JPH03217069A - Manufacture of wiring board - Google Patents

Manufacture of wiring board

Info

Publication number
JPH03217069A
JPH03217069A JP1283690A JP1283690A JPH03217069A JP H03217069 A JPH03217069 A JP H03217069A JP 1283690 A JP1283690 A JP 1283690A JP 1283690 A JP1283690 A JP 1283690A JP H03217069 A JPH03217069 A JP H03217069A
Authority
JP
Japan
Prior art keywords
copper
polyimide
polyimide resin
wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1283690A
Other languages
Japanese (ja)
Inventor
Hidefumi Mifuku
御福 英史
Mitsumasa Mori
光正 森
Kurumi Miyake
三宅 久留美
Mitsuyuki Takada
高田 充幸
Yoshiyuki Morihiro
森広 喜之
Masanobu Obara
小原 雅信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1283690A priority Critical patent/JPH03217069A/en
Priority to US07/572,245 priority patent/US5175399A/en
Publication of JPH03217069A publication Critical patent/JPH03217069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To enable reaction between a copper or a steel alloy and a polyimide to be controlled since the film does not become thick as compared with a case where other materials such as titanium are included and electrical resistance of wiring does not become large regarding interlayer connection by forming a polyimide resin after forming a metal hydroxide coating on the surface of the copper or the copper alloy. CONSTITUTION:In a method for producing a wiring board where a copper or a copper alloy is an electric conductor and a polyimide resin is an electric insulator, a metal hydroxide coating 4 is formed on the surface of the copper or the copper alloy 2 and then a polyimide resin 3 is formed. For example, after forming a copper conductor wire 2 on a ceramic substrate 1, the copper hydroxide coating 3 is formed on the surface of the copper conductor wire 2. As a method for forming the copper hydroxide, for example, after treatment within chlorine gas at 100 deg.C for 10 minutes, dipping is made within a 10% aqueous sodium hydroxide for 10 seconds or heat treatment is performed within an oxygen with a relative humidity of 60% at 250 deg.C. After that, a polyimide precursor film 3 is formed on the wiring board and a pattern is formed as needed. Further, the polyimide precursor is converted into polyimide resin by heat treatment.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、銅又は銅合金配線とポリイミド樹脂絶縁層
を有する配線板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a wiring board having copper or copper alloy wiring and a polyimide resin insulating layer.

[従来の技術コ 近年、電子機器に対する高密度化、小型化、高速化の要
求が高まっている。そのため、配線板にも高密度配線と
高速信号伝送能が求められており、この要求を満たすた
め、電気導体材料としては低抵抗である銅又は銅合金が
、絶縁材料としては高密度なパターンニングが可能で、
耐熱性が高く、比誘電率が小さいポリイミド樹脂が注目
されている。
[Conventional technology] In recent years, there has been an increasing demand for higher density, smaller size, and faster speed for electronic devices. Therefore, wiring boards are also required to have high-density wiring and high-speed signal transmission capability. To meet these demands, low-resistance copper or copper alloys are used as electrical conductors, and high-density patterning is used as insulating materials. is possible,
Polyimide resins are attracting attention because of their high heat resistance and low dielectric constant.

従来の配線板、例えば「電子情報通信学会論文誌C J
 Vo1.J71−C,No.11(1988年11月
),PP1510−1515に示された配線板は、第6
図の断面図に示す構造である。図中、(1)は基板、(
2)は銅からなる電気導体、(3)はポリイミド樹脂絶
縁体である。
Conventional wiring boards, for example, "IEICE Journal of Electronics, Information and Communication Engineers CJ
Vol1. J71-C, No. 11 (November 1988), PP1510-1515, the wiring board shown in No. 6
This is the structure shown in the cross-sectional view of the figure. In the figure, (1) is the substrate, (
2) is an electrical conductor made of copper, and (3) is a polyimide resin insulator.

絶縁層としてのポリイミド樹脂の形成にあたっては、溶
剤に可溶なポリイミド前駆体を基板上に塗布し、その後
の熱処理によってポリイミド前駆体をポリイミド樹脂に
転換する手法が一般的に用いられている。しかし、銅と
ポリイミド前駆体はこの熱処理過程において化学的に反
応し易く、銅/ポリイミド界面付近のポリイミド樹脂が
変質し、ポリイミド樹脂本来の電気絶縁性と酎熱性が得
られず、ひいては銅/ポリイミド界面で剥離し、配線板
として機能しないという問題点があった。前記反応は、
ポリイミドのイミド環の分解に起因するものと考えられ
る。
In forming a polyimide resin as an insulating layer, a commonly used method is to apply a polyimide precursor soluble in a solvent onto a substrate, and then convert the polyimide precursor into a polyimide resin by heat treatment. However, copper and the polyimide precursor tend to chemically react during this heat treatment process, and the polyimide resin near the copper/polyimide interface changes in quality, making it impossible to obtain the electrical insulation and heat resistance properties inherent to the polyimide resin. There was a problem that it peeled off at the interface and did not function as a wiring board. The reaction is
This is thought to be caused by decomposition of the imide ring of polyimide.

従来、このような問題点を解決するために、例えば、F
.S.OhuchiらのrJ.Vac.Sci.Tec
hnol.J ^,Vol.6,No3,阿ay/Ju
n 1988,pp1004−1006に、銅とポリイ
ミド樹脂との間にチタニウム(8)など他の材料を挿入
してポリイミド中への銅の拡散を抑制した配線板が考え
られている。第7図は、このような銅(2)とポリイミ
ド樹脂(3)との間に他の材料(8)を挿入した配線板
の断面図である。
Conventionally, in order to solve such problems, for example, F.
.. S. Ohuchi et al.'s rJ. Vac. Sci. Tec
hnol. J^, Vol. 6, No3, Aay/Ju
No. 1988, pp. 1004-1006, a wiring board is proposed in which another material such as titanium (8) is inserted between copper and polyimide resin to suppress the diffusion of copper into the polyimide. FIG. 7 is a sectional view of a wiring board in which another material (8) is inserted between such copper (2) and polyimide resin (3).

ところがチタニウムなどの他の材料を上記のようにして
用いると、異種金属の接触により局部電界が発生して腐
食し易くなるので、長期信頼性が低下するという問題が
ある。
However, when other materials such as titanium are used as described above, a local electric field is generated due to contact between dissimilar metals, which tends to cause corrosion, resulting in a problem of reduced long-term reliability.

[発明が解決しようとする課題] さらに銅又は銅合金とポリイミドとを物理的に− 3 
− 分離するためにチタニウムなどの他の材料を介在させる
ので、チタニウムなどの他の材料の膜厚が厚くなり、チ
タニウムなどの他の材料が銅又は銅合金に比べて比抵抗
が高いことから、例えば層聞接続に関して、配線の電気
抵抗値が高くなるという課題があった。
[Problem to be solved by the invention] Furthermore, copper or copper alloy and polyimide are physically separated from each other.
- Since other materials such as titanium are interposed for separation, the film thickness of the other materials such as titanium becomes thicker, and other materials such as titanium have higher resistivity than copper or copper alloys. For example, regarding interlayer connections, there was a problem in that the electrical resistance value of the wiring became high.

本発明者らは上記のような課題を解消するための手段と
して、銅又は銅合金の表面を改質して銅とポリイミド前
駆体の間の電子移動を抑制するようにした配線板の製造
方法を見いだし、平成元年8月29日に特願平1−22
2221号明細書として出願した。さらに、ポリイミド
又は銅に反応を抑制する効果を有する元素を添加した配
線板についても、平成2年1月10日に事件番号A−A
E097号明細書として出願した。本発明は別の手段に
より前記問題を解消するためになされたものであり、チ
タニウムなどの他の材料を介在させる場合より膜厚が厚
くならず、例えば眉間接続に関して、配線の電気抵抗値
が高くならないで、銅又は銅合金とポリイミドの反応を
抑制する配線板の製造方法を得ることを目的とする。
As a means to solve the above-mentioned problems, the present inventors have developed a method for manufacturing a wiring board in which the surface of copper or copper alloy is modified to suppress electron transfer between copper and a polyimide precursor. was discovered and filed a patent application on August 29, 1989.
The application was filed as Specification No. 2221. Furthermore, on January 10, 1990, Case No.
The application was filed as Specification No. E097. The present invention was made in order to solve the above problem by another means, and the film thickness is not thicker than when other materials such as titanium are used, and the electrical resistance of the wiring is high for, for example, a connection between the eyebrows. It is an object of the present invention to provide a method for manufacturing a wiring board that suppresses the reaction between copper or copper alloy and polyimide.

[課題を解決するための手段コ この発明の配線板の製造方法は、銅又は銅合金の表面に
金属水酸化物皮膜を形成した後に、ポリイミド樹脂を形
成するようにしたものである。
[Means for Solving the Problems] In the method for manufacturing a wiring board of the present invention, a metal hydroxide film is formed on the surface of copper or a copper alloy, and then a polyimide resin is formed.

叉この発明の別の発明は、銅又は銅合金を電解液中に浸
漬し、対極に対して電界を印加して、銅又は銅合金の表
面に改質皮膜を形成した後に、ポリイミド樹脂を形成す
るようにしたものである。
Another invention of this invention is to form a polyimide resin after immersing copper or a copper alloy in an electrolytic solution and applying an electric field to a counter electrode to form a modified film on the surface of the copper or copper alloy. It was designed to do so.

[作用コ 銅又は銅合金の表面に金属水酸化物皮膜を形成した後に
、ポリイミド樹脂を形成するようにしたので、金属水酸
化物皮膜が、銅又は銅合金とポリイミド前駆体の間の化
学的な反応を抑制する。金属水酸化物皮膜は、銅又は銅
合金の表面に化学的な作用があればよく、金属水酸化物
が銅又は銅合金の表面にリッチな状態であればよいので
、金属水酸化物皮膜の厚さは、ほとんど無視できる。そ
のため配線の電気抵抗値が高くならない。
[Effects] Since the polyimide resin is formed after forming a metal hydroxide film on the surface of copper or copper alloy, the metal hydroxide film is formed by chemical bonding between the copper or copper alloy and the polyimide precursor. suppress reactions. The metal hydroxide film only needs to have a chemical effect on the surface of the copper or copper alloy, and the metal hydroxide only needs to be in a rich state on the surface of the copper or copper alloy. The thickness is almost negligible. Therefore, the electrical resistance value of the wiring does not become high.

叉別の発明では、銅又は銅合金を電界液中に浸漬し、対
極に対して電界を印可して、銅又は銅合金の表面に改質
皮膜を形成した後に、ポリイミド樹脂を形成するように
したので、改質皮膜が、銅又は銅合金とポリイミド前駆
体の間の化学的な反応を抑制する。改質皮膜の厚さは、
ほとんど無視できつるので、配線の電気抵抗値が高くな
らない。
In another invention, copper or a copper alloy is immersed in an electrolytic solution and an electric field is applied to a counter electrode to form a modified film on the surface of the copper or copper alloy, and then a polyimide resin is formed. As such, the modified coating suppresses the chemical reaction between the copper or copper alloy and the polyimide precursor. The thickness of the modified film is
Since it is almost negligible, the electrical resistance of the wiring does not increase.

[実施例コ 以下、本発明の実施例を図と共に説明する。第1図、及
び第2図は本発明の一実施例の配線板の製造方法を工程
順に示す断面図で、図において、(1)は基板、この場
合はセラミック基板、(2)は銅導体配線、(3)は銅
導体配線(2)上で形成されたポリイミド前駆体膜、(
4)は銅導体配線(2)の表面に形成した金属水酸化物
からなる皮膜、この場合は銅水酸化物皮膜である。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are cross-sectional views showing the manufacturing method of a wiring board according to an embodiment of the present invention in the order of steps. In the figures, (1) is a substrate, in this case a ceramic substrate, and (2) is a copper conductor. Wiring, (3) is a polyimide precursor film formed on copper conductor wiring (2), (
4) is a film made of metal hydroxide formed on the surface of the copper conductor wiring (2), in this case a copper hydroxide film.

第1図に示すように、セラミック基板(1)上に銅導体
配線(2)で形成した後、銅導体配線(2)の表面に銅
水酸化物皮膜(3)を形成する。銅水酸化物を形成する
方法としては、例えば、塩素ガス中で100℃、10分
処理した後、10%水酸化ナトリウム水溶液に10秒浸
漬する。又は、相対湿度60%の酸素中、250℃で熱
処理する。その後、第2図に示すようにポリイミド前駆
体膜(3)を配線板上に形成し、必要に応じてパターン
形成する。
As shown in FIG. 1, after forming a copper conductor wiring (2) on a ceramic substrate (1), a copper hydroxide film (3) is formed on the surface of the copper conductor wiring (2). As a method for forming copper hydroxide, for example, the material is treated in chlorine gas at 100° C. for 10 minutes, and then immersed in a 10% aqueous sodium hydroxide solution for 10 seconds. Alternatively, heat treatment is performed at 250° C. in oxygen at a relative humidity of 60%. Thereafter, as shown in FIG. 2, a polyimide precursor film (3) is formed on the wiring board, and patterned if necessary.

さらに熱処理によりポリイミド前駆体をポリイミド樹脂
に転換させる。
Furthermore, the polyimide precursor is converted into polyimide resin by heat treatment.

この場合、銅導体配線(2)の表面に形成した銅水酸化
物皮膜が、絹とポリイミド前駆体の間の化学的な反応を
抑制する作用を有するので、銅/ポリイミド界面付近の
ポリイミドが変質せず、ポリイミド樹脂本来の電気絶縁
性と酎熱性が得られる。
In this case, the copper hydroxide film formed on the surface of the copper conductor wiring (2) has the effect of suppressing the chemical reaction between the silk and the polyimide precursor, so the polyimide near the copper/polyimide interface is altered. The electrical insulation properties and heat resistance inherent to polyimide resin can be obtained without any heat generation.

上記、銅とポリイミドの反応の抑制のメカニズムは現在
のところ不明であるが、本発明においては、上記の水酸
化物の効果として、初めて開示するものである。銅水酸
化物皮膜を用いた実施例では、従来例のように異種金属
を介在させておらず、配線導体を銅単体で構成している
ので、異種金属間で局部的に発生する電池効果による配
線導体の腐食や信頼性の低下が防止でき、信頼性の高い
配線板が得られる。
Although the mechanism for suppressing the reaction between copper and polyimide is currently unknown, the present invention discloses this for the first time as an effect of the hydroxide. In the example using a copper hydroxide film, unlike the conventional example, different metals are not interposed, and the wiring conductor is made of copper alone, so that the battery effect that occurs locally between different metals is Corrosion of wiring conductors and deterioration of reliability can be prevented, and a highly reliable wiring board can be obtained.

−7 ー 金属水酸化物からなる皮膜の厚みの効果としては、厚み
25人以下では顕著な効果が得られない。
-7 - As for the effect of the thickness of the film made of metal hydroxide, no significant effect can be obtained if the thickness is less than 25 mm.

好ましくは、50人以上で顕著な効果が得られる。Preferably, significant effects can be obtained in 50 or more people.

上記実施例では銅水酸化物からなる皮膜についてのみ述
べたが、銅とは異種金属ではあるがニッケル、アルミニ
ウム、鉄、チタニウム等他の金属水酸化物からなる皮膜
でも、銅又は銅合金とポリイミドの反応の抑制の作用を
有するので応用が可能である。さらに、上記実施例にお
いては、銅の水酸化物を形成する方法として、上記2つ
の方法を示したが、他の方法であっても良い。
In the above example, only a coating made of copper hydroxide was described, but although copper is a different metal, coatings made of other metal hydroxides such as nickel, aluminum, iron, titanium, etc. can also be used with copper or copper alloy and polyimide. It can be applied because it has the effect of suppressing the reaction of Further, in the above embodiments, the above two methods are shown as methods for forming copper hydroxide, but other methods may be used.

第3図、第4図、第5図は本発明の他の発明の実施例の
配線板の製造方法を工程順に示す新面図で、図において
、(1)は基板、この場合はセラミック基板、(2)は
銅導体配線、(3)は銅導体配線(2)上で形成された
ポリイミド前駆体膜、(4)は銅導体配線(2)の表面
に本発明の他の発明により形成した表面改質皮膜である
。(5)は電解液、この場合は2%の硫酸銅( C u
 S O 4)  を主体とする水溶液、(6)は対極
、この場合は銅導体(2)に対し−8 − て責な金属である白金(pt)、(7)は電源で、銅導
体(2)側が正電極である直流電源である。
FIGS. 3, 4, and 5 are new views showing the manufacturing method of a wiring board according to another embodiment of the present invention in the order of steps. In the figures, (1) is a substrate, in this case a ceramic substrate. , (2) is a copper conductor wiring, (3) is a polyimide precursor film formed on the copper conductor wiring (2), and (4) is a film formed on the surface of the copper conductor wiring (2) according to another invention of the present invention. This is a surface-modified coating. (5) is an electrolytic solution, in this case 2% copper sulfate (Cu
(6) is the counter electrode, in this case platinum (pt), which is a metal that has a negative effect on the copper conductor (2), (7) is the power source, and the copper conductor (2) is 2) is a DC power source with the positive electrode.

第3図に示すように、セラミック基板(1)上に銅導体
配線(2)を形成した後、第4図に示すように、電解液
(5)中に浸漬し、銅導体配線(2)を正極、対極(6
)を負極として電源(7)を用いて、電界を印加する。
As shown in FIG. 3, after forming the copper conductor wiring (2) on the ceramic substrate (1), as shown in FIG. to the positive electrode and the opposite electrode (6
) is used as a negative electrode and a power source (7) is used to apply an electric field.

電圧としては1v、好ましくは3v、さらに好ましくは
IOV以上、印加時間としては1分、好ましくは3分、
さらに好ましくは、15分以上が適当である。この処理
により銅の表面は薄い赤褐色に改質される。現在のとこ
ろ、この表面改質部の徹細構造は正確に決定されていな
いが、本発明の第1の発明と同様に、銅とポリイミドの
反応を抑制する効果を有するため、この発明の銅上の表
面改質皮膜(4)は銅の水酸化物を含有するものと予想
される。その後、第5図に示すようにポリイミド前駆体
膜(3)を配線板上に形成し、必要に応じてパターン形
成する。さらに熱処理によりポリイミド前駆体をポリイ
ミド樹脂に転換させこの場合、銅導体配線(2)の表面
に形成した表面改質皮膜(4)が、銅とポリイミド前駆
体の間の化学的な反応を抑制する作用を有するので、銅
/ポリイミド界面付近のポリイミドが変質せず、ポリイ
ミド本来の電気絶縁性と耐熱性が得られる。
The voltage is 1 V, preferably 3 V, more preferably IOV or more, and the application time is 1 minute, preferably 3 minutes.
More preferably, 15 minutes or more is appropriate. This treatment modifies the surface of the copper to a light reddish-brown color. At present, the detailed structure of this surface-modified part has not been determined accurately, but like the first invention of the present invention, the copper of this invention has the effect of suppressing the reaction between copper and polyimide. The upper surface modified coating (4) is expected to contain copper hydroxide. Thereafter, as shown in FIG. 5, a polyimide precursor film (3) is formed on the wiring board and patterned as necessary. Furthermore, the polyimide precursor is converted into polyimide resin by heat treatment, and in this case, the surface modification film (4) formed on the surface of the copper conductor wiring (2) suppresses the chemical reaction between the copper and the polyimide precursor. Because of this effect, the polyimide near the copper/polyimide interface does not change in quality, and the electrical insulation and heat resistance inherent to polyimide can be obtained.

この実施例の場合では従来例のように異種金属を介在さ
せておらず、配線導体を銅単体で構成しているので、異
種金属間で局部的に発生する電池効果による配、線導体
の腐食や信頼性の低下が防止でき、信頼性の高い配線板
が得られる。この実施例においては、電解液として、硫
酸鋼水溶液であることについて示したが、水酸化ナトリ
ウム( N aOH)等、他の電解液であっても良い。
In the case of this example, unlike the conventional example, different metals are not interposed, and the wiring conductor is made of copper alone, so corrosion of the wiring and wire conductor due to the battery effect that occurs locally between different metals. Therefore, a highly reliable wiring board can be obtained. In this embodiment, a sulfuric acid steel aqueous solution is used as the electrolyte, but other electrolytes such as sodium hydroxide (NaOH) may be used.

さらに、電源として直流電源であることについて示した
が、交流電源、パルス電源等他の電源であっても良い。
Further, although a DC power source is used as the power source, other power sources such as an AC power source or a pulse power source may be used.

これら2つの発明においては、セラミック基板上の銅導
体配線の処理についてのみ述べたが、これに限ることは
なく、あらゆる基板上の銅導体配線に対して適用が可能
である。
In these two inventions, only the treatment of copper conductor wiring on a ceramic substrate has been described, but the present invention is not limited to this and can be applied to copper conductor wiring on any substrate.

さらには、銅導体配線形成、本発明による銅導体配線の
処理、ポリイミド前駆体形成、ポリイミド前駆体の熱処
理を順次繰り返して、銅導体配線とポリイミド樹脂絶縁
体からなる多層配線板を製造することができる。
Furthermore, by sequentially repeating the formation of copper conductor wiring, the treatment of the copper conductor wiring according to the present invention, the formation of a polyimide precursor, and the heat treatment of the polyimide precursor, it is possible to manufacture a multilayer wiring board consisting of copper conductor wiring and a polyimide resin insulator. can.

なお、銅導体配線の形成方法としては、蒸着法、スパッ
タ法、めっき法等、従来公知に実施されている方法であ
れば良い。
Note that as a method for forming the copper conductor wiring, any conventionally known method such as vapor deposition, sputtering, plating, etc. may be used.

さらに、基板上に銅膜を形成、本発明による処理の後,
銅膜にエッチング処理等を施すことにより、配線形成し
てもよい。さらに,配線形成の後に、本発明による処理
を施しても良い。
Furthermore, after forming a copper film on the substrate and processing according to the present invention,
The wiring may be formed by subjecting the copper film to an etching process or the like. Furthermore, the process according to the present invention may be performed after the wiring is formed.

[発明の効果] 以上説明したようにこの発明の配線板の製造方法は、銅
又は銅合金の表面に金属水酸化物皮膜を形成した後に、
ポリイミド樹脂を形成するようにしたので、金属水酸化
物皮膜が、銅又は銅合金とポリイミド前駆体の間の化学
的な反応を抑制し、銅又は銅合金/ポリイミド界面付近
のポリイミドが変質せず、ポリイミド樹脂本来の電気絶
縁性と耐熱性が得られる。従来における銅又は銅合金と
ポリイミドとを物理的に分離するためにチタニウムなど
を介在させるものは、物理的に分離であるためチタニウ
ムなどがどうしても厚くなる。しかしこの発明の金属水
酸化物皮膜は、銅又は銅合金の表面に化学的な作用があ
わばよく、銅又は銅合金の表面に金属水酸化物がリツチ
な状態であればよいので、金属酸化物皮膜の厚さは、ほ
とんど無視でき、これを用いた、例えば層間接続に関し
て、配線板の配線の電気抵抗値が高くならないようにで
きる。
[Effects of the Invention] As explained above, in the method for manufacturing a wiring board of the present invention, after forming a metal hydroxide film on the surface of copper or copper alloy,
Since a polyimide resin is formed, the metal hydroxide film suppresses the chemical reaction between the copper or copper alloy and the polyimide precursor, and the polyimide near the copper or copper alloy/polyimide interface does not deteriorate. , the electrical insulation and heat resistance inherent to polyimide resin can be obtained. In conventional methods in which titanium or the like is interposed to physically separate copper or copper alloy from polyimide, the titanium or the like inevitably becomes thick due to the physical separation. However, the metal hydroxide film of the present invention only needs to have a chemical action on the surface of the copper or copper alloy, and only needs to be rich in metal hydroxide on the surface of the copper or copper alloy. The thickness of the material film is almost negligible, and when using this film, for example, for interlayer connections, it is possible to prevent the electrical resistance value of the wiring on the wiring board from increasing.

叉別の発明の配線板の製造方法は、銅又は銅合金を電解
液中に浸漬し、対極に対して電界を印可して、銅又は銅
合金の表面に改質皮膜を形成した後に、ポリイミド樹脂
を形成するようにしたので、改質皮膜が銅又は銅合金と
ポリイミド前駆体の間の化学的な反応を抑制する。さら
に改質皮膜の厚さは、ほとんど無視できるので、配線の
電気抵抗値が高くならないようにできる。
Another method of manufacturing a wiring board according to the invention is to immerse copper or a copper alloy in an electrolytic solution, apply an electric field to a counter electrode, form a modified film on the surface of the copper or copper alloy, and then immerse the copper or copper alloy in an electrolytic solution. Since a resin is formed, the modified coating suppresses the chemical reaction between the copper or copper alloy and the polyimide precursor. Furthermore, since the thickness of the modified film can be almost ignored, it is possible to prevent the electrical resistance value of the wiring from increasing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、この発明の配線板の製造方11 − 法の一実施例を工程順に示す断面図、第3図、第4図、
第5図は別な発明の一実施例をコ一程順に示す断面図、
第6図、第7図は従来の配線板の製造方法をそれぞれ示
す断面図である。 図中,(1)は基板、(2)は銅導体配線、(3)はポ
リイミド前駆体膜、(4)は銅の水酸化物皮膜、あるい
は表面改質皮膜である。 なお,図中、同一符号は、同一又は相当部分を示す。
FIGS. 1 and 2 are cross-sectional views showing an embodiment of the wiring board manufacturing method 11-method of the present invention in the order of steps; FIGS. 3 and 4;
FIG. 5 is a sectional view showing an embodiment of another invention in order of steps;
FIG. 6 and FIG. 7 are cross-sectional views showing a conventional wiring board manufacturing method, respectively. In the figure, (1) is a substrate, (2) is a copper conductor wiring, (3) is a polyimide precursor film, and (4) is a copper hydroxide film or a surface modified film. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)銅又は銅合金を電気導体とし、ポリイミド樹脂を
電気絶縁体とする配線板の製造方法において、銅又は銅
合金の表面に金属水酸化物皮膜を形成した後に、ポリイ
ミド樹脂を形成するようにしたことを特徴とする配線板
の製造方法。
(1) In a method for manufacturing wiring boards in which copper or copper alloy is used as an electrical conductor and polyimide resin is used as electrical insulator, a metal hydroxide film is formed on the surface of copper or copper alloy, and then polyimide resin is formed. A method for manufacturing a wiring board, characterized in that:
(2)銅又は銅合金を電気導体とし、ポリイミド樹脂を
電気絶縁体とする配線板の製造方法において、銅又は銅
合金を電解液中に浸漬し、対極に対して電界を印加して
、銅又は銅合金の表面に改質皮膜を形成した後に、ポリ
イミド樹脂を形成するようにしたことを特徴とする配線
板の製造方法。
(2) In a method for manufacturing wiring boards using copper or copper alloy as an electrical conductor and polyimide resin as an electrical insulator, copper or copper alloy is immersed in an electrolytic solution and an electric field is applied to a counter electrode. Alternatively, a method for manufacturing a wiring board, characterized in that a modified film is formed on the surface of a copper alloy, and then a polyimide resin is formed.
JP1283690A 1989-08-29 1990-01-22 Manufacture of wiring board Pending JPH03217069A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1283690A JPH03217069A (en) 1990-01-22 1990-01-22 Manufacture of wiring board
US07/572,245 US5175399A (en) 1989-08-29 1990-08-27 Wiring panel including wiring having a surface-reforming layer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283690A JPH03217069A (en) 1990-01-22 1990-01-22 Manufacture of wiring board

Publications (1)

Publication Number Publication Date
JPH03217069A true JPH03217069A (en) 1991-09-24

Family

ID=11816462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283690A Pending JPH03217069A (en) 1989-08-29 1990-01-22 Manufacture of wiring board

Country Status (1)

Country Link
JP (1) JPH03217069A (en)

Similar Documents

Publication Publication Date Title
US5308796A (en) Fabrication of electronic devices by electroless plating of copper onto a metal silicide
US4988412A (en) Selective electrolytic desposition on conductive and non-conductive substrates
US4628149A (en) Substrate having a pattern of an alloy of gold and a noble and a base metal with the pattern isolated by oxides of the noble and the base metals
JP3116897B2 (en) Fine wiring formation method
US3386894A (en) Formation of metallic contacts
US4328048A (en) Method of forming copper conductor
JP2006278950A (en) Printed circuit board and its manufacturing method
KR900003158B1 (en) Method for producing electric circuits an a base board
US3984290A (en) Method of forming intralayer junctions in a multilayer structure
US5158657A (en) Circuit substrate and process for its production
JP3075484B2 (en) Manufacturing method of printed wiring board
JPH03217069A (en) Manufacture of wiring board
JPH07213027A (en) Manufacture of thin film coil
KR20010015395A (en) Process for plating metal in submicron structures
JPH1143797A (en) Method for via-filling
JP2002526663A (en) Submicron metallization using electrochemical deposition
US5175399A (en) Wiring panel including wiring having a surface-reforming layer and method for producing the same
JP4270364B2 (en) Manufacturing method of substrate with built-in capacitor
JPH06260759A (en) Manufacture of printed circuit board
US3700569A (en) Method of metallizing devices
US3934985A (en) Multilayer structure
JPH06316768A (en) Electroless plating method for fluorine containing polyimide resin
JP2768781B2 (en) Wiring board
US1749995A (en) Process for securing good electrical contact with crystalline cuprous oxide
US2197632A (en) Electrical rectifier