press belt via the low resistance conductive wire l8 one after another, and the effective electrical resistance is reduced. Chain 9, which has a large value, is not energized. Therefore, it is possible to suppress an increase in unnecessary power loss in the same manner as in each of the above-mentioned embodiments, and there is also no risk of abnormal heat generation due to energization of the chain 9 itself. (Effects of the Invention) Since the electroosmotic dehydrator of the present invention is configured as described above, it has the following effects. That is, a sliding contact type current collecting member is provided to connect the press belt and the power supply throughout the dehydration section where the anode and cathode electrodes face each other, or a caterpillar segment constituting the caterpillar press belt is provided. By electrically interconnecting adjacent caterpillar segments via conductive wires, (1) the electrical resistance in the current collector circuit between the press belt and the power supply can be kept to a low value, which is necessary for electroosmotic dehydration. Power consumption can be reduced. (2) It is possible to suppress abnormal heat generation due to energization of the press belt itself or the chain connected to the caterpillar press belt, and avoid damage to the filter cloth belt overlaid on the press belt due to heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図.第3図.第5図,第7図はそれぞれ異なる本発
明実施例の要部構成図、第2図.第4図.第6図はそれ
ぞれ第1図.第3図.第5図の部分拡大断面図、第8図
は第7図の部分拡大平面図、第9図は本発明の実施対象
となる回転ドラム型電気浸透式脱水機の従来における全
体の概要構成図、第10図.第11WJはキャタピラ型
プレスベルトの構造を表した部分正面図.およびその平
面図、第12図.第13図は金網型プレスベルトの構造
を表した断面図,およびその平面図である.図において
、18回転ドラム、2:プレスベルト、4:濾布ベルト
、5:直流電源、7:汚泥、8:キャタピラセグメント
、l2:集電シエー、l4:1電レール、15:集電バ
ー、17:集電ブラシ、18  m電線.第3図 5 第5図 第6図 ゲ 第7図 *gv9 第q図 第12図 2 第13図
Figure 1. Figure 3. 5 and 7 are main part configuration diagrams of different embodiments of the present invention, and FIG. 2. Figure 4. Figure 6 is the same as Figure 1. Figure 3. FIG. 5 is a partially enlarged sectional view of FIG. 5, FIG. 8 is a partially enlarged plan view of FIG. Figure 10. No. 11 WJ is a partial front view showing the structure of a caterpillar type press belt. and its plan view, Fig. 12. Figure 13 is a cross-sectional view showing the structure of a wire mesh press belt, and a plan view thereof. In the figure, 18 rotating drums, 2: press belt, 4: filter cloth belt, 5: DC power supply, 7: sludge, 8: caterpillar segment, 12: current collector, 14: 1 current rail, 15: current collector bar, 17: Current collector brush, 18 m electric wire. Figure 3 5 Figure 5 Figure 6 Ge Figure 7 *gv9 Figure q Figure 12 Figure 2 Figure 13

Claims (1)

【特許請求の範囲】 1)汚泥通路を隔てて相対向する陽極、陰極側の電極間
に直流電圧を印加し、汚泥通路に供給した汚泥の含有水
を電気浸透作用により一方の電極側に集めて系外に排出
する電気浸透式脱水機であり、陽極、陰極の一方の電極
が周回移動するエンドレスのプレスベルトとして成るも
のにおいて、陽極と陰極の電極が対向し合う脱水区間の
全域で前記プレスベルトと電源との間を接続する摺動接
触式の集電部材を設けたことを特徴とする電気浸透式脱
水機。 2)汚泥通路を隔てて相対向する陽極、陰極側の電極間
に直流電圧を印加し、汚泥通路に供給した汚泥の含有水
を電気浸透作用により一方の電極側に集めて系外に排出
する電気浸透式脱水機であり、陽極、陰極の一方の電極
が周回移動するキャタピラ〔登録商標〕型プレスベルト
として成るものにおいて、キャタピラ型プレスベルトを
構成するキャタピラセグメントに対し、隣合うキャタピ
ラセグメントの間を導電線を介して電気的に相互接続し
たことを特徴とする電気浸透式脱水機。
[Claims] 1) A DC voltage is applied between the anode and cathode electrodes that face each other across the sludge passage, and the water contained in the sludge supplied to the sludge passage is collected on one electrode side by electroosmosis. An electro-osmotic dehydrator is an electro-osmotic dehydrator that discharges water to the outside of the system, and consists of an endless press belt in which one of the anode and cathode electrodes moves around. An electroosmotic dewatering machine characterized by being provided with a sliding contact type current collecting member that connects a belt and a power source. 2) A DC voltage is applied between the anode and cathode electrodes that face each other across the sludge passage, and the water contained in the sludge supplied to the sludge passage is collected on one electrode side by electroosmosis and discharged to the outside of the system. In an electro-osmotic dehydrator, which consists of a caterpillar (registered trademark) press belt in which one electrode, an anode or a cathode, moves in a circular motion, between the caterpillar segments constituting the caterpillar press belt, there is a An electroosmotic dewatering machine characterized by electrically interconnecting the following through conductive wires.
JP2009788A 1990-01-19 1990-01-19 Electroosmotic dehydrator Expired - Lifetime JP2643511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009788A JP2643511B2 (en) 1990-01-19 1990-01-19 Electroosmotic dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009788A JP2643511B2 (en) 1990-01-19 1990-01-19 Electroosmotic dehydrator

Publications (2)

Publication Number Publication Date
JPH03217208A true JPH03217208A (en) 1991-09-25
JP2643511B2 JP2643511B2 (en) 1997-08-20

Family

ID=11729962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009788A Expired - Lifetime JP2643511B2 (en) 1990-01-19 1990-01-19 Electroosmotic dehydrator

Country Status (1)

Country Link
JP (1) JP2643511B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029961A1 (en) * 2006-09-04 2008-03-13 Samwoointec Inc. Electro-osmotic dehydrator
JP2011509175A (en) * 2008-05-15 2011-03-24 コリア ウォーター テクノロジー アイエヌシー. Phase-controlled electrophoretic electroosmosis dehydrator using a three-phase AC power supply.
EP2724991A1 (en) * 2011-06-27 2014-04-30 Fine Inc. Drum type electro-osmosis dehydrator for reducing power consumption by means of a narrow distance between a positive electrode and a negative electrode
CN113248110A (en) * 2021-05-25 2021-08-13 唐山市环保机械工程有限公司 Crawler-type efficient continuous electroosmosis sludge dewatering device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259711A (en) * 1985-05-14 1986-11-18 Fuji Electric Co Ltd Electroosmotic dehydration apparatus
JPS63256113A (en) * 1987-04-13 1988-10-24 Fuji Electric Co Ltd Electroosmotic dehydrator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259711A (en) * 1985-05-14 1986-11-18 Fuji Electric Co Ltd Electroosmotic dehydration apparatus
JPS63256113A (en) * 1987-04-13 1988-10-24 Fuji Electric Co Ltd Electroosmotic dehydrator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029961A1 (en) * 2006-09-04 2008-03-13 Samwoointec Inc. Electro-osmotic dehydrator
JP2011509175A (en) * 2008-05-15 2011-03-24 コリア ウォーター テクノロジー アイエヌシー. Phase-controlled electrophoretic electroosmosis dehydrator using a three-phase AC power supply.
EP2724991A1 (en) * 2011-06-27 2014-04-30 Fine Inc. Drum type electro-osmosis dehydrator for reducing power consumption by means of a narrow distance between a positive electrode and a negative electrode
JP2014523339A (en) * 2011-06-27 2014-09-11 ファイン インコーポレイテッド Drum type electroosmotic dehydrator that saves electricity in a narrow space between the positive and negative electrodes
EP2724991A4 (en) * 2011-06-27 2014-12-17 Fine Inc Drum type electro-osmosis dehydrator for reducing power consumption by means of a narrow distance between a positive electrode and a negative electrode
CN113248110A (en) * 2021-05-25 2021-08-13 唐山市环保机械工程有限公司 Crawler-type efficient continuous electroosmosis sludge dewatering device and method
CN113248110B (en) * 2021-05-25 2022-08-12 唐山市环保机械工程有限公司 Crawler-type efficient continuous electroosmosis sludge dewatering device and method

Also Published As

Publication number Publication date
JP2643511B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
EP0784501B1 (en) Dewatering process
US8349162B2 (en) Electronic osmotic dehydrator of electrophoresis style with a phase control using three-phase current
KR100860979B1 (en) The electroosmotic dehydrator
US6871744B2 (en) Apparatus for electrodewatering
JP2005219050A (en) Electro-osmotic dewatering machine
KR100507686B1 (en) Apparatus for dehydrating sludge with a type of electro-penetrative dehydration
JPH03217208A (en) Electroendosmosis dehydrator
KR101118560B1 (en) The sludge dewatering equipment equipped with a sludge transfer device
JP3141542B2 (en) Electroosmotic dehydrator
JPH01127012A (en) Electrode of electroosmosis type dehydrator
JPH0346166B2 (en)
KR100755028B1 (en) Electro-penetrative typed device for dehydrating sludge
CN203715471U (en) Compound filter strip for electroosmosis sludge dewatering treatment equipment
JPS621427A (en) Electroosmotic dehydration chamber
JPS63256113A (en) Electroosmotic dehydrator
JP5909549B2 (en) Drum type electroosmotic dehydrator that saves electricity in a narrow space between the positive and negative electrodes
SU775799A1 (en) Brush for electric machine
KR100603135B1 (en) Electrical dehydrator convenient for supplying electricity
JP2668704B2 (en) Belt press type electroosmotic dewatering equipment
JPH04334600A (en) Dewatering machine by electroosmosis
KR101243578B1 (en) An electro-osmosis dehydrator of electrophoresis style
JPH0722660B2 (en) Electro-osmotic dehydrator
GB2294948A (en) De-watering sludge/slurry by simultaneous mechanical compression and electro-osmosis using conductive belt
JPS61268310A (en) Electroosmotic dehydrator
KR20110074296A (en) Dehydrator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13